首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Purification and properties of bovine kidney ribonucleases   总被引:3,自引:0,他引:3  
Two RNases (RNases K1 and K2) were purified from bovine kidney by means of column chromatography on phospho-cellulose, Sephadex G-50, CM-cellulose, heparin-Sepharose, nd agarose-APUP. They were named RNase K1 and RNase K2 in order of elution from the heparin-Sepharose column. The purity of RNase K1 thus obtained was about 90% by SDS-disc electrophoresis. RNase K2 was purified to homogeneity by SDS- and pH 4.3 disc electrophoresis. The yield of RNase K2 was 3.4 mg from 11 kg of kidneys. The antigenic properties of the two bovine renal RNases were studied by Ouchterlony's double diffusion analysis. RNase K1 and RNase A were serologically indistinguishable. RNase K2 did not cross-react immunologically with RNase K1 or RNase A. The molecular weights of these RNases determined by gel-filtration on Sephadex G-50 were 13,400 and 14,600 for RNase K1 and RNase K2, respectively. The pH optima for RNase K1 and RNase K2 were 8.5 and 6.5, respectively. Both RNase K1 and RNase K2 were as acid stable as RNase A. RNase K2 was less heat-stable than RNase K1 and RNase A. Although both renal RNases were pyrimidine nucleotide-specific enzymes, RNase K1 and RNase A were more preferential or cytidylic acid than RNase K2. The chemical composition of RNase K2 was determined. RNase K2, like human urinary RNase Us, contained one tryptophan residue. The N-terminal sequences of RNase K2 and RNase Us were determined by Edman degradation. Rnase K2 had a homologous sequence of about 10 amino acid residues with the sequence of RNase Us, a typical non-secretory RNase, within the N-terminal 30 residues.  相似文献   

2.
Primary structure of a ribonuclease from bullfrog (Rana catesbeiana) liver   总被引:1,自引:0,他引:1  
A pyrimidine base-specific ribonuclease was purified from bullfrog (Rana catesbeiana) liver by means of CM-cellulose column chromatography and affinity chromatography on heparin-Sepharose CL-6B, which gave single band on SDS-slab electrophoresis. The primary structure of the bullfrog liver RNase was determined. It consisted of 111 amino acid residues, including 8 half-cystine residues. From the sequence, it was concluded that three disulfide bridges in RNase A were conserved in the bullfrog RNase, that a disulfide bridge in RNase A [Cys65-Cys126 (RNase A numbering)] was deleted, and that a new disulfide bridge was created in the C-terminal part of the enzyme. In this frog RNase, the amino acid residues thought to be essential for catalysis in bovine pancreatic RNase A were conserved except for Asp121 (RNase A numbering). The sequence homology of the bullfrog liver RNase with bovine pancreatic RNase A was 30.6%. The sequence of bullfrog liver RNase was very similar to those of lectins obtained from bullfrog egg by Titani et al. [Biochemistry (1988) 26, 2189-2194] and R. japonica egg by Kamiya et al. [Seikagaku (in Japanese) (1989) 60, 733; and personal communication from Kamiya, Y., Oyama, F., Oyama, R., Sakakibara, F., Nitta, K., Kawauchi, H., and Titani, K.]. The sequence homology between the bullfrog liver RNase and the two lectins was 70.2 and 64.8%, respectively.  相似文献   

3.
Primary structure of a non-secretory ribonuclease from bovine kidney   总被引:2,自引:0,他引:2  
The primary structure of a non-secretory ribonuclease from bovine kidney (RNase K2) was determined. The sequence determined was VPKGLTKARWFEIQHIQPRLLQCNKAMSGV NNYTQHCKPENTFLHNVFQDVTAVCDMPNIICKNGRHNCHQSPKPVNLTQCNFIAGRYPDC RYHDDAQYKFFIVACDPPQKTDPPYHLVPVHLDKYF. The sequence homology with human non-secretory RNase, bovine pancreatic RNase, and human secretory RNase are 46, 34.6, and 32.3%, respectively. The bovine kidney RNase has two inserted sequences, a tripeptide at the N-terminus and a heptapeptide between the 113th and 114th position of bovine pancreatic RNase; on the other hand, it is deleted of the hexapeptide consisting of the 17th to the 22nd amino acid residue of RNase A. The amino acid residues assumed to be the constituents of the bovine pancreatic RNase active site are all conserved except F120 (L in RNase K2).  相似文献   

4.
Recently, we demonstrated that the major proteins from bovine seminal plasma BSP-A1, -A2, -A3 and -30-kDa (collectively called BSP proteins) specifically interact with choline phospholipids. These proteins coat the surface of the spermatozoa after ejaculation and are believed to play an important role in membrane modifications occurring during capacitation. In this study we determined the isoelectric point (pl) and analysed the molecular heterogeneity of BSP proteins. Total protein from bovine seminal plasma (CBSP) and purified BSP proteins were iodinated using chloramine T. Samples were reduced, denatured, separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and visualized by autoradiography. Analysis of CBSP proteins demonstrated the presence of polypeptides migrating in the pH range of 3.5–7.8 and at molecular weights (Mr) between 6 and 100 kDa. Many isoforms of each BSP protein were found when purified iodinated proteins were analysed by 2D-PAGE. BSP-A1 was found at a Mr of 16.5 kDa and in the range of pl of 4.7–5.0; BSP-A2 at 16 kDa and at a pl of 4.9–5.2; BSP-A3 at 15 kDa and at a pl of 4.8–5.2, and BSP-30-kDa at 28 kDa and at a pl of 3.9–4.6. Similar results were obtained with immunolocalization of BSP proteins after Western blot using specific antibodies. The treatment of purified iodinated BSP proteins with neuraminidase increased the pl of BSP-30-kDa to 4.8–5.0 and decreased its Mr to 25 kDa, but no change was observed for BSP-A1, -A2 and -A3. The treatment of BSP proteins with sulfatase or acid phosphatase modified neither their Mr nor their pl. Furthermore, when CBSP proteins were separated in 2D-PAGE and the gels stained for glycoproteins with dansyl hydrazine, BSP proteins were among the major glycoproteins found in the bovine seminal plasma. In conclusion, BSP proteins are acidic and have several isoforms. Furthermore, the heterogeneity of BSP-30-kDa is mainly due to its sialic acid content. © 1994 Wiley-Liss, Inc.  相似文献   

5.
In most tissues, ribonucleases (RNases) are found in a latent form complexed with ribonuclease inhibitor (RI). To examine whether these so-called cytoplasmic RNases belong to the same superfamily as pancreatic RNases, we have purified from porcine liver two such RNases (PL1 and PL3) and examined their primary structures. It was found that RNase PL1 belonged to the same family as human RNase Us [Beintema et al. (1988) Biochemistry 27, 4530-4538] and bovine RNase K2 [Irie et al. (1988) J. Biochem. (Tokyo) 104, 289-296]. RNase PL3 was found to be a hitherto structurally uncharacterized type of RNase. Its polypeptide chain of 119 amino acid residues was N-terminally blocked with pyroglutamic acid, and its sequence differed at 63 positions with that of the pancreatic enzyme. All residues important for catalysis and substrate binding have been conserved. Comparison of the primary structure of RNase PL3 with that of its bovine counterpart (RNase BL4; M. Irie, personal communication) revealed an unusual conservation for this class of enzymes; the 2 enzymes were identical at 112 positions. Moreover, comparison of the amino acid compositions of these RNases with that of a human colon carcinoma-derived RNase, RNase HT-29 [Shapiro et al. (1986) Biochemistry 25, 7255-7264], suggested that these three proteins are orthologous gene products. The structural characteristics of RNases PL1 and PL3 were typical of secreted RNases, and this observation questions the proposed cytoplasmic origin of these RI-associated enzymes.  相似文献   

6.
Ribonuclease inhibitor from human placenta. Purification and properties   总被引:22,自引:0,他引:22  
A soluble ribonuclease inhibitor from the human placenta has been purified 4000-fold by a combination of ion exchange and affinity chromatography. The inhibitor has been isolated in 45% yield (about 2 mg/placenta) as a protein that is homogeneous by sodium dodecyl sulfate-gel electrophoresis. In common with the inhibitors of pancreatic ribonuclease from other tissues that have been studied earlier, the placental inhibitor is an acidic protein of molecular weight near 50,000; it forms a 1:1 complex with bovine pancreatic RNase A and is a noncompetitive inhibitor of the pancreatic enzyme, with a Ki of 3 X 10(-10) M. The amino acid composition of the protein has been determined. The protein contains 30 half-cystine plus cysteine residues determined as cysteic acid after performic acid oxidation. At pH 8.6 the nondenatured protein alkylated with iodoacetic acid in the presence of free thiol has 8 free sulfhydryl groups. The inhibitor is irreversibly inactivated by sulfhydryl reagents and also by removal of free thiol from solutions of the protein. Inactivation by sulfhydryl reagents causes the dissociation of the RNase - inhibitor complex into active RNase and inactive inhibitor.  相似文献   

7.
1. A chymotrypsinogen from pancreas of Japanese quail (Coturnix coturnix japonica) was purified by acid extraction, salt fractionation and chromatographic separation on CM-cellulose and Sephadex G-100, and gave a single protein band on SDS-PAGE. 2. Quail chymotrypsinogen had a mol. wt of 26,100 calculated from amino acid composition data, an isoelectric point of 7.68, a Km of 3.1 mM and K0 of 40.7 sec-1 for tyrosine ester substrate. 3. The activated chymotrypsinogen of quail had a maximum activity at pH 7.0-8.0 and at 45 degrees C, and was stable at pH 4.0-6.0 below 55 degrees C. 4. Comparison of quail and bovine chymotrypsinogens indicates that the activities of the enzymes from quail and bovine are more constant than their physical characteristics.  相似文献   

8.
Primary structure of an alkaline ribonuclease from bovine liver   总被引:2,自引:0,他引:2  
A pyrimidine base specific and most basic alkaline RNase named RNase BL4 was isolated from bovine liver as a protein showing a single band on slab gel-electrophoresis. The enzyme is most active at pH 7.5. The enzyme was immunologically distinguishable from the known bovine RNases such as pancreatic RNase (RNase A), seminal RNase, kidney non-secretory RNase (RNase K2), and brain RNase (RNase BRb). The primary structure of this pyrimidine base-specific RNase was determined to be less than EDRMYQRFLRQHVDPDETG- GNDSYCNLMMQRRKMTSHQCKRFNTFIHEDLWNIRSICSTTNIQCKNGQMNCHEGVVRV- TDCRETGSSRAPNCRYRAKASTRRVVIACEGNPEVPVHFDK. It consists of 119 amino acid residues, and is 5 amino acid residues shorter than RNase A. The sequence homology of RNase BL4 with RNase A is 46.2%, and optimal alignment of RNase A and RNase BL4 requires five deletions, one at the 24th position, two at the 75th and 76th positions, and two at the C-terminus in RNase BL4. The RNase BL4 was highly homologous with a porcine liver RNase (RNase PL3, 94.1% homology) studied by Hofsteenge et al. (personal communication from Hofsteenge, J., Matthies, R., and Stones, S.R.).  相似文献   

9.
An acid ribonuclease (optimum pH 6.0) has been purified from bovine brain in a five-step procedure. The preparation appeared homogeneous on SDS-polyacrylamide gel electrophoresis. The molecular size of the acid ribonuclease is 70 kDa and it is a dimeric protein with a subunit molecular size of 35 kDa. The acid RNase was activated by aluminum at low concentration. Preincubation of the acid RNase with 10 microM increased the specific activity of the enzyme 2.3-fold at acid pH, while the effect of aluminum was much weaker at alkaline pH under otherwise the same conditions. A stoichiometry of 1: 1 for the binding aluminum to brain acid RNase was estimated. None of the enzyme-bound aluminum was dissociated by dialysis against 50 mM HEPES, pH 7.0 at 4 degrees C for 24 h. Citrate, EDTA, NaF, and apotransferrin abolished the effects of aluminum on the enzyme. Ribonucleic acid also protected the enzyme against the activation caused by aluminum. These results suggest that accumulation of aluminum in brain may change the regulation of ribonucleic acid metabolism.  相似文献   

10.
Several studies have shown that sperm capacitation was accompanied by a change in the lipid composition of the sperm membrane. In cattle, the major proteins of (bovine)seminal plasma (BSP proteins: BSP-A1/A2, BSP-A3, and BSP-30-kDa) potentiate sperm capacitation induced by high-density lipoprotein (HDL). Our recent studies indicate that these proteins and HDL stimulate sperm cholesterol efflux during capacitation. In order to gain more insight into the mechanisms of BSP-mediated sperm capacitation, we studied whether or not BSP proteins induce phospholipid efflux from epididymal sperm membrane. By direct determination of choline phospholipids on unlabeled epididymal sperm, the results show that sperm incubated in the presence of BSP-A1/A2 protein lost 34.4% of their choline phospholipids compared with the control (11.5%). Similar results were obtained using labeled epididymal sperm. Labeling was carried out by incubating washed epididymal sperm for 1 h with medium containing [(3)H]palmitic acid. The majority of the label was incorporated into sperm phosphatidylcholine. Studies of sperm phospholipid efflux were done by incubating the labeled sperm with purified BSP proteins, delipidated BSA, or bovine seminal ribonuclease (RNase, control protein). When labeled ([(3)H]phospholipid) epididymal sperm were incubated with BSP proteins (20-120 microg/ml) for 8 h, the sperm lost [(3)H]phospholipid in a dose-dependent manner (maximum efflux of approximately 30%). After the incubation with BSP proteins, the efflux particles were fractionated by size-exclusion chromatography. Analysis of the fractions obtained showed that the [(3)H]phospholipid was associated with BSP proteins. BSA (6 mg/ml) stimulated a specific phospholipid efflux of approximately 22%. In contrast, bovine RNase (120 microg/ml) did not stimulate phospholipid efflux. These results indicate that BSP proteins participate in the sperm cholesterol and phospholipid efflux that occurs during capacitation.  相似文献   

11.
ISOLATION AND CHARACTERIZATION OF BOVINE BRAIN CATHEPSIN D   总被引:2,自引:2,他引:0  
Bovine brain cathepsin D was purified 1774-fold with a 19% recovery by affinity chromatography on immobilized pepstatin. Approximately 2 mg of enzyme protein were isolated from 150 g (wet weight) of bovine brain. The enzyme eluted from gel filtration as a single peak with a molecular weight of 40,000–42,000. On polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, the predominant band migrated with a molecular weight of 48,000: however, less distinct bands were also present in the molecular weight ranges of 31,000 and 13,000. The isolated enzyme had isoelectric points over a range of pH 5–7 with 3 major peaks occurring at pH 5.6, 6.1, and 6.6. The amino acid composition of brain cathepsin D showed substantial differences from that reported for cathepsin D isolated from bovine spleen. Amino-terminal sequence analysis revealed an Asp-Val-lle sequence by Edman degradation. With hemoglobin as the substrate the enzyme had an apparent K, of 60mM.  相似文献   

12.
An antigonadotropic compound present in extracts of bovine pineal gland which reduces compensatory ovarian hypertrophy in adult mice was partially purified by gel filtration and further characterized by ion-exchange chromatography and high voltage paper electrophoresis.An acetic acid extract of bovine pineal glands was gel-filtered on Sephadex G-25, from which two antigonadotropic fraction were obtained and designated as F4 and F5. Each of these fractions was further purified by high voltage paper electrophoresis. The antigonadotropic activity of F4 was found in the neutral and acid regions. The F4 fraction was also further purified by cation exchange chromatography. The fraction eluted at pH 4.4 from the cation exchange chromatogram was found to be antigonadotropic. This fraction (pH 4.4) was then further purified by high voltage paper electrophoresis. Antigonadotropic activity was found in the area of the neutral region of the electrophoretogram.The antigonadotropic material is thought not to be melation or arginine vasotocin based on the antigonadotropin being eluted from Sephadex G-25 in a fraction distinct from these two compounds.  相似文献   

13.
In glycoanalysis protocols, N-glycans from glycoproteins are most frequently released with peptide- N (4)-( N-acetyl-beta-glucosaminyl)asparagine amidase F (PNGase F). As the enzyme is an amidase, it cleaves the NH-CO linkage between the Asn side chain and the Asn-bound GlcNAc residue. Usually, the enzyme has a low activity, or is not active at all, on native glycoproteins. A typical example is native bovine pancreatic ribonuclease B (RNase B) with oligomannose-type N-glycans at Asn-34. However, native RNase BS, generated by subtilisin digestion of native RNase B, which comprises amino acid residues 21-124 of RNase B, is sensitive to PNGase F digestion. The same holds for carboxymethylated RNase B (RNase B (cm)). In this study, NMR spectroscopy and molecular modeling have been used to explain the differences in PNGase F activity for native RNase B, native RNase BS, and RNase B (cm). NMR analysis combined with literature data clearly indicated that the N-glycan at Asn-34 is more mobile in RNase BS than in RNase B. MD simulations showed that the region around Asn-34 in RNase B is not very flexible, whereby the alpha-helix of the amino acid residues 1-20 has a stabilizing effect. In RNase BS, the alpha-helix formed by amino acid residues 23-32 is significantly more flexible. Using these data, the possibilities for complex formation of both RNase B and RNase BS with PNGase F were studied, and a model for the RNase BS-PNGase F complex is proposed.  相似文献   

14.
—Three chromatographically distinct peptic peptides (F80-1, F80-2 and F80-3) derived from the C-terminal half of the bovine and guinea-pig myelin basic proteins were characterized. The three peptides of each animal species had the same N-terminal residue (phenylalanine) and essentially the same amino acid composition, but they differed in electrophoretic mobility at alkaline pH. The least basic peptide (F80-3) differed from the others in showing a deficit of C-terminal arginine residues and in containing phosphorus, 0·37 and 0·46 g-atom/mol of bovine and guinea-pig peptides, respectively. Other peptic peptides. derived from the N-terminal half of the basic protein, were essentially phosphorus-frcc. Analyses of partial acid hydrolyzates of peptide F80-3 by high voltage electrophoresis showed the presence of both phosphoserine and phosphothreonine. After incubation with E. coli alkaline phosphatase (EC 3.1.3.1). 34 and 40% of the bovine and guinea-pig F80-3 peptides. respectively, were converted to peptide F80-1. This reaction involved the loss of 2 net negative charges, and its extent corresponded to loss of essentially all of the phosphate originally present in the peptide. This result indicated that the phosphorylated species of peptide F80-3 contained one phosphate group per molecule.  相似文献   

15.
Carboxypeptidase B of the human pancreas was purified by chromatography on DEAE-cellulose and CM-cellulose columns. Two forms of the enzyme, named carboxypeptidase B1 and B2, were separated. They have similar mol.wts. (34250 +/- 590) as established by polyacrylamide-gel disc electrophoresis and by gel filtration. Carboxypeptidase B2 migrates further towards the anode in disc electrophoresis. When the amino acid content of the enzymes was analysed, carboxypeptidase B2 had four more glycine and three more aspartic acid residues than had form B1. The amino acid sequence of the human carboxypeptidase B1 differs from that of the bovine enzyme only in two places in the N-terminal 20-amino-acid sequence. The N-terminal amino acid in carboxypeptidase B1 and B2 is alanine. The peptide 'map' of the tryptic digest of carboxypeptidase B1 contained more peptides than did that of form B2. The Km, the Vmax. and the pH optimum of the cleavage of the peptide substrate hippurylarginine and the ester substrate hippurylargininic acid were similar for both enzymes. CoCl2 accelerated the peptidase activity, and cadmium acetate enhanced the esterase activity, of human carboxypeptidases B1 and B2. Urea and sodium dodecyl sulphate inhibited the enzymes.  相似文献   

16.
Heat stable calmodulin-binding protein has been purified from Triton X-100 soluble particulate fraction of bovine brain. Considerable purification was achieved with calmodulin coupled Sepharose 4B affinity chromatography. SDS-PAGE of the purified protein revealed the apparent homogeneity being 92% at Mr 81,000. Isoelectric focusing of purified 81K protein gave isoelectric point of 4.3. The amino acid composition was notable for high contents of acidic amino acids (15.0 mol% of glutamic acid and 8.1 mol% of aspartic acid) and 17.4 mol% of alanine. On alkaline 1 M urea gel electrophoresis, mobility of the purified 81K protein in the presence of Ca2+ and calmodulin became lower than 81K protein alone toward the anode; however, Ca2+ solely did not affect the mobility of this protein. Similarly, S-100 protein and troponin C showed the interaction with 81K protein and a decrease of mobility in the presence of Ca2+ in alkaline urea PAGE. Binding assay of 125I-labeled calmodulin revealed that 81K protein could bind to an equimolar of 125I-calmodulin as apparent dissociation constant (Kd) of 0.65 x 10(-6) M.  相似文献   

17.
A gene encoding a new thermostable D-stereospecific alanine amidase from the thermophile Brevibacillus borstelensis BCS-1 was cloned and sequenced. The molecular mass of the purified enzyme was estimated to be 199 kDa after gel filtration chromatography and about 30 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the enzyme could be composed of a hexamer with identical subunits. The purified enzyme exhibited strong amidase activity towards D-amino acid-containing aromatic, aliphatic, and branched amino acid amides yet exhibited no enzyme activity towards L-amino acid amides, D-amino acid-containing peptides, and NH(2)-terminally protected amino acid amides. The optimum temperature and pH for the enzyme activity were 85 degrees C and 9.0, respectively. The enzyme remained stable within a broad pH range from 7.0 to 10.0. The enzyme was inhibited by dithiothreitol, 2-mercaptoethanol, and EDTA yet was strongly activated by Co(2+) and Mn(2+). The k(cat)/K(m) for D-alaninamide was measured as 544.4 +/- 5.5 mM(-1) min(-1) at 50 degrees C with 1 mM Co(2+).  相似文献   

18.
K Ogi  M Irie 《Journal of biochemistry》1975,77(5):1085-1094
From a commercial digestive produced from Aspergillus saitoi, a ribonuclease [EC 3.1.4.23] having a molecular weight of 12,500 has been isolated in addition to the RNase reported previously, which had a molecular weight of 38,000. The enzyme was found to be homogeneous by chromatography on DEAE-cellulose, disc electrophoresis on polyacrylamide gel, and ultracentrifugation. The NH2-terminal amino acid was identified as glutamic acid. The amino acid composition indicated the presence of about 13 tyrosyl residues, 3 histidyl residues, and 2 half-cystine residues. The pH optimum of the RNase was 4.5, using RNA as a substrate. The enzyme was stable on heating at 70 degrees for 5 min from pH 2 to 10. It hydrolysed RNA completely to mononucleotides via 2', 3'-cyclic nucleotides. The rates of release of nucleotides and 2', 3'-cyclic nucleotides were in the order: guanylic acid is greater than adenylic acid is greater than cytidylic acid is greater than uridylic acid.  相似文献   

19.
Tyrosine hydroxylase purified to apparent homogeneity from the soluble fraction of bovine adrenal medulla had an apparent Mr of about 280,000 by Bio-Gel A-1.5m chromatography, and gave a single band with a Mr of 60,000 by sodium dodesyl sulfate polyacrylamide gel electrophoresis. The enzyme is considered to be composed of four identical subunits. Isoelectric point of purified enzyme was pH 6.0. The amino acid composition of the enzyme was characterized by fairly high contents of glutamic acid and alanine residues. The N-terminal amino acid was determined to be glutamic acid.  相似文献   

20.
A phosphatidylinositol-specific phospholipase C (PI-PLC) has been isolated from bovine brain (purification factor of 5.6 x 10(4)). By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it had a Mr of 57,000. Neither amino nor neutral sugars were detected in the purified enzyme. The pH optimum was 7.0-7.5, and the activity decreased only slightly at pH 8.0. When phosphatidylinositol was used as a substrate, the optimum Ca2+ requirement was 4 mM, and Km was 260 microM. When phosphatidylinositol 4,5-bisphosphate was used, the optimum Ca2+ requirement was 10(-7) M, and the Km was reduced to 90 microM. Lipid specificity studies showed that equal amounts of inositol phosphate and diacylglycerol were released from phosphatidylinositol but 4 times as much inositol 1,4,5-trisphosphate was released from phosphatidylinositol 4,5-bisphosphate. Other lipids, phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, were not substrates. Failure to detect phosphatidic acid confirmed the absence of a phospholipase D activity in the purified enzyme. Myelin basic protein (MBP) stimulated the PI-PLC activity between 2- and 3-fold. Histone had a small effect only, whereas bovine serum albumin and cytochrome C had no effect. Phosphorylation of MBP reduced the stimulatory effect. Protein-protein interactions between MBP and PI-PLC have been demonstrated both immunologically and by sucrose density gradients. A stoichiometry of 1:1 has been suggested by the latter method. A number of peptides have been prepared by chemical, enzymatic, and synthetic methods. Peptides containing the MBP sequences consisting of residues 24-33 and 114-122 stimulated the PI-PLC but were less effective than the intact protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号