首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and properties of a bridged nucleic acid analogue containing a N3'-->P5' phosphoramidate linkage, 3'-amino-2',4'-BNA, is described. A heterodimer containing a 3'-amino-2',4'-BNA thymine monomer, and thymine and methylcytosine monomers of 3'-amino-2',4'-BNA and their 5'-phosphoramidites, were synthesized efficiently. The dimer and monomers were incorporated into oligonucleotides by conventional 3'-->5' assembly, and 5'-->3' reverse assembly phosphoramidite protocols, respectively. Compared to a natural DNA oligonucleotide, modified oligonucleotides containing the 3'-amino-2',4'-BNA residue formed highly stable duplexes and triplexes with single-stranded DNA (ssDNA), single-stranded RNA (ssRNA), and double-stranded DNA (dsDNA) targets, with the average increase in melting temperature (T(m)) against ssDNA, ssRNA and dsDNA being +2.7 to +4.0 degrees C, +5.0 to +7.0 degrees C, and +5.0 to +11.0 degrees C, respectively. These increases are comparable to those observed for 2',4'-BNA-modified oligonucleotides. In addition, an oligonucleotide modified with a single 3'-amino-2',4'-BNA thymine residue showed extraordinarily high resistance to nuclease degradation, much higher than that of 2',4'-BNA and substantially higher even than that of 3'-amino-DNA and phosphorothioate oligonucleotides. The above properties indicate that 3'-amino-2',4'-BNA has significant potential for antisense and antigene applications.  相似文献   

2.
Due to instability of pyrimidine motif triplex DNA at physiological pH, triplex stabilization at physiological pH is crucial in improving its potential in various triplex formation-based strategies in vivo, such as regulation of gene expression, mapping of genomic DNA, and gene-targeted mutagenesis. To this end, we investigated the effect of our previously reported chemical modification, 2'-O,4'-C-aminomethylene bridged nucleic acid (2',4'- BNA(NC)) modification, introduced into interrupted and continuous positions of triplex-forming oligonucleotide (TFO) on pyrimidine motif triplex formation at physiological pH. The interrupted 2',4'-BNA(NC) modifications of TFO increased the binding constant of the triplex formation at physiological pH by more than 10-fold, and significantly increased the nuclease resistance of TFO. On the other hand, the continuous 2',4'-BNA(NC) modification of TFO showed lower ability to promote the triplex formation at physiological pH than the interrupted 2',4'-BNA(NC) modifications of TFO, and did not significantly change the nuclease resistance of TFO. Selection of the interruptedly 2',4'-BNA(NC)-modified positions in TFO was more favorable for achieving the higher binding affinity of the pyrimidine motif triplex formation at physiological pH and the higher nuclease resistance of TFO than that of the continuously 2',4'-BNA(NC)-modified positions in TFO. We conclude that the interrupted 2',4'-BNA(NC) modification of TFO could be a key chemical modification to enhance pyrimidine motif triplex-forming ability and nuclease resistance under physiological condition, and may eventually lead to progress in various triplex formation-based strategies in vivo.  相似文献   

3.
We analyzed the effect of 2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA) modification of triplex-forming oligonucleotide (TFO) on pyrimidine motif triplex formation at neutral pH, a condition where pyrimidine motif triplexes are unstable. The binding constant of the pyrimidine motif triplex formation at pH 6.8 with 2',4'-BNA modified TFO was about 20 times larger than that observed with unmodified TFO. The observed increase in the binding constant at neutral pH by the 2',4'-BNA modification resulted from the considerable decrease in the dissociation rate constant.  相似文献   

4.
Novel bicyclo nucleosides, 2'-O,4'-C-ethylene nucleosides and 2'-O,4'-C-propylene nucleosides, were synthesized as building blocks for antisense oligonucleotides to further optimize the 2'-O,4'-C-methylene-linkage of bridged nucleic acids (2',4'-BNA) or locked nucleic acids (LNA). Both the 2'-O,4'-C-ethylene- and propylene-linkage within these nucleosides restrict the sugar puckering to the N-conformation of RNA as do 2',4'-BNA/LNA. Furthermore, ethylene-bridged nucleic acids (ENA) having 2'-O,4'-C-ethylene nucleosides had considerably increased the affinity to complementary RNA, and were as high as that of 2',4'-BNA/LNA (DeltaT(m)=+3 approximately 5 degrees C per modification). On the other hand, addition of 2'-O,4'-C-propylene modifications in oligonucleotides led to a decrease in the affinity to complementary RNA. As for the stability against nucleases, incorporation of one 2'-O,4'-C-ethylene or one 2'-O,4'-C-propylene nucleoside into oligonucleotides considerably increased their resistance against exonucleases to an extent greater than 2',4'-BNA/LNA. These results indicate that ENA is more suitable as an antisense oligonucleotide and is expected to have better antisense activity than 2',4'-BNA/LNA.  相似文献   

5.
A novel bridged nucleic acid (BNA) analogue, 2'-O,4'-C-methyleneoxymethylene bridged nucleic acid (2',4'-BNA(COC)), was synthesized and incorporated into oligonucleotides. The 2',4'-BNA(COC) modified oligonucleotides showed high binding affinity with an RNA complement and significant enzymatic stability against snake venom phosphodiesterase.  相似文献   

6.
An oligonucleotide P3'-->N5' phosphoramidate (5'-amino-DNA) attracts much attention because of its potential for application to DNA sequencing; however, its ability to hybridize with complementary strands is low. To overcome this drawback of the 5-amino-DNA, we have designed and successfully synthesized a novel nucleic acid analogue having a P3'-->N5' phosphoramidate linkage and a constrained sugar moiety, 5'-amino-3'-C,5'-N-methylene bridged nucleic acid (5'-amino-3',5'-BNA). The binding affinity of the 5'-amino-3',5'-BNA towards complementary DNA and RNA strands was investigated by UV melting experiments. The melting temperature (Tm) of the duplex comprising the 5'-amino-3',5'-BNA and its complementary strand was much higher than that of the duplex containing the corresponding 5-amino-DNA.  相似文献   

7.
8.
Oligonucleotides modified with 2 ',4 '-BNA(NC) (N-H)/(N-Me) monomers exhibited excellent hybridizing and nuclease resistance properties. Duplex and triplex thermal stabilities were greatly enhanced by incorporating 2',4'-BNA(NC) (N-H) and (N-Me) monomers and nuclease resistance was tremendously higher than that of natural oligonucleotide.  相似文献   

9.
Extreme instability of pyrimidine motif triplex DNA at physiological pH severely limits its use in an artificial control of gene expression in vivo. Stabilization of the pyrimidine motif triplex at physiological pH is, therefore, crucial in improving its therapeutic potential. To this end, we have investigated the thermodynamic and kinetic effects of our previously reported chemical modification, 2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA) modification of triplex-forming oligonucleotide (TFO), on pyrimidine motif triplex formation at physiological pH. The thermodynamic analyses indicated that the 2',4'-BNA modification of TFO increased the binding constant of the pyrimidine motif triplex formation at neutral pH by approximately 20 times. The number and position of the 2',4'-BNA modification introduced into the TFO did not significantly affect the magnitude of the increase in the binding constant. The consideration of the observed thermodynamic parameters suggested that the increased rigidity itself of the 2',4'-BNA-modified TFO in the free state relative to the unmodified TFO may enable the significant increase in the binding constant at neutral pH. Kinetic data demonstrated that the observed increase in the binding constant at neutral pH by the 2',4'-BNA modification of TFO resulted from the considerable decrease in the dissociation rate constant. Our results certainly support the idea that the 2',4'-BNA modification of TFO could be a key chemical modification and may eventually lead to progress in therapeutic applications of the antigene strategy in vivo.  相似文献   

10.
The P-N bond in oligonucleotide P3' --> N5' phosphoramidates (5'-amino-DNA) is known to be chemoselectively cleaved under mild acidic conditions. We prepared homopyrimidine oligonucleotides containing 5'-amino-5'-deoxythymidine (5'-amino-DNA thymine monomer) or its conformationally locked congener, 5'-amino-2',4'-BNA thymine monomer, at midpoint of the sequence. The effect of triplex formation with homopurineohomopyrimidine dsDNA targets on acid-mediated hydrolysis of the P3' --> N5' phosphoramidate linkage was evaluated. Very interestingly, it was found that the triplex formation significantly accelerates the P-N bond cleavage.  相似文献   

11.
2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA) monomers bearing novel unnatural nucleobases, 4-(3-benzamidophenyl)-2-pyridone and 2-(N-methylbenzamido)thiazole, were synthesized and successfully incorporated into oligonucleotides. UV melting experiments showed that the corresponding oligonucleotide derivatives formed stable triplexes with dsDNA targets even in the presence of a T.A interruption.  相似文献   

12.
The action of two phenolic compounds isolated from the bark of Yucca schidigera: trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene and its analogue -- resveratrol (trans-3,4',5-trihydroxystilbene, present also in grapes and wine) on oxidative/nitrative stress induced by peroxynitrite (ONOO(-), which is strong physiological oxidant and inflammatory mediator) in human blood platelets was compared. The trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene, like resveratrol, significantly inhibited protein carbonylation and nitration (measured by enzyme-linked immunosorbent assay method) in the blood platelets treated with peroxynitrite (0.1 mM) and markedly reduced an oxidation of thiol groups of proteins (estimated with 5,5'-dithio-bis(2-nitro-benzoic acid)] or glutathione (measured by high performance liquid chromatography method) in these cells. The trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene, like resveratrol, also caused a distinct reduction of platelet lipid peroxidation induced by peroxynitrite. The obtained results indicate that in vitro trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene and resveratrol have very similar protective effects against peroxynitrite-induced oxidative/nitrative damage to the human platelet proteins and lipids. Moreover, trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene proved to be even more potent than resveratrol in antioxidative tests. We conclude that the novel tested phenolic compound -- trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene isolated from Y. schidigera bark possessing Generally Recognized As Safe label given by the Food and Drug Administration and allows their human dietary use -- seems to be a promising candidate for future evaluations of its antioxidative activity and may be a good candidate for scavenging peroxynitrite.  相似文献   

13.
From oxyresveratrol (trans-2,4,3',5'-tetrahydroxystilbene 1), seven derivatives were prepared, including trans-2-methoxy-4,3',5'-trihydroxystilbene (2), trans-2,3'-dimethoxy-4,5'-dihydroxystilbene (3), trans-4,3'-dimethoxy-2,5'-dihydroxystilbene (4), trans-2,4,3',5'-tetramethoxystilbene (5) and cis-2,4,3',5'-tetramethoxystilbene (6), 2,4,3',5'-tetrahydroxybibenzyl (7), and 2,4,3',5'-tetramethoxybibenzyl (8). The tetrahydroxybibenzyl 7, a hydrogenation product of 1, exhibited more potent tyrosinase inhibitory activity than the parent compound, without cytotoxicity. A kinetic study revealed that 7 was a reversible and non-competitive inhibitor of mushroom tyrosinase with l-dopa as the substrate. Analysis of the K(i) values indicated that 7 has a slightly higher affinity to the enzyme than 1. Compound 6, a tetra-O-methylated analogue of 1 with cis-configuration, was deprived of inhibitory effect on the enzyme tyrosinase, but showed very strong cytotoxicity against the human cancer cells KB, BC, and NCI-H187, with potency comparable to those of the anticancer agents ellipticine and doxorubicin. Data on the tyrosinase inhibitory activity and cytotoxicity of 1-8 indicated that O methylation on stilbene 1 destroyed anti-tyrosinase activity but generated cytotoxicity. Thus, facile preparations of a potent tyrosinase inhibitor (7) and a strong cytotoxic agent (6) from the natural product 1 were achieved through simple chemical reactions.  相似文献   

14.
New carbon-11 and fluorine-18 labeled stilbene derivatives, cis-3,5-dimethoxy-4'-[11C]methoxystilbene (4'-[11C]8a), cis-3,4',5-trimethoxy-3'-[11C]methoxystilbene (3'-[11C]8b), trans-3,5-dimethoxy-4'-[11C]methoxystilbene (4'-[11C]10a), trans-3,4',5-trimethoxy-3'-[11C]methoxystilbene (3'-[11C]10b), cis-3,5-dimethoxy-4'-[18F]fluorostilbene (4'-[18F]12a), and trans-3,5-dimethoxy-4'-[18F]fluorostilbene (4'-[18F]13a), were designed and synthesized as potential PET probes for aryl hydrocarbon receptor (AhR) in cancers.  相似文献   

15.
An antimalarial stilbene from Artocarpus integer   总被引:3,自引:0,他引:3  
Antimalarial activity-guided study of the aerial parts of Artocarpus integer led to the isolation of the prenylated stilbene, trans-4-(3-methyl-E-but-1-enyl)-3,5,2',4'-tetrahydroxystilbene with an EC50 of 1.7 micrograms/ml against Plasmodium falciparum in culture. The known stilbenes, trans-4-isopentenyl-3,5,2',4'-tetrahydroxystilbene and 4-methoxy-2,2-dimethyl-6-(2-(2,4-dihydroxy)phenyl-trans-ethenyl)chromene , were also isolated. Structures of these compounds were deduced on the basis of their spectral data.  相似文献   

16.
Thiyl radicals (RS) formed by the reaction of radiolytically generated OH radicals with thiols, e.g. 1,4-dithiothreitol (DTT), react with cis- and trans-2,5-dimethyltetrahydrofuran by abstracting an H atom in the alpha-position to the ether function (k approximately equal to 5 X 10(3) dm3 mol-1 s-1). The so-formed planar ether radical is 'repaired' by the thiol (k = 6 X 10(8) dm3 mol-1 s-1) thereby regenerating a cis- or trans-2,5-dimethyltetrahydrofuran molecule. In this reaction a thiyl radical is reproduced. Thus trans-2,5-Me2THF from cis-2,5-Me2THF and vice versa are formed in a chain reaction: at a dose rate of 2.8 X 10(-3) Gys-1 and a trans-2,5-Me2THF concentration of 1 X 10(-2) mol dm-3 using DTT as the thiol, G(cis-2,5-Me2THF) = 160 has been found. The chain reaction is very sensitive to impurities and also to disulphides such as those radiolytically formed. 2,5-Me2THF can be regarded as a model for the sugar moiety of DNA where the C(4')-radical is known to lead to DNA strand breakage. The possible role of cellular thiols in the repair of the C(4') DNA radical, and also the conceivable role of thiyl radicals inducing DNA strand breakage, are discussed.  相似文献   

17.
The time course of the relaxation effect induced by a single dose (3 x 10(-6) mol/L) of trans-[Ru(NH3)4L(NO)]3+ (L=nic, 4-pic, py, imN, P(OEt)3, SO(3)(2-), NH3, and pz) species and sodium nitroprusside (4 x 10(-9) mol/L) was studied in aortic rings without endothelium and pre-contracted with noradrenaline (1 x 10(-6) mol/L). All the compounds induced a relaxing effect in the aortic rings, but the intensity and time of relaxation were different. Only the species where L=py, 4-pic, and P(OEt)3 were able to induce 100% (99-100%) of the relaxing effect during the assay. trans-[Ru(NH3)4(L)(NO)]3+ (L=SO(3)(2-) and NH3) showed the lowest relaxing effect (36 and 37%, respectively) when compared with the other compounds. Relationship was observed between the time corresponding to half of the maximum relaxation intensity observed and, respectively, k-NO, E0'[Ru(NO)]3+/[Ru(NO)]2+ in trans-[Ru(NH3)4(L)(NO)]3+ species and E0'Ru(III)/Ru(II) in trans-[Ru(NH3)4(L)(H2O)]3+ ions. These relationships strongly suggested that the NO liberation from the reduced nitrosyl complexes was responsible for the observed relaxation.  相似文献   

18.
The stability of trans-(Pt(NH3)2[d(CGAG)-N7-G,N7-G]) adducts, resulting from cross-links between two guanine residues at d(CGAG) sites within single-stranded oligonucleotides by trans-diamminedichloro-platinum(II), has been studied under various conditions of temperature, salt and pH. The trans-(Pt(NH3)2[d(C GAG)-N7-G,N7-G]) cross-links rearrange into trans-(Pt(NH3)2[d(CGAG)-N3-C,N7-G]) cross-links. The rate of rearrangement is independent of pH, in the range 5-9, and of the nature and concentration of the salt (NaCl or NaCIO4) in the range 10-400 mM. The reaction rate depends upon temperature, the t1/2 values for the disappearance of the (G,G) intrastrand cross-link ranging from 120 h at 30 degrees C to 70 min at 80 degrees C. The linkage isomerization reaction occurs in oligonucleotides as short as the platinated tetramer d(CGAG). Replacement of the intervening residue A by T has no major effect on the reaction. The C residue adjacent to the adduct on the 5' side plays a key-role in the reaction; its replacement by a G, A or T residue prevents the reaction occuring. No rearrangement was observed with the C residue adjacent to the adduct on the 3' side. It is proposed that the linkage isomerization reaction results from a direct attack of the base residue on the platinum(II) square complex.  相似文献   

19.
1. Dye-ligand chromatography using immobilized Cibacron blue F3GA (blue Sepharose CL-6B) and Procion red HE3B (Matrex gel red A) as matrices and general ligand chromatography employing immobilized 2',5'-ADP (2',5'-ADP-Sepharose 4B) and immobilized 3',5'-ADP (3',5'-ADP-Agarose) were employed for purification of NADPH-dependent 2-enoyl-CoA reductase and 2,4-dienoyl-CoA reductase from bovine liver (formerly called 4-enoyl-CoA reductase [Kunau, W. H. and Dommes, P. (1978) Eur. J. Biochem. 91, 533-544], as well as 2,4-dienoyl-CoA reductase from Escherichia coli. 2. The NADPH-dependent 2-enoyl-CoA reductase from bovine liver mitochondria was separated from 2,4-dienoyl-CoA reductase by dye-ligand chromatography (Matrex gel red A/KCl gradient) as well as by general ligand affinity chromatography (2',5'-ADP-Sepharose 4B/NADP gradient). The enzyme was obtained in a highly purified form. 3. The NADPH-dependent 2,4-dienoyl-CoA reductase from bovine liver mitochondria was purified to homogeneity using blue Sepharose CL-6B, Matrex gel red A, and 2',5'-ADP-Sepharose 4B chromatography. 4. The bacterial 2,4-dienoyl-CoA reductase was completely purified by ion-exchange chromatography on DEAE-cellulose followed by a single affinity chromatography step employing 2',5'-ADP-Sepharose 4B and biospecific elution from the column with a substrate, trans,trans-2,4-decadienoyl-CoA. 5. The application of dye-ligand and general ligand affinity chromatography for purification of NADPH-dependent 2,4-dienoyl-CoA reductases taking part in the beta-oxidation of unsaturated fatty acids is discussed. It is concluded that making use of coenzyme specificity for binding and substrate specificity for elution is essential for obtaining homogeneous enzyme preparations.  相似文献   

20.
The present study describes the solubilization and purification of a NADPH-specific trans-2-enoyl-CoA reductase from rat liver microsomes. The final preparation was purified to near homogeneity and had a minimal molecular weight of 51,000 +/- 2,000, as judged by sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis. This enzyme specifically used NADPH, as cofactor, and was chromatographically (2',5'-ADP-agarose) separated from another trans-2-enoyl-CoA reductase which utilized either NADH or NADPH as cofactor. The NADPH-specific trans-2-enoyl-CoA reductase catalyzed the reduction of trans-2-enoyl-CoAs from 4 to 16 carbon units. The Km values for crotonyl-CoA, trans-2-hexenoyl-CoA, and trans-2-hexadecenoyl-CoA were 20, 0.5, and 1.0 microM, while the Km value for NADPH was 10 microM. Although N-ethylmaleimide, heat treatment, and limited proteolysis with trypsin affected the reduction of short-chain (C4) and long-chain (C16) substrates equally, and in spite of the fact that a single protein band was observed on SDS-gels, at the present time one cannot state unequivocally that the purified preparation contained only one reductase. trans-2-Hexenoyl-CoA, for example, did not inhibit the reduction of trans-2-hexadecenoyl-CoA to palmitoyl-CoA and trans-2-decenoyl-CoA to decanoyl-CoA whereas it strongly inhibited the conversion of crotonyl-CoA to butyryl-CoA. The potential implications of this finding are discussed. Finally, the reductase preparation was shown not to contain either heme, nonheme iron, or a flavin prosthetic group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号