首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The poxvirus type IB topoisomerases catalyze relaxation of supercoiled DNA by cleaving and rejoining DNA strands via a pathway involving a covalent phosphotyrosine intermediate. Recently we determined structures of the smallpox virus topoisomerase bound to DNA in covalent and non-covalent DNA complexes using x-ray crystallography. Here we analyzed the effects of twenty-two amino acid substitutions on the topoisomerase activity in vitro in assays of DNA relaxation, single cycle cleavage, and equilibrium cleavage-religation. Alanine substitutions at 14 positions impaired topoisomerase function, marking a channel of functionally important contacts along the protein-DNA interface. Unexpectedly, alanine substitutions at two positions (D168A and E124A) accelerated the forward rate of cleavage. These findings and further analysis indicate that Asp(168) is a key regulator of the active site that maintains an optimal balance among the DNA cleavage, religation, and product release steps. Finally, we report that high level expression of the D168A topoisomerase in Escherichia coli, but not other alanine-substituted enzymes, prevented cell growth. These findings help elucidate the amino acid side chains involved in DNA binding and catalysis and provide guidance for designing topoisomerase poisons for use as smallpox antivirals.  相似文献   

2.
The DNA sequences of the Oka varicella vaccine virus (V-Oka) and its parental virus (P-Oka) were completed. Comparison of the sequences revealed 42 base substitutions, which led to 20 amino acid conversions and length differences in tandem repeat regions (R1, R3, and R4) and in an origin of DNA replication. Amino acid substitutions existed in open reading frames (ORFs) 6, 9A, 10, 21, 31, 39, 50, 52, 55, 59, 62, and 64. Of these, 15 base substitutions, leading to eight amino acid substitutions, were in the gene 62 region alone. Further DNA sequence analysis showed that these substitutions were specific for V-Oka and were not present in nine clinical isolates. The immediate-early gene 62 product (IE62) of P-Oka had stronger transactivational activity than the mutant IE62 contained in V-Oka in 293 and CV-1 cells. An infectious center assay of a plaque-purified clone (S7-01) from the V-Oka with 8 amino acid substitutions in ORF 62 showed smaller plaque formation and less-efficient virus-spreading activity than did P-Oka in human embryonic lung cells. Another clone (S-13) with only five substitutions in ORF 62 spread slightly faster than S7-01 but not as effectively as P-Oka. Moreover, transient luciferase assay in 293 cells showed that transactivational activities of IE62s of S7-01 and S7-13 were lower than that of P-Oka. Based on these results, it appears that amino acid substitutions in ORF 62 are responsible for virus growth and spreading from infected to uninfected cells. Furthermore, the Oka vaccine virus was completely distinguishable from P-Oka and 54 clinical isolates by seven restriction-enzyme fragment length polymorphisms that detected differences in the DNA sequence.  相似文献   

3.
Evolution balances DNA replication speed and accuracy to optimize replicative fitness and genetic stability. There is no selective pressure to improve DNA replication fidelity beyond the background mutation rate from other sources, such as DNA damage. However, DNA polymerases remain amenable to amino acid substitutions that lower intrinsic error rates. Here, we review these 'antimutagenic' changes in DNA polymerases and discuss what they reveal about mechanisms of replication fidelity. Pioneering studies with bacteriophage T4 DNA polymerase (T4 Pol) established the paradigm that antimutator amino acid substitutions reduce replication errors by increasing proofreading efficiency at the expense of polymerase processivity. The discoveries of antimutator substitutions in proofreading-deficient 'mutator' derivatives of bacterial Pols I and III and yeast Pol δ suggest there must be additional antimutagenic mechanisms. Remarkably, many of the affected amino acid positions from Pol I, Pol III, and Pol δ are similar to the original T4 Pol substitutions. The locations of antimutator substitutions within DNA polymerase structures suggest that they may increase nucleotide selectivity and/or promote dissociation of primer termini from polymerases poised for misincorporation, leading to expulsion of incorrect nucleotides. If misincorporation occurs, enhanced primer dissociation from polymerase domains may improve proofreading in cis by an intrinsic exonuclease or in trans by alternate cellular proofreading activities. Together, these studies reveal that natural selection can readily restore replication error rates to sustainable levels following an adaptive mutator phenotype.  相似文献   

4.
Summary The DNA sequence of six P1 cop mutants, which are altered in the control of copy number of the plasmid prophage, was compared to that of P1 wild type. Each cop mutant differs from the wild type by a single base substitution. All of these substitutions are located within a 400 base pair region of P1 DNA that also encodes rep, a gene whose product is required for P1 replication.  相似文献   

5.
Variability of Evolutionary Rates of DNA   总被引:6,自引:1,他引:5       下载免费PDF全文
John H. Gillespie 《Genetics》1986,113(4):1077-1091
A statistical analysis of DNA sequences from four nuclear loci and five mitochondrial loci from different orders of mammals is described. A major aim of the study is to describe the variation in the rate of molecular evolution of proteins and DNA. A measure of rate variability is the statistic R, the ratio of the variance in the number of substitutions to the mean number. For proteins, R is found to be in the range 0.16 less than R less than 35.55, thus extending in both directions the values seen in previous studies. An analysis of codons shows that there is a highly significant excess of double substitutions in the first and second positions, but not in the second and third or first and third positions. The analysis of the dynamics of nucleotide evolution showed that the ergodic Markov chain models that are the basis of most published formulas for correcting for multiple substitutions are incompatible with the data. A bootstrap procedure was used to show that the evolution of the individual nucleotides, even the third positions, show the same variation in rates as seen in the proteins. It is argued that protein and silent DNA evolution are uncoupled, with the evolution at both levels showing patterns that are better explained by the action of natural selection than by neutrality. This conclusion is based primarily on a comparison of the nuclear and mitochondrial results.  相似文献   

6.
Evolution balances DNA replication speed and accuracy to optimize replicative fitness and genetic stability. There is no selective pressure to improve DNA replication fidelity beyond the background mutation rate from other sources, such as DNA damage. However, DNA polymerases remain amenable to amino acid substitutions that lower intrinsic error rates. Here, we review these ‘antimutagenic’ changes in DNA polymerases and discuss what they reveal about mechanisms of replication fidelity. Pioneering studies with bacteriophage T4 DNA polymerase (T4 Pol) established the paradigm that antimutator amino acid substitutions reduce replication errors by increasing proofreading efficiency at the expense of polymerase processivity. The discoveries of antimutator substitutions in proofreading-deficient ‘mutator’ derivatives of bacterial Pols I and III and yeast Pol δ suggest there must be additional antimutagenic mechanisms. Remarkably, many of the affected amino acid positions from Pol I, Pol III, and Pol δ are similar to the original T4 Pol substitutions. The locations of antimutator substitutions within DNA polymerase structures suggest that they may increase nucleotide selectivity and/or promote dissociation of primer termini from polymerases poised for misincorporation, leading to expulsion of incorrect nucleotides. If misincorporation occurs, enhanced primer dissociation from polymerase domains may improve proofreading in cis by an intrinsic exonuclease or in trans by alternate cellular proofreading activities. Together, these studies reveal that natural selection can readily restore replication error rates to sustainable levels following an adaptive mutator phenotype.  相似文献   

7.
Mutations caused by oxidative DNA damage may contribute to human disease. A major product of that damage is 8-hydroxyguanine (oh8Gua). Because of differences in experimental design, the base pairing specificity of oh8G in vivo is not completely resolved. Here, oh8dGTP and DNA polymerase were used in two complementary bacteriophage plaque color assays to examine the mutagenic specificity of oh8Gua in vivo. The first is a reversion assay that detects all three single-base substitutions caused by misreading of guanine analogues inserted at a specific site. oh8Gua at that site gave a mutation frequency of 0.7%. Twenty-two of the 23 mutations were G----T substitutions. The second assay, a forward mutation assay, tests the mispairing potential of any altered nucleotide 1) during incorporation as substrate nucleotide, and 2) after multiple incorporations into a single-stranded DNA gap region of M13mp2. Substituting oh8dGTP for dGTP during polymerization produced 16% mutants; two classes of mutations were observed, both caused by pairing of oh8Gua with A. Seventy-six of 78 mutations were A----C substitutions, and two were G----T substitutions. These assays thus illustrate mutagenic replication of oh8Gua as template causing G----T substitutions and misincorporation of oh8Gua as substrate causing A----C substitutions, both caused by oh8Gua.A mispairs.  相似文献   

8.
Duplex DNA fragments differing by single base substitutions can be separated by electrophoresis in denaturing gradient polyacrylamide gels, but only substitutions in a restricted part of the molecule lead to a separation (1). In an effort to circumvent this problem, we demonstrated that the melting properties and electrophoretic behavior of a 135 base pair DNA fragment containing a beta-globin promoter are changed by attaching a GC-rich sequence, called a 'GC-clamp' (2). We predicted that these changes should make it possible to resolve most, if not all, single base substitutions within fragments attached to the clamp. To test this possibility we examined the effect of several different single base substitutions on the electrophoretic behavior of the beta-globin promoter fragment in denaturing gradient gels. We find that the GC-clamp allows the separation of fragments containing substitutions throughout the promoter fragment. Many of these substitutions do not lead to a separation when the fragment is not attached to the clamp. Theoretical calculations and analysis of a large number of different mutations indicate that approximately 95% of all possible single base substitutions should be separable when attached to a GC-clamp.  相似文献   

9.
Malondialdehyde (MDA) is an endogenous genotoxic product of enzymatic and oxygen radical-induced lipid peroxidation whose adducts are known to exist in DNA isolated from healthy human beings. To evaluate the mutagenic potential of MDA in human cells, we reacted MDA with pSP189 shuttle vector DNA and then transfected them into human fibroblasts for replication. MDA induced up to a 15-fold increase in mutation frequency in the supF reporter gene compared with untreated DNA. Sequence analysis revealed that the majority of MDA-induced mutations occurred at GC base pairs. The most frequent mutations were large insertions and deletions, but base pair substitutions were also detected. MDA-induced mutations were completely abolished when the adducted shuttle vector was replicated in cells lacking nucleotide excision repair. MDA induction of large deletions and the apparent requirement for nucleotide excision repair suggested the possible involvement of a DNA interstrand cross-link as a premutagenic lesion. Indeed, MDA formed interstrand cross-links in duplex plasmids and oligonucleotides. Substrates containing the sequence 5'-d(CG) were preferentially cross-linked, consistent with the observation of base pair substitutions in 5'-d(CG) sites in the MDA-induced mutation spectrum. These experiments provide biological and biochemical evidence for the existence of MDA-induced DNA interstrand cross-links that could result from endogenous oxidative stress and likely have potent biological effects.  相似文献   

10.
To analyze the DNA binding domain of E coli LexA repressor and to test whether the repressor binds as a dimer to DNA, negative dominant lexA mutations affecting the binding domain have been isolated. A large number of amino acid substitutions between amino acid positions 39 and 46 were introduced using cassette mutagenesis. Mutants defective in DNA binding were identified and then examined for dominance to lexA+. A number of substitutions weakened repressor function partially, whereas other substitutions led to a repressor with no demonstrable activity and a defective dominant phenotype. Since the LexA binding site has dyad symmetry, we infer that this dominance results from interaction of monomers of wild-type LexA protein with mutant monomers and that an oligomeric form of repressor binds to operator. The binding of LexA protein to operator DNA was investigated further using a mutant protein, LexA408, which recognizes a symmetrically altered operator mutant but not wild-type operator. A mixture of mutant LexA408 and LexA+ proteins, but neither individual protein, bound to a hybrid recA operator consisting of mutant and wild-type operator half sites. These results suggest that at least 1 LexA protein monomer interacts with each operator half site. We discuss the role of LexA oligomer formation in binding of LexA to operator DNA.  相似文献   

11.
Distinguishing noise from signal presents a problem when DNA sequences are used for phylogeny reconstruction. Multiple substitutions at sites are a primary cause of noise and this is compounded by variation in substitution rates among sites. For protein-coding genes, one method used to determine if data are noisy is to assess levels of saturation of substitutions by codon position. However, this procedure may not be a fine enough filter for assessing noise. Variation in substitution rates may also be caused by constraints on change imposed by the function of the protein product. Using a structural model of the cytochromebprotein as a template, I divided cytbsequence data for species within the avian family Falconidae (falcons and caracaras) into three functional domains. Saturation of substitutions of sequences within these regions was assessed graphically. This qualitative determination of saturation was then used to differentially weight phylogenetic analysis, resulting in an hypothesis congruent with existing cladistic analyses and traditional morphology. These results demonstrate that saturation of substitutions is correlated with functional regions of cytochromeband that using this information improves phylogenetic inference.  相似文献   

12.
Ligation of a tandem of short oligonucleotides was proposed for detecting single-base substitutions in amplified DNA fragments. An octamer–tetramer–octamer tandem was ligated on a 20-mer template with T4 DNA ligase. As shown with radiolabeled oligonucleotides, the efficiency and selectivity of ligation did not change with an octamer linked to a water-soluble carrier based on polyethylene glycol (MPEG), while ligation was somewhat lower with the octamer immobilized on methacrylate beads (DMEG). In both cases, polymer attachment improved the discrimination of 20-mer templates with single-base substitutions in the binding site for the tetramer or for the immobilized octamer. Tandems with a radiolabeled or biotinylated component were also efficiently ligated on amplified DNA fragments. The data obtained with DNA fragments of HIV-1 strains bru and rf demonstrate the possibility of reliable detection of single-base substitutions via ligation of a tandem and colorimetric detection of the immobilized ligation product with the streptavidin–alkaline phosphatase technique.  相似文献   

13.
We isolated 607 independent nalidixic acid-resistant mutants from Bacillus subtilis. A 163 by DNA segment from a 5′ portion of the gyrA gene was amplified from the DNA of each mutant strain. After heat denaturation, the product was subjected to gel electrophoresis to detect conformational polymorphism of single-strand DNA (PCR-SSCP analysis). Mobility patterns of the two DNA strands from all the mutant strains examined differed from those of the parental wild-type strains. The patterns were classified into 13 types, and the DNA sequence of each type was determined. A unique sequence alteration was found in mutants belonging to each of the 13 types, defining 13 gyrA alleles. Eight were single base pair substitutions, four were substitutions of two consecutive base pairs, and one was a substitution of three consecutive base pairs. Only three amino acid residues (Ser-84, Ala-85, and Glu-88) were altered in the deduced amino acid sequences of the mutated genes. We conclude that molecular typing based on the PCR-SSCP method is a powerful technique for the exhaustive identification of allelic variants among mutants selected for a phenotypic trait.  相似文献   

14.
Some amino acid substitutions in the major capsid protein (gene E product) of lambda phage are found to cause a defect in DNA packaging. These substitutions permit initiation of DNA packaging and expansion of the prohead. However, cleavage of the concatemer DNA at the cos site takes place only to a very small extent, and the capsid eventually becomes empty. Interestingly, the mutations are suppressed by a decrease of the DNA length between the cos sites by 8000 to 10,000 bases. These properties are similar to those of amber mutants in gene D, which codes for the capsid outer-surface protein. Studies on the E missense.D amber double mutant show that the E protein and the D protein contribute additively to the stabilization of the condensed form of the DNA molecule in phage heads.  相似文献   

15.
16.
We have analyzed nucleotide sequence variation in an approximately 900-base pair region of the human mitochondrial DNA molecule encompassing the heavy strand origin of replication and the D-loop. Our analysis has focused on nucleotide sequences available from seven humans. Average nucleotide diversity among the sequences is 1.7%, several-fold higher than estimates from restriction endonuclease site variation in mtDNA from these individuals and previously reported for other humans. This disparity is consistent with the rapidly evolving nature of this noncoding region. However, several instances of convergent or parallel gain and loss of restriction sites due to multiple substitutions were observed. In addition, other results suggest that restriction site (as well as pairwise sequence) comparisons may underestimate the total number of substitutions that have occurred since the divergence of two mtDNA sequences from a common ancestral sequence, even at low levels of divergence. This emphasizes the importance of recognizing the large standard errors associated with estimates of sequence variability, particularly when constructing phylogenies among closely related sequences. Analysis of the observed number and direction of substitutions revealed several significant biases, most notably a strand dependence of substitution type and a 32-fold bias favoring transitions over transversions. The results also revealed a significantly nonrandom distribution of nucleotide substitutions and sequence length variation. Significantly more multiple substitutions were observed than expected for these closely related sequences under the assumption of uniform rates of substitution. The bias for transitions has resulted in predominantly convergent or parallel changes among the observed multiple substitutions. There is no convincing evidence that recombination has contributed to the mtDNA sequence diversity we have observed.  相似文献   

17.
If substitutions in DNA sequences follow a Poisson process, the ratio of the variance in the number of substitutions to the mean number of substitutions (the index of dispersion) should equal 1. In this paper, the robustness of the commonly applied estimator of the index of dispersion in replacement sites and silent sites to various assumptions regarding DNA evolution is explored using simulation methods. The estimate of the index of dispersion may be strongly biased if the assumptions of the model of substitution are violated. However, the results of this study support the conclusions of studies by Gillespie and Ohta that the process of substitution in replacement sites is overdispersed. This result contradicts those of a recent study and shows that the high index of dispersion for replacement sites is not an artifact caused by the method of estimation.  相似文献   

18.
Bacteria with reduced DNA polymerase I activity have increased sensitivity to killing by chain-terminating nucleotides (S. A. Rashbaum and N. R. Cozzarelli, Nature 264:679-680, 1976). We have used this observation as the basis of a genetic strategy to identify mutations in the dnaE (polC) gene of Escherichia coli that alter sensitivity to 2',3'-dideoxyadenosine (ddA). Two dnaE (polC) mutant strains with increased sensitivity to ddA and one strain with increased resistance were isolated and characterized. The mutant phenotypes are due to single amino acid substitutions in the alpha subunit, the protein product of the dnaE (polC) gene. Increased sensitivity to ddA is produced by the L329F and H417Y substitutions, and increased resistance is produced by the G365S substitution. The L329F and H417Y substitutions also reduce the accuracy of DNA replication (the mutator phenotype), while the G365S substitution increases accuracy (the antimutator phenotype). All of the amino acid substitutions are in conserved regions near essential aspartate residues. These results prove the effectiveness of the genetic strategy in identifying informative dnaE (polC) mutations that can be used to elucidate the molecular basis of nucleotide interactions in the alpha subunit of the DNA polymerase III holoenzyme.  相似文献   

19.
Three family B DNA polymerase genes, designated B1, B2, and B3, were cloned from the thermoacidophilic crenarchaeon Sulfurisphaera ohwakuensis, and sequenced. Deduced amino acid sequences of B1 and B3 DNA polymerases have all exonuclease and polymerase motifs which include critical residues for catalytic activities. Furthermore, a YxGG/A motif, which is located between 3'-5' exonuclease and polymerization domains of family B DNA polymerases, was also found in each of the B1 and B3 sequences. These findings suggested that S. ohwakuensis B1 and B3 DNA polymerases have both exonuclease and polymerase activities. However, amino acid sequence of the B2 DNA polymerase of this organism contains several amino acid substitutions in Pol-motifs, and also lacks Exo-motif I and Exo-motif II. These substitutions and lack of certain motifs raise questions about polymerase and exonuclease activities of the corresponding gene product. The B3 sequence of S. ohwakuensis is more closely related to Pyrodictium, Aeropyrum, and Archaeoglobus DNA polymerase B3 sequences than to the Sulfolobus B3 sequences. Phylogenetic analysis showed that crenarchaeal B1 DNA polymerases are closely related to each other, and suggested that crenarchaeal B3, euryarchaeal family B, and eukaryal epsilon DNA polymerases may be orthologs.  相似文献   

20.
In the past 10 years, a great number of studies have demonstrated that injection of plasmid DNA coding for certain genes results in the induction of humoral and cellular immune responses against the respective gene product. This vaccination approach covers a broad range of possible applications, including the induction of protective immunity against viral, bacterial, and parasitic infections, and it opens new perspectives for treatment of cancer. Surprisingly, DNA immunization also turned out as a promising novel type of immunotherapy against allergy. In this paper, we describe the construction of DNA vaccines for application in allergy models. Beyond, we offer a palette of recently developed modulations to optimize DNA vaccines for allergy treatment by increasing their immunogenicity and minimizing their anaphylactic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号