首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PC12 pheochromocytoma cells in monolayer cultures secrete increased amounts of glycoproteins into the medium following the addition of nerve growth factor (NGF) or of brain gangliosides. After a 48-h incubation with 50 ng/ml NGF there is approximately a twofold increase in the total [14C]glucosamine-labeled, ethanol-precipitable cellular material released into the medium. Between 30 and 50% of the radioactivity is associated with a glycoprotein (Gpl) of molecular weight of 52,000; the remaining radioactivity is distributed between five and six major bands. Only a small amount (10%) is associated with a glycoprotein of Mr greater than 200,000 which might correspond to the NGF-induced large external glycoprotein. A substantial increase in the release of the glycoproteins is also seen on the addition of a variety of gangliosides including asialo GMl. This increase is independent of the presence of NGF. GMl and GDlb/GTlb but not GDla stimulate release above the levels seen in the presence of NGF. Addition of GDla (2 micrograms/ml) enhances selectively the release of various glycoproteins between 2.6- and 8-fold. The pattern of glycoprotein secretion is similar to that seen with NGF, although Gp2 (Mr 78,000) is more abundant. Stimulation of release by GDla is not accompanied by neurite outgrowth, suggesting that the glycoproteins are not directly associated with neuritogenesis. The release of these glycoproteins following the addition of NGF or gangliosides may relate to the neurotrophic properties that these two entirely different ligands exert on PC12 cells.  相似文献   

2.
The effect of nerve growth factor (NGF) on the utilization and fate of uniformly labeled 14C glucose and on the content of several pyridine and purine nucleotides has been tested in the clonal cell line PC12. After incubation for 72 h with NGF, PC12 cells exhibit a 2.7-fold increase in glucose utilization and a 4.7-fold increase in CO2 release. During the same incubation period, all the nucleotides tested (NAD+, AMP, GMP, UDP-glucose, UDP-galactose, UDP, ADP, GDP, UTP, CTP, ATP, and GTP) underwent significant increments, varying from a minimum of 27% for ADP to a maximum of 90-120% for AMP, GMP, UDP-glucose, and UDP-galactose. These findings are discussed in connection with the trophic and differentiative effects of NGF in PC12 cells, which, in the presence of this factor, shifted from a neoplastic to a neuronal-like cell population.  相似文献   

3.
Abstract: Treatment of PC 12 pheochromocytoma cells with nerve growth factor (NGF) resulted in increased levels of neuron-specific enolase (NSE). Neither insulin, growth hormone, cytochrome c , nor sodium butyrate increased NSE levels. Epidermal growth factor (EGF) did increase NSE levels, although not to the same extent as NGF. As little as 1 ng/ml NGF induced the maximal increase in NSE. As PC 12 cells increased in density, the NSE levels increased even in untreated cells.  相似文献   

4.
Abstract: Previously, we had suggested that heparan sulfate (HS) makes some contribution to a flat-shaped morphology of PC12D cells. Therefore, we carried out quantitative and qualitative analyses of glycosaminoglycans (GAGs), the polysaccharide moiety of proteoglycans, during neuritogenesis in PC12 cells that is induced by nerve growth factor (NGF). (a) In PC12 cells, NGF induced a flat-shaped morphology with a few short processes after 3 days of culture, and then it elicited short and long neurites after 6 (in ~30% of cells) and 9 (in 60–70%) days of culture, respectively, (b) HS and chondroitin sulfate (CS) were detected in the cell layer at all times. Only CS was found in the medium at 3 and 6 days, whereas a low level of HS, in addition to CS, was detectable on day 9. (c) In the NGF-treated cultures, the amounts of cell-associated HS per cell were two to three times as high as those in the respective nontreated cultures at all times, whereas the amount based on phospholipid was about twofold higher after 3 days of culture. (d) The levels of HS labeled with [35S]sulfate during the last 48 h of the culture were 1.5-to twofold higher in the NGF-treated cultures than in the respective controls at any time. (e) The amount of cell-associated CS per cell (or per unit of phospholipid), but not of labeled CS per cell, was transiently enhanced at 3 days in culture with or without NGF. At all times, NGF treatment caused an increase in the levels of total and [35S]sulfate-labeled CS associated with the cells and released into the medium, (f) NGF enhanced the amount of N-sulfation of glucosamine residues of HS at all times, but it did not change the ratio of 4-sulfate units to 6-sulfate units in CS. (g) At 3 days in culture, the uptake of [35S]sulfate by PC12 cells was lower in the NGF-treated culture than in the nontreated control. (h) In chase experiments, the percentage of unrecovered CS was about twofold higher in the NGF-treated culture than in the non-treated control. These results suggest that the enhanced synthetic activity and the accumulation of GAGs as well as the structural change of HS induced by NGF occur preceding the neurite elongation from PC12 cells. Also, it is suggested that the increase in content of HS is closely correlated with the morphological change from round to flat in PC12 cells.  相似文献   

5.
Rat clonal pheochromocytoma PC12h cells were found to bind beta-galactosidase modified with specific glycosides. The enzyme modified with p-aminophenyl beta-D-glucoside was most effectively bound to the cells, followed by alpha-D-mannoside and alpha-D-glucoside. The binding was dependent on the number of PC12h cells, the incubation interval, and the pH; the maximal binding at 4 degrees C was obtained by incubation with 75 micrograms of cell protein for 15 min at pH 4.0. The binding proved to be a saturable and receptor-mediated process, and the apparent Km value and the maximal binding capacity of the cells with beta-D-glucosylated beta-galactosidase were 1.03 +/- 0.06 microM and 333 +/- 24 pmol/min/mg of protein, respectively. When the cells were cultured in the presence of nerve growth factor (NGF), GM1, GM2, and a ganglioside mixture, marked morphological differentiation was observed in the presence of NGF, and the specificity of the binding was also affected. By supplementation of NGF in the culture medium, the cells lost the selectivity of the glycoside binding, whereas cells cultured with GM1 supplement showed increased binding of the specific glycosides.  相似文献   

6.
The addition of nerve growth factor (NGF) or basic fibroblast growth factor (bFGF) to PC12 cells prelabeled with [3H]inositol and preincubated for 15 min in the presence of 10 mM LiCl stimulated the production of inositol phosphates with maximal increases of 120-180% in inositol monophosphate (IP), 130-200% in inositol bisphosphate (IP2), and 45-50% in inositol trisphosphate (IP3) within 30 min. The majority of the overall increase (approximately 85%) was in IP; the remainder was recovered as IP2 and IP3 (approximately 10% as IP2 and 5% as IP3). Under similar conditions, carbachol (0.5 mM) stimulated about a 10-fold increase in IP, a sixfold increase in IP2, and a fourfold increase in IP3. The mass level of 1,2-diacylglycerol (DG) in PC12 cells was found to be dependent on the incubation conditions; in growth medium [Dulbecco's modified Eagle's medium (DME) plus serum], it was around 6.2 mol %, in DME without serum, 2.5 mol %, and after a 15-min incubation in Dulbecco's phosphate-buffered saline, 0.62 mol %. The addition of NGF and bFGF induced an increase in the mass level of DG of about twofold within 1-2 min, often rising to two- to threefold by 15 min, and then decreasing slightly by 30 min. This increase was dependent on the presence of extracellular Ca2+, and was inhibited by both phenylarsine oxide (25 microM) and 5'-deoxy-5'-methylthioadenosine (3 mM). Under similar conditions, 0.5 mM carbachol stimulated the production of DG to the same extent as 200 ng/ml NGF and 50 ng/ml bFGF. Because carbachol is much more effective in stimulating the production of inositol phosphates, the results suggest that both NGF and bFGF stimulate the production of DG primarily from phospholipids other than the phosphoinositides.  相似文献   

7.
Abstract: A small number of p185c- neu receptors have been found on PC12 cells. These receptors show some basal phosphorylation in quiescent cells. When the cells are treated with nerve growth factor (NGF) for a short time, some increase in phosphorylation is seen, mainly on serine and threonine residues, and this is accompanied by a slight shift in the apparent molecular weight. Epidermal growth factor (EGF) also increases the phosphorylation of p185c- neu , in this case on tyrosine residues. Neither heregulin-β1 nor gp30 stimulates the tyrosine phosphorylation of p185c- neu , and neither has a proliferative effect on the cells. Treatment of the cells with NGF for 5 days produces a 70–80% reduction in the number of p185c- neu receptors. This down-regulation does not occur when PC12nnr5 cells, which lack the high-affinity NGF receptor, p140 trk , are treated with NGF.The level of p185c- neu mRNA is not altered by NGF treatment, suggesting that the down-regulation is due to either a translational or a posttranslational alteration.  相似文献   

8.
Abstract: Receptors for insulin-like growth factor I (IGF-I) were studied on PC12EY cells, a subclone of PC12. Differentiation of PC12EY cells with nerve growth factor (NGF) did not alter either the number of IGF-I receptors nor their affinity for IGF-I. IGF-I receptors remained fully functional during differentiation, promoting increases in thymidine incorporation, glucose uptake, amino acid uptake, and the phosphorylation of the S6 protein of the ribosomes. IGF-I also increased the proportion of differentiated cells found in S-phase. But although the addition of IGF-I to naive cells caused an increase in cell number, there was no comparable increase when IGF-I was added to differentiated cells. Thus, although the receptor for IGF-I continues to be present and functional, IGF-I fails to induce cell proliferation in differentiated PC12 cells.  相似文献   

9.
To investigate how the response to agonists changes during neuronal differentiation, we examined the effect of nerve growth factor (NGF) on bradykinin-induced calcium increases in PC12 cells. Short-term (1 h) treatment with NGF increased the potency of bradykinin to raise intracellular calcium by about 10-fold, whereas long-term (1 week) treatment, which was associated with the expression of the differentiated phenotype, increased the potency about 100-fold. Neither treatment affected the maximal response to bradykinin. NGF alone had no acute effect on calcium levels. Short-term potentiation appeared to be mainly a result of greater release of calcium from intracellular stores, whereas the effect of long-term treatment apparently was due to increases in both release from intracellular stores and calcium influx. [3H]Bradykinin binding to intact PC12 cells was unaltered by short-term NGF treatment, whereas differentiated cells displayed a 50% increase in receptor number and about a twofold increase in affinity as compared with cells not treated with NGF. The production of inositol phosphates in response to bradykinin correlated poorly with the calcium transients, in that large calcium responses were associated with small increases in inositol phosphates. Neither NGF treatment had a significant effect on the appearance of inositol phosphates in response to bradykinin. Experiments with permeabilized cells revealed that differentiated cells did not display a heightened response to exogenously added inositol 1,4,5-trisphosphate. Our results demonstrate that NGF modulates the bradykinin signaling pathway without acutely activating this pathway itself.  相似文献   

10.
Abstract: Cultured PC12 pheochromocytoma cells were labeled with [3H]gIucosamine, and the glycoproteins and proteoglycans released following potassium-induced depolarization were fractionated and characterized. Exposure of PC12 cells for 20 min to a high concentration of potassium (51.5 mM in Krebs-Ringers-HEPES buffer) results in an approximately sixfold increase in the release of labeled glycoproteins and proteoglycans, compared to incubation in physiological levels of potassium (6 mM ). The released complex carbohydrates include chromogranins, dopamine β-hydroxylase, and two chondroitin sulfate/heparan sulfate proteoglycan fractions, which together account for 7.4% of the soluble cell radioactivity. The chromogranins contained galactosyl(β l ± 3 )N-ace tylgalactosamine, as well as several mono- and disialyl O -glycosidically-linked oligosaccharides, and the tetra-saccharide AcNeu(α2 ± 3)Gal(β l ± 3)[AcNeu(α2 ± (6)] GalNAcol, obtained by alkaline borohydride treatment of the chromogranin glycopeptides, accounted for almost half of the total chromogranin labeling. The proteoglycan fractions varied in their relative proportions of chondroitin sulfate (23–68%), heparan sulfate (16–23%), and glycoprotein oligosaccharides (16–54%), which are of the triand tetraantennary and O -glycosidic types. As previously found in the case of proteoglycans from bovine chromaffin granules, the more acidic species has a considerably higher proportion of carbohydrate in the form of sulfated glycosaminoglycans.  相似文献   

11.
Abstract: When PC12 cells are primed with nerve growth factor (NGF) for periods of ≥1 week, they acquire the ability to regenerate neurites rapidly in response to NGF. It is not known how NGF promotes this regeneration, but it does not require ongoing RNA synthesis. Previous studies have suggested that NGF directs the accumulation of precursor molecules that are rapidly assembled to form the regenerated neurites. To address the nature of these precursor molecules, we have treated PC12 cells with macromolecular synthesis inhibitors during the priming and regeneration phases of neurite growth. Here we show that NGF promotes neurite regeneration by inducing the synthesis of new proteins. These proteins are encoded by short-lived mRNAs that are generated during the NGF priming period. The isolation and identification of these mRNAs will allow a further understanding of how NGF promotes neurite regeneration.  相似文献   

12.
The effect of nerve growth factor on the metabolism of arachidonic acid and the hydrolysis of phosphatidylinositol in PC12 cells was examined. Addition of nerve growth factor to PC12 cells isotopically labeled with [3H]arachidonic acid caused an increased release of radioactivity. In a similar manner, treatment of PC12 cells prelabeled with [3H]inositol increased inositol monophosphate accumulation in the presence of LiCl. Stimulation of [3H]arachidonic acid release by nerve growth factor was concentration dependent, attaining a maximum at 0.5 nM. Concentrations of nerve growth factor above 0.5 nM caused less than maximal stimulation. In contrast, nerve growth factor-stimulated accumulation of [3H]inositol monophosphate exhibited a sigmoidal dose-response curve with an apparent maximum at 8 nM. Increased accumulation of [3H]inositol monophosphate could be detected as early as 60 s after nerve growth factor addition, whereas nerve growth factor-stimulated release of [3H]arachidonic acid was not observed until 5 min after nerve growth factor treatment. The nerve growth factor-stimulated release of [3H]arachidonic acid was independent of extracellular calcium concentration. Increased [3H]inositol monophosphate accumulation elicited by nerve growth factor was dependent on the presence of extracellular calcium. These results suggest that the increased metabolism of arachidonic acid and the enhanced hydrolysis of phosphatidylinositol are separately regulated by nerve growth factor.  相似文献   

13.
Previous work from these laboratories has shown that in PC12 cells the phosphorylation of a specific soluble protein is decreased by treatment with nerve growth factor. This protein, designated Nsp100, and its kinase have been separated and partially purified from PC12 cells. The present studies have been designed to investigate the role of calcium in this action of nerve growth factor. It is shown here, using PC12h cells, that A23187, a calcium ionophore, and high levels of K+, a depolarizing stimulus, also decrease phosphorylation of Nsp100. Furthermore, the actions of nerve growth factor as well as those of A23187 and high levels of K+ are prevented by treatment of the cells with the calcium chelator EGTA. It is also shown that agents that raise levels of cyclic AMP in the cells, specifically dibutyryl cyclic AMP and cholera toxin, also decrease phosphorylation of Nsp100 but, in addition, increase phosphorylation of tyrosine hydroxylase. The action of these latter agents on Nsp100 is blocked by EGTA, but their action on tyrosine hydroxylase is not, indicating that even agents such as cholera toxin act on Nsp100 through a Ca2+-dependent mechanism.  相似文献   

14.
Abstract: Previous work has shown that nerve growth factor (NGF) stimulates the phosphorylation of the ribosomal protein S6 in PC12 cells. In this study, we show that S6 kinase activity is also present in purified PC12 cell nuclei. This activity was increased by treatment of the cells with NGF and, to a lesser extent, by treatment with epidermal growth factor. The NGF-stimulated activity was obtained from nuclear extracts and some of its characteristics described. The increase in activity was prevented by treatment of the cells with rapamycin or with wortmannin, and the overall activity could be precipitated by antibodies directed against the p85S6K. These data indicate that p85S6K is the NGF-stimulated S6 kinase in PC12 cell nuclei. The presence of S6 protein in the nucleus of PC12 cells has been confirmed and evidence is presented that suggests that it is identical to a protein called SMP reported some years ago.  相似文献   

15.
16.
Previous studies from this laboratory have shown that the phosphorylation of the S6 protein of the ribosomes is catalyzed by at least two different and separable kinase activities in PC12 cells. One of these activities is increased by treatment of the cells with nerve growth factor, the other by treatment of the cells with epidermal growth factor. The present work shows that these two factors stimulate the phosphorylation of S6 with quite different kinetics, and that both the number of phosphates incorporated into S6 and the phosphopeptide pattern of S6 are different in cells treated with nerve growth factor than in cells treated with epidermal growth factor. The characteristics of the nerve growth factor-sensitive S6 kinase and of the epidermal growth factor-sensitive kinase were also clearly different. Substrate specificity and inhibitor studies indicated that neither was identical to cyclic AMP-dependent kinase, kinase C, or the calcium/calmodulin-dependent kinases. However, two major phosphopeptides produced by S6 phosphorylation in nerve growth factor-treated cells were also seen on phosphorylation of S6 by cyclic AMP-dependent kinase in vitro. In addition, when rat liver 40S ribosomal subunits were pretreated with cyclic AMP-dependent kinase in vitro, the action of the nerve growth factor-sensitive S6 kinase was increased about twofold.  相似文献   

17.
PC12D cells, a new subline of conventional PC12 cells, respond not only to nerve growth factor but also to cyclic AMP by extending their neurites. These cells are flat in shape and are similar in appearance to PC12 cells that have been treated with nerve growth factor for a few days. In both cell lines, we have characterized the glycosaminoglycans, the polysaccharide moieties of proteoglycans, which are believed to play an important role in cell adhesion and in cell morphology. Under the present culture conditions, only chondroitin sulfate was detected in the media from PC12 and PC12D cells, whereas both chondroitin sulfate and heparan sulfate were found in the cell layers. The levels of cell-associated heparan sulfate and chondroitin sulfate were about twofold and fourfold higher in PC12D cells than in PC12 cells, respectively. Compared to PC12 cells, the amounts of [35S]sulfate incorporated for 48 h into chondroitin sulfate were twofold lower but those into heparan sulfate were 35% higher in PC12D cells. The amount of chondroitin sulfate released by PC12D cells into the medium was about a half of that released by PC12 cells. The ratio of [35S]sulfate-labeled heparan sulfate to chondroitin sulfate was 6.2 in PC12D cells and 2.2 in PC12 cells. These results suggest that there may be some correlation between the increase in content of glycosaminoglycans and the change in cell morphology, which is followed by neurite outgrowth.  相似文献   

18.
LiCl stimulated the formation of inositol monophosphate in PC12 cells that had been exposed to nerve growth factor (NGF) for 4-5 days. Half-maximal accumulation was observed at approximately 8 mM LiCl. Stimulation of formation of inositol bisphosphate plus inositol trisphosphate was half-maximal at approximately 1 mM LiCl. With membranes isolated from PC12 cells differentiated with NGF, the hydrolysis of added phosphatidylinositol 4,5-bisphosphate (PIP2) was stimulated by LiCl in a biphasic manner, with the first stimulation half-maximal at approximately 0.7 mM and the second half-maximal at approximately 15 mM LiCl. The apparent Km for PIP2 was lowered in the presence of 1.1 mM LiCl from approximately 200 to approximately 70 microM. Membranes from cells grown in the absence of NGF did not respond to LiCl. Although observations with intact cells are difficult to interpret without ambiguity, the results obtained with isolated membranes support our interpretation of the stimulatory action of lithium in the intact PC12 cells.  相似文献   

19.
The effects of bradykinin (BK) and lithium on the phosphatidylinositol cycle were examined in PC12 cells cultured for 20 h in the presence [PC12(+)] or in the absence [PC12(-)] of nerve growth factor (NGF). BK (1 microM) induced a small stimulation of the incorporation of myo-[2-3H]inositol into the lipids of PC12(-) cells and a three- to fourfold stimulation of such incorporation into the lipids of PC12 (+) cells. About 15 h of incubation with NGF and greater than 10 min of incubation with BK were needed for maximal stimulation of inositol incorporation by BK. In the presence of 25 mM LiCl, BK stimulated the inositol monophosphate levels nine-fold in PC12 (-) and 30-fold in PC12 (+) cells. After incubation for 20 h with NGF, an increased binding of [3H]BK to the PC12 (+) cells was observed at 4 degrees C. Exposure of the cells for 30 min to 25 mM LiCl enhanced the effect of BK on the inositol incorporation into total inositol lipids, especially in PC12(+) cells. In these cells, LiCl in the presence of BK also increased several-fold the intracellular levels of inositol bisphosphate and inositol trisphosphate.  相似文献   

20.
Induction of neurite formation by nerve growth factor (NGF) in PC12 pheochromocytoma cells can be efficiently inhibited by expressing a dominant negative mutant form of the small guanine nucleotide binding Ha-Ras protein in these cells. The block in NGF-induced neuritogenesis caused by inhibition of endogenous Ras proteins was found to be partially relieved by simultaneous stimulation of cAMP- or Ca++-dependent signaling pathways. Since expression of certain genes is believed to be involved in NGF-signaling leading to morphological differentiation, we decided to study the combined effects of NGF and second messenger analogs on gene expression in PC12 cell lines expressing different levels of the interfering Ras protein. We found NGF-second messenger combinations that induced normal c-fos, zif268 and nur77 early-response gene expression without neuritogenesis, and, conversely, cell lines in which certain combination treatments caused partial neuronal differentiation in the absence of substantial activation of these genes. Similarly, neurite outgrowth induced by combination treatments does not seem to require the activation of the late-response transin gene. Our results thus suggest a lack of strong correlation between NGF-stimulated early- and secondary-response gene induction and morphological differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号