首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secretory vesicles of sympathetic neurons and chromaffin granules maintain a pH gradient toward the cytosol (pH 5.5 versus 7.2) promoted by the V-ATPase activity. This gradient of pH is also responsible for the accumulation of amines and Ca2+ because their transporters use H+ as the counter ion. We have recently shown that alkalinization of secretory vesicles slowed down exocytosis, whereas acidification caused the opposite effect. In this paper, we measure the alkalinization of vesicular pH, caused by the V-ATPase inhibitor bafilomycin A1, by total internal reflection fluorescence microscopy in cells overexpressing the enhanced green fluorescent protein-labeled synaptobrevin (VAMP2-EGFP) protein. The disruption of the vesicular gradient of pH caused the leak of Ca2+, measured with fura-2. Fluorimetric measurements, using the dye Oregon green BAPTA-2, showed that bafilomycin directly released Ca2+ from freshly isolated vesicles. The Ca2+ released from vesicles to the cytosol dramatically increased the granule motion of chromaffin- or PC12-derived granules and triggered exocytosis (measured by amperometry). We conclude that the gradient of pH of secretory vesicles might be involved in the homeostatic regulation of cytosolic Ca2+ and in two of the major functions of secretory cells, vesicle motion and exocytosis.  相似文献   

2.
Chromaffin granules are similar organelles to the large dense core vesicles (LDCV) present in many secretory cell types including neurons. LDCV accumulate solutes at high concentrations (catecholamines, 0.5–1 M; ATP, 120–300 mM; or Ca2+, 40 mM (Bulenda and Gratzl Biochemistry 24:7760–7765, 1985). Solutes seem to aggregate to a condensed matrix to elude osmotic lysis. The affinity of solutes for LDCV matrix is responsible for the delayed release of catecholamines during exocytosis. The aggregation of solutes occurs due to a specific H+ pump denominated V-ATPase that maintains an inner acidic media (pH ≈5.5). This pH gradient against cytosol is also responsible for the vesicular accumulation of amines and Ca2+. When this gradient is reduced by modulation of the V-ATPase activity, catecholamines and Ca2+ are moved toward the cytosol. In addition, some drugs largely accumulate inside LDCV and not only impair the accumulation of natural solutes, but also act as false neurotransmitters when they are co-released with catecholamines. There is much experimental evidence to conclude that the physiological modulation of vesicle pH and the manipulation of intravesicular media with drugs affect the LDCV cargo and change the kinetics of exocytosis. Here, we will present some experimental data demonstrating the participation of drugs in the kinetics of exocytosis through changes in the composition of vesicular media. We also offer a model to explain the regulation of exocytosis by the intravesicular media that conciliate the experimentally obtained data.  相似文献   

3.
Glutamate transport in blood platelets resembles that in brain nerve terminals because platelets contain neuronal Na+-dependent glutamate transporters, glutamate receptors in the plasma membrane, vesicular glutamate transporters in secretory granules, which use the proton gradient as a driving force, and can release glutamate during aggregation/activation. The acidification of secretory granules and glutamate transport were assessed during acute treatment of isolated platelets with cholesterol-depleting agent methyl-β-cyclodextrin (MβCD). Confocal imaging with the cholesterol-sensitive fluorescent dye filipin showed a quick reduction of cholesterol level in platelets. Using pH-sensitive fluorescent dye acridine orange, we demonstrated that the acidification of secretory granules of human and rabbit platelets was decreased by ∼15% and 51% after the addition of 5 and 15 mM MβCD, respectively. The enrichment of platelet plasma membrane with cholesterol by the application of complex MβCD-cholesterol (1:0.2) led to the additional accumulation of acridine orange in secretory granules indicating an increase in the proton pumping activity of vesicular H+-ATPase. MβCD did not evoke release of glutamate from platelets that was measured with glutamate dehydrogenase assay. Flow cytometric analysis did not reveal alterations in platelet size and granularity in the presence of MβCD. These data showed that the dissipation of the proton gradient of secretory granules rather than their exocytosis caused MβCD-evoked decrease in platelet acidification. Thus, the depletion of plasma membrane cholesterol in the presence of MβCD changed the functional state of platelets affecting storage capacity of secretory granules but did not evoke glutamate release from platelets.  相似文献   

4.
Two aspects of the mechanisms by which iron is absorbed by the intestine were studied in the Caco2 cell model, using 59Fe(II)-ascorbate. Data showing the importance of vesicular processes and cycling of apotransferrin (apoTf) to uptake and overall transport of Caco2 cell monolayers (or basolateral 59Fe release) were obtained by comparing effects of: a) adding apoTf to the basal chamber; b) adding vesicular transport inhibitors; or c) cooling to 4 degrees C. These showed that apoTf may be involved in as much as half of Fe transfer across the basolateral membrane, and that vesicular processes may also play a role in non-apoTf-dependent Fe transport. Studies were initiated to examine potential interactions of other metal ions with Fe(II) via DMT1. Kinetic data showed a single, saturable process for uptake of Fe(II) that was pH dependent and had a Km of 7 microM. An excess of Mn(II) and Cu(I) over Fe(II) of 200: 1 (microM: microM) in 1 mM ascorbate markedly inhibited Fe uptake. The kinetics were not competitive. Km increased and Vmax decreased. We conclude that vesicular transport, involving endo- and exocytosis at both ends of the enterocyte, is a fundamental aspect of intestinal iron absorption and that DMT1 may function as a transporter not just for divalent but also for monovalent metal ions.  相似文献   

5.
Secretory vesicles of chromaffin cells are acidic organelles that maintain an increasing pH gradient towards the cytosol (5.5 vs. 7.3) that is mediated by V-ATPase activity. This gradient is primarily responsible for the accumulation of large concentrations of amines and Ca(2+), although the mechanisms mediating Ca(2+) uptake and release from granules, and the physiological relevance of these processes, remain unclear. The presence of a vesicular matrix appears to create a bi-compartmentalised medium in which the major fractions of solutes, including catecholamines, nucleotides and Ca(2+), are strongly associated with vesicle proteins, particularly chromogranins. This association appears to be favoured at acidic pH values. It has been demonstrated that disrupting the pH gradient of secretory vesicles reduces their rate of exocytosis and promotes the leakage of vesicular amines and Ca(2+), dramatically increasing the movement of secretory vesicles and triggering exocytosis. In this short review, we will discuss the data available that highlights the importance of pH in regulating the association between chromogranins, vesicular amines and Ca(2+). We will also address the potential role of vesicular Ca(2+) in two major processes in secretory cells, vesicle movement and exocytosis.  相似文献   

6.
The actinic light effect on the bacteriorhodopsin (BR) photocycle kinetics led to the assumption of a cooperative interaction between the photocycling BR molecules. In this paper we report the results of the actinic light effect and pH on the proton release and uptake kinetics. An electrical method is applied to detect proton release and uptake during the photocycle [E. Papp, G. Fricsovszky, J. Photochem. Photobiol. B: Biol. 5 (1990) 321]. The BR photocycle kinetics was also studied by absorption kinetics measurements at 410 nm and the data were analyzed by the local analysis of the M state kinetics [E. Papp, V.H. Ha, Biophys. Chem. 57 (1996) 155]. While at high pH and ionic strength, we found a similar behavior as reported earlier, at low ionic strength the light effect proved to be more complex. The main conclusions are the following: Though the number of BR excited to the photocycle (fraction cycling, fc) goes to saturation with increasing laser pulse energy, the absorbed energy by BR increases linearly with pulse energy. From the local analysis we conclude that the light effect changes the kinetics much earlier, already at the L intermediate state decay. The transient electric signal, caused by proton release and uptake, can be decomposed into two components similarly to the absorption kinetic data of the M intermediate state. The actinic light energy affects mainly the ratio of the two components and the proton movements inside BR while pH has an effect on the kinetics of the proton release and uptake groups at the membrane surface.  相似文献   

7.
Cells release ATP in response to physiologic stimuli. Extracellular ATP regulates a broad range of important cellular functions by activation of the purinergic receptors in the plasma membrane. The purpose of these studies was to assess the role of vesicular exocytosis in cellular ATP release. FM1-43 fluorescence was used to measure exocytosis and bioluminescence to measure ATP release in HTC rat hepatoma and Mz-Cha-1 human cholangiocarcinoma cells. Exposure to a Cl channel inhibitor 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) (50–300 μm) stimulated a 5–100-fold increase in extracellular ATP levels within minutes of the exposure. This rapid response was not a result of changes in cell viability or Cl channel activity. NPPB also potently stimulated ATP release in HEK293 cells and HEK293 cells expressing a rat P2X7 receptor indicating that P2X7 receptors are not involved in stimulation of ATP release by NPPB. In all cells studied, NPPB rapidly stimulated vesicular exocytosis that persisted many minutes after the exposure. The kinetics of NPPB-evoked exocytosis and ATP release were similar. Furthermore, the magnitudes of NPPB-evoked exocytosis and ATP release were correlated (correlation coefficient 0.77), indicating that NPPB may stimulate exocytosis of a pool of ATP-enriched vesicles. These findings provide further support for the concept that vesicular exocytosis plays an important role in cellular ATP release and suggest that NPPB can be used as a biochemical tool to specifically stimulate ATP release through exocytic mechanisms.  相似文献   

8.
The elicitation of phytoalexin biosynthesis in cultured cells of California poppy involves a shift of cytoplasmic pH via the transient efflux of vacuolar protons. Intracellular effectors of vacuolar proton transport were identified by a novel in situ approach based on the selective permeabilization of the plasma membrane for molecules of < or = 10 kD. Subsequent fluorescence imaging of the vacuolar pH correctly reported experimental changes of activity of the tonoplast proton transporters. Lysophosphatidylcholine (LPC) caused a transient increase of the vacuolar pH by increasing the Na(+) sensitivity of a Na(+)-dependent proton efflux that was inhibited by amiloride. In intact cells, yeast elicitor activated phospholipase A(2), as demonstrated by the formation of LPC from fluorescent substrate analogs, and caused a transient increase of endogenous LPC, as determined by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry. It is suggested that LPC generated by phospholipase A(2) at the plasma membrane transduces the elicitor-triggered signal into the activation of a tonoplast H(+)/Na(+) antiporter.  相似文献   

9.
G Christen  A Seeliger  G Renger 《Biochemistry》1999,38(19):6082-6092
The rise of fluorescence as an indicator for P680(+)* reduction by YZ and the period-four oscillation of oxygen yield induced by a train of saturating flashes were measured in dark-adapted thylakoids as a function of pH in the absence of exogenous electron acceptors. The results reveal that: (i) the average amplitude of the nanosecond kinetics and the average of the maximum fluorescence attained at 100 micros after the flash in the acidic range decrease with decreasing pH; (ii) the oxygen yield exhibits a pronounced period-four oscillation at pH 6.5 and higher damping at both pH 5.0 and pH 8.0; (iii) the probability of misses in the Si-state transitions of the water oxidizing complex is affected characteristically when exchangeable protons are replaced by deuterons [at pH <6.5, the ratio alpha(D)/alpha(H) is larger than 1 whereas at pH >7.0 values of <1 are observed]. The results are discussed within the framework of a combined mechanism for P680(+)* reduction where the nanosecond kinetics reflect an electron transfer coupled with a "rocket-type" proton shift within a hydrogen bridge from YZ to a nearby basic group, X [Eckert, H.-J., and Renger, G. (1988) FEBS Lett. 236, 425-431], and subsequent relaxations within a network of hydrogen bonds. It is concluded that in the acidic region the hydrogen bond between YZ and X (most likely His 190 of polypeptide D1) is interrupted either by direct protonation of X or by conformational changes due to acid-induced Ca2+ release. This gives rise to a decreased P680(+)* reduction by nanosecond kinetics and an increase of dissipative P680(+)* recombination at low pH. A different mechanism is responsible for the almost invariant amplitude of nanosecond kinetics and increase of alpha in the alkaline region.  相似文献   

10.
Amphetamine (AMPH) increases brain dopamine (DA) levels via reversal of the membrane DA transporter. Additional mechanisms have been suggested, including inhibition of vesicular monoamine transporters and vesicular leakage of DA and Ca2+. According to the widely-accepted weak base theory, AMPH disrupts the proton gradient required for filling vesicles with DA. As a result, DA and Ca2+ will leak from vesicles, giving rise to exocytosis of less-filled vesicles. As several contradictions have been described, the aim of the present study was to re-examine this theory using amperometry and Fura-2 imaging to measure AMPH-induced changes in exocytosis and intracellular Ca2+ levels, respectively, in PC12 and chromaffin cells. Unexpectedly, 15 min exposure to AMPH (20–200 μM) does not affect the amount of DA released per vesicle, the frequency of exocytosis or intracellular Ca2+ levels in PC12 cells or chromaffin cells. Comparable results were found following prolonged exposure to AMPH (45 min) or at 37°C. When cells were pre-treated with the DA precursor l -DOPA, vesicle content increased to ∼150%. When these pre-treated cells are exposed to AMPH, vesicle content is strongly reduced. These results indicate that in dexamethasone-differentiated PC12 cells AMPH-induced vesicle leakage occurs only under specific conditions, therefore arguing for re-evaluation of the theory of AMPH-induced vesicular DA leakage.  相似文献   

11.
Exposure to CO2 acidifies the cytosol of mitochondria-rich cells in turtle bladder epithelium. The result of the decrease in pH in these, the acid-secreting cells of the epithelium, is a transient increase in cell calcium, which causes exocytosis of vesicles containing proton-translocating ATPase. Because mitochondria-rich cells have rapid luminal membrane turnover, we were able to identify single mitochondria-rich cells by their endocytosis of rhodamine-tagged albumin. Using fluorescence emission of 5,6-carboxyfluorescein at two excitation wavelengths, we measured cell pH in these identified mitochondria-rich cells and found that although the cell pH fell, it recovered within 5 min despite continuous exposure to CO2. This pH recovery also occurred at the same rate in Na+-free media. However, pH recovery did not occur when luminal pH was 5.5, a condition under which the H+-pump does not function, suggesting that recovery of cell pH is due to the luminally located H+ ATPase. Chelation of extracellular calcium by EGTA prevented the CO2-induced rise in cell calcium measured with the intracellular fluorescent dyes Quin 2 or Fura 2 and also prevented recovery of cell pH. When the change in cell calcium was buffered by loading the cells with high concentrations of Quin 2, the CO2-induced decrease in pH did not return back to basal levels. We had found previously that buffering intracellular calcium transients prevented CO2-stimulated exocytosis. Further, we show here that the increased H+ current in voltage-clamped turtle bladders, which is directly proportional to the number of H+-pump-containing vesicles that fuse with the luminal membrane, was significantly reduced in calcium-depleted bladders. These results suggest that pH regulation in these acid-secreting cells occurs by calcium-dependent exocytosis of vesicles containing proton pumps, whose subsequent turnover restores the cell pH to its initial levels.  相似文献   

12.
The vesicular contents in bovine chromaffin cells are maintained at high levels owing to the strong association of its contents, which is promoted by the low vesicular pH. The association is among the catecholamines, Ca2+, ATP, and vesicular proteins. It was found that transient application of a weak base, methylamine (30 mM), amphetamine (10 microM), or tyramine (10 microM), induced exocytotic release. Exposure to these agents was also found to increase both cytosolic catecholamine and intracellular Ca2+ concentration, as measured by amperometry and fura-2 fluorescence. Amphetamine, the most potent amine with respect to evoking exocytosis, was found to be effective even in buffer without external Ca2+; however, the occurrence of spikes was suppressed when BAPTA-acetoxymethyl ester was used to complex intracellular Ca2+. Amphetamine-induced spikes in Ca2+-free medium were not suppressed by thapsigargin or ruthenium red, inhibitors of the sarco(endo)plasmic reticulum Ca2+-ATPase and mitochondrial Ca2+ stores. Atomic absorption measurements of amphetamine- and methylamine-treated vesicles reveal that intravesicular Ca2+ stores are decreased after a 15-min incubation. Taken together, these data indicate that amphetamine and methylamine can disrupt vesicular stores to a sufficient degree that Ca2+ can escape and trigger exocytosis.  相似文献   

13.
Transport mechanisms in acetylcholine and monoamine storage.   总被引:10,自引:0,他引:10  
S M Parsons 《FASEB journal》2000,14(15):2423-2434
Sequence-related vesicular acetylcholine transporter (VAChT) and vesicular monoamine transporter (VMAT) transport neurotransmitter substrates into secretory vesicles. This review seeks to identify shared and differentiated aspects of the transport mechanisms. VAChT and VMAT exchange two protons per substrate molecule with very similar initial velocity kinetics and pH dependencies. However, vesicular gradients of ACh in vivo are much smaller than the driving force for uptake and vesicular gradients of monoamines, suggesting the existence of a regulatory mechanism in ACh storage not found in monoamine storage. The importance of microscopic rather than macroscopic kinetics in structure-function analysis is described. Transporter regions affecting binding or translocation of substrates, inhibitors, and protons have been found with photoaffinity labeling, chimeras, and single-site mutations. VAChT and VMAT exhibit partial structural and mechanistic homology with lactose permease, which belongs to the same sequence-defined superfamily, despite opposite directions of substrate transport. The vesicular transporters translocate the first proton using homologous aspartates in putative transmembrane domain X (ten), but they translocate the second proton using unknown residues that might not be conserved between them. Comparative analysis of the VAChT and VMAT transport mechanisms will aid understanding of regulation in neurotransmitter storage.  相似文献   

14.
Catecholamine-containing small dense core granules (SDCGs, vesicular diameter of ~100 nm) are prominent in carotid glomus (chemosensory) cells and some neurons, but the release kinetics from individual SDCGs has not been studied in detail. In this study, we compared the amperometric signals from glomus cells with those from adrenal chromaffin cells, which also secrete catecholamine but via large dense core granules (LDCGs, vesicular diameter of ~200-250 nm). When exocytosis was triggered by whole-cell dialysis (which raised the concentration of intracellular Ca(2+) ([Ca(2+)](i)) to ~0.5 μmol/L), the proportion of the type of signal that represents a flickering fusion pore was 9-fold higher for glomus cells. Yet, at the same range of quantal size (Q, the total amount of catecholamine that can be released from a granule), the kinetics of every phase of the amperometric spike signals from glomus cells was faster. Our data indicate that the last phenomenon involved at least 2 mechanisms: (i) the granule matrix of glomus cells can supply a higher concentration of free catecholamine during exocytosis; (ii) a modest elevation of [Ca(2+)](i) triggers a form of rapid "kiss-and-run" exocytosis, which is very prevalent among glomus SDCGs and leads to incomplete release of their catecholamine content (and underestimation of their Q value).  相似文献   

15.
Summary Calcium-dependent exocytosis in leaky bovine adrenal medullary cells has a requirement for Mg-ATP. One possibility is that exocytosis depends in some way on the operation of the ATP-dependent proton pump that serves to maintain the core of the secretory vesicles both acid and at a positive potential with respect to the cytosol. This possibility has been tested in leaky cells by monitoring exocytosis under conditions where the secretory vesicle pH and potential gradients are measuredin situ. The results show rather clearly that exocytosis can persist, with unchanged Ca-activation kinetics, in the virtual absence both of a difference in pH between the cytosol and secretory vesicle core and also of a difference in potential across the vesicle membrane. The results do not, however, exclude a small modulating effect of vesicle pH or potential on exocytosis and shed no light on whether or not the plasma membrane potential, which is maintained close to zero in these experiments, influences exocytosis.  相似文献   

16.
5′-AMP-activated kinase (AMPK) plays a key role in the regulation of cellular lipid metabolism. The contribution of vesicular exocytosis to this regulation is not known. Accordingly, we studied the effects of AMPK on exocytosis and intracellular lipid content in a model liver cell line. Activation of AMPK by metformin or 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) increased the rates of constitutive exocytosis by about 2-fold. Stimulation of exocytosis by AMPK occurred within minutes, and persisted after overnight exposure to metformin or AICAR. Activation of AMPK also increased the amount of triacylglycerol (TG) and apolipoprotein B (apoB) secreted from lipid-loaded cells. These effects were accompanied by a decrease in the intracellular lipid content indicating that exocytosis of lipoproteins was involved in these lipid-lowering effects. While AMPK increased the rates of fatty acid oxidation (FAO), the lipid-lowering effects were quantitatively significant even after inhibition of FAO with R-etomoxir. These results suggest that hepatic AMPK stimulates constitutive exocytosis of lipoproteins, which may function in parallel with FAO to regulate intracellular lipid content.  相似文献   

17.
The effects of the free bile acids (FBAs) cholic acid (CA), deoxycholic acid (DCA), and chenodeoxycholic acid on the bioenergetics and growth of lactobacilli and bifidobacteria were investigated. It was found that these FBAs reduced the internal pH levels of these bacteria with rapid and stepwise kinetics and, at certain concentrations, dissipated DeltapH. The bile acid concentrations that dissipated DeltapH corresponded with the MICs for the selected bacteria. Unlike acetate, propionate, and butyrate, FBAs dissipated the transmembrane electrical potential (DeltaPsi). In Bifidobacterium breve JCM 1192, the synthetic proton conductor pentachlorophenol (PCP) dissipated DeltapH with a slow and continuous kinetics at a much lower concentration than FBAs did, suggesting the difference in mode of action between FBAs and true proton conductors. Membrane damage assessed by the fluorescence method and a viability decrease were also observed upon exposure to CA or DCA at the MIC but not to PCP or a short-chain fatty acid mixture. Loss of potassium ion was observed at CA concentrations more than 2 mM (0.4x MIC), while leakage of other cellular components increased at CA concentrations more than 4 mM (0.8 x MIC). Additionally, in experiments with membrane phospholipid vesicles extracted from Lactobacillus salivarius subsp. salicinius JCM 1044, CA and DCA at the MIC collapsed the DeltapH with concomitant leakage of intravesicular fluorescent pH probe, while they did not show proton conductance at a lower concentration range (e.g., 0.2x MIC). Taking these observations together, we conclude that FBAs at the MIC disturb membrane integrity and that this effect can lead to leakage of proton (membrane DeltapH and DeltaPsi dissipation), potassium ion, and other cellular components and eventually cell death.  相似文献   

18.
19.
The influence of lanthanoids on exocytosis was investigated. It was shown that gadolinium increases the spontaneous release of the glutamate nonmetabolizing analogue [3H]D-aspartate. It was established using the fluorescent dye acridine orange that gadolinium and lanthanum induce exocytosis. The effect was dose-dependent and was maximum at 300 microM Gd3+. The exocytosis induced by gadolinium was calcium-independent. It is suggested that lanthanides induce a vesicular release of neurotransmitters by the mechanisms common for all polyvalent cations.  相似文献   

20.
G Krishnamoorthy 《Biochemistry》1986,25(21):6666-6671
Application of a temperature jump (2.5 degrees C) to a suspension of liposomes, having phosphate (delta pK/delta T approximately 0.005) as the internal buffer and tris(hydroxymethyl)aminomethane (delta pK/delta T approximately 0.031) as the external buffer, created a delta pH (pHin - pHout) of positive sign in ca. 5 microseconds. Decay of this delta pH was monitored by using the fluorescent pH indicator 8-hydroxy-1,3,6-pyrenetrisulfonic acid entrapped inside the liposome. This technique is useful to study transmembrane proton movement in the time range 5 microseconds-10 s at physiological pH values. The kinetics of proton transport aided by ion carriers such as nigericin, monensin, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and valinomycin were studied by our method. The electrogenic nature of transport by CCCP and valinomycin and electroneutral ion transport by nigericin and monensin were shown. From the kinetics of proton transport aided by gramicidin, the time-averaged single-channel conductance of gramicidin channels was estimated to be (2.1 +/- 0.5) X 10(-16) S for H+ at pH 7.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号