首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytosine analog 5-azacytidine (5-AzaC) is a demethylating agent that is also known to induce mutagenesis in mammalian cells. In this study, the mutagenic potential of this drug was tested in the G10 and G12 transgenic Chinese hamster cell lines, which have a single bacterial gpt gene integrated into the genome at different sites, with its expression driven by a simian virus 40 (SV40) promoter. We show that the mutation frequencies following a 48-h exposure to different concentrations of 5-AzaC were 10 to 20 times higher than those of any of the other numerous mutagens that have been tested in the G10-G12 system. Moreover, the mutation frequencies were much higher in the G10 cell line than in the G12 cells. Detailed molecular analysis of the 6-thioguanine (6-TG)-resistant variants demonstrated that transgene silencing by de novo DNA methylation and increased chromatin condensation in the SV40 promoter was the major factor responsible for this high level of 6-TG resistance. As would be expected, exposure to 5-AzaC lowered the overall genomic DNA methylation levels, but it unexpectedly caused hypermethylation and increased chromatin condensation of the transgene in both the G10 and G12 cell lines. These results provide the first evidence that 5-AzaC may also induce transgene-specific DNA methylation, a phenomenon that can further be used for the elucidation of the mechanism that controls silencing of foreign DNA.  相似文献   

2.
3.
4.
5.
6.
7.
Summary TransgenicPetunia hybrida clones harbouring the T-DNA gene2 ofAgrobacterium tumefaciens were used to test a strategy for the trapping of plant transposable elements. In thePetunia line used, floral variegation is due to the presence of the non-autonomous transposable elementdTph1 at theAn1 locus. The gene2 product converts the auxin precursor indole-3-acetamide and its analogue 1-naphthalene acetamide into the active auxins indole-3-acetic acid and 1-naphthalene acetic acid. Plant cells that express gene2 can use a low concentration of the precursors as auxins and become sensitive to the toxicity of high concentrations of these compounds. By selecting protoplast-derived microcalli or seedlings able to grow on medium with high precursor concentrations, variant plants were obtained in which gene2 was no longer expressed. Southern analysis, using gene2-specific probes, revealed that in one variant the T-DNA was deleted. For 30 other variants no alteration in gene2 structure was observed, indicating that transposable element insertion was not responsible for the inactivation of gene2. Analysis with restriction enzymes allowing discrimination between methylated or non-methylated DNA sequences showed that the inactivated gene2 sequences were methylated. Addition of the in vivo methylation inhibitor 5-azacytidine to the medium led to reactivation of gene2 expression in some of the variants. These observations demonstrated that reversible DNA methylation was the main cause of silencing of gene2 in this system.  相似文献   

8.
DNA methylation and histone modifications are vital in maintaining genomic stability and modulating cellular functions in mammalian cells. These two epigenetic modifications are the most common gene regulatory systems known to spatially control gene expression. Transgene silencing by these two mechanisms is a major challenge to achieving effective gene therapy for many genetic conditions. The implications of transgene silencing caused by epigenetic modifications have been extensively studied and reported in numerous gene delivery studies. This review highlights instances of transgene silencing by DNA methylation and histone modification with specific focus on the role of these two epigenetic effects on the repression of transgene expression in mammalian cells from integrative and non-integrative based gene delivery systems in the context of gene therapy. It also discusses the prospects of achieving an effective and sustained transgene expression for future gene therapy applications.  相似文献   

9.
A recently published study has revealed the genome-wide dynamics of DNA methylation and hydroxymethylation patterns at single-base resolution in the human and mouse developing brain.  相似文献   

10.
11.
Whole genome base-resolution methylome sequencing allows for the most comprehensive analysis of DNA methylation, however, the considerable sequencing cost often limits its applications. While reduced representation sequencing can be an affordable alternative, over 80% of CpGs in the genome are not covered. Building on our recently developed TET-assisted pyridine borane sequencing (TAPS) method, we here described endonuclease enrichment TAPS (eeTAPS), which utilizes dihydrouracil (DHU)-cleaving endonuclease digestion of TAPS-converted DNA to enrich methylated CpG sites (mCpGs). eeTAPS can accurately detect 87% of mCpGs in the mouse genome with a sequencing depth equivalent to 4× whole genome sequencing. In comparison, reduced representation TAPS (rrTAPS) detected less than 4% of mCpGs with 2.5× sequencing depth. Our results demonstrate eeTAPS to be a new strategy for cost-effective genome-wide methylation analysis at single-CpG resolution that can fill the gap between whole-genome and reduced representation sequencing.  相似文献   

12.
In the majority of sites of methylation in the DNA of mammalian cells, the symmetry of methylation is restored within a few minutes of the passage of a replication fork. However, it has been shown that daughter strand methylation in immortalised cell lines is delayed in a substantial minority of sites for up to several hours after replication. We report here the results of two new approaches to the determination of the functional significance of delayed DNA methylation in mammalian cells. Firstly, we demonstrate that normal, nontransformed cells (human peripheral lymphocytes in short-term primary culture) have comparable proportions of delayed DNA methylation to many immortalised cell lines, showing that delayed DNA methylation is not just a secondary consequence of abnormally high methionine requirements commonly observed in transformed cells and that delayed DNA methylation would be unlikely not to occur in vivo. Secondly, we have used 5-aza-2'-deoxycytidine (5azadCyd) to derive subclones of cells from the Chinese hamster ovary cell line which have stably hypomethylated DNA. In three of these subclones which had lost on average one fourth of the methylation sites from their genomes, the proportion of daughter strand methylation which was delayed after replication was reduced by less than 10%. If delayed DNA methylation were site-specific, this implies that of the order of twice the number of "immediate" methylation sites than delayed methylation sites had been lost from the genomes of these hypomethylated subclones. Thus, delayed DNA methylation is an integral part of the process whereby replicating mammalian cells maintain the pattern of methylation in their genomes. These observations are discussed in relation to the significance of delayed DNA methylation for the accurate maintenance of methylation patterns in the genome and the consequent implications for the possible role of methylated deoxycytidines in mammalian gene control.  相似文献   

13.
14.
IL-7 is critical for the development and survival of T cells. Recently, we found two subsets of human CD8+ T cells expressing IL-7Ralpha(high) and IL-7Ralpha(low) with different cell survival responses to IL-7. Although these CD8+ T cell subsets have differential IL-7Ralpha gene expression, the mechanism for this is unknown. DNA methylation is an important gene regulatory mechanism and is associated with the inactivation of gene expression. Thus, we investigated a role for DNA methylation in differentially regulating IL-7Ralpha gene expression in human CD8+ T cells and Jurkat T cells. IL-7Ralpha(high)CD8+ T cells had decreased methylation in the IL-7Ralpha gene promoter compared with IL-7Ralpha(low)CD8+ T cells and Jurkat T cells with low levels of IL-7Ralpha. Treating Jurkat T cells with 5-aza-2'-deoxycytidine, which reduced DNA methylation, increased IL-7Ralpha expression. Plus, the unmethylated IL-7Ralpha gene promoter construct had higher levels of promoter activity than the methylated one as measured by a luciferase reporter assay. These findings suggest that DNA methylation is involved in regulating IL-7Ralpha expression in T cells via affecting IL-7Ralpha gene promoter activity, and that the methylation of this gene promoter could be a potential target for modifying IL-7-mediated T cell development and survival.  相似文献   

15.
DNA甲基化是表观遗传学的重要研究内容之一.甲基化分析的方法多且研究难度大,各种方法都有其一定的优势和不足.本文综述了基因组DNA甲基化和特定DNA片段甲基化状态分析方法新进展,为研究者提供参考.  相似文献   

16.
17.
Stem cells have been found in most tissues/organs. These somatic stem cells produce replacements for lost and damaged cells, and it is not completely understood how this regenerative capacity becomes diminished during aging. To study the possible involvement of epigenetic changes in somatic stem cell aging, we used murine hematopoiesis as a model system. Hematopoietic stem cells (HSCs) were enriched for via Hoechst exclusion activity (SP-HSC) from young, medium-aged and old mice and subjected to comprehensive, global methylome (MeDIP-seq) analysis. With age, we observed a global loss of DNA methylation of approximately 5%, but an increase in methylation at some CpG islands. Just over 100 significant (FDR < 0.2) aging-specific differentially methylated regions (aDMRs) were identified, which are surprisingly few considering the profound age-based changes that occur in HSC biology. Interestingly, the polycomb repressive complex -2 (PCRC2) target genes Kiss1r, Nav2 and Hsf4 were hypermethylated with age. The promoter for the Sdpr gene was determined to be progressively hypomethylated with age. This occurred concurrently with an increase in gene expression with age. To explore this relationship further, we cultured isolated SP-HSC in the presence of 5-aza-deoxycytdine and demonstrated a negative correlation between Sdpr promoter methylation and gene expression. We report that DNA methylation patterns are well preserved during hematopoietic stem cell aging, confirm that PCRC2 targets are increasingly methylated with age, and suggest that SDPR expression changes with age in HSCs may be regulated via age-based alterations in DNA methylation.  相似文献   

18.
DNA methylation is a chemical modification of DNA involved in the regulation of gene expression by controlling the access to the DNA sequence. It is the most stable epigenetic mark and is widely studied for its role in major biological processes. Aberrant DNA methylation is observed in various pathologies, such as cancer. Therefore, there is a great interest in analyzing subtle changes in DNA methylation induced by biological processes or upon drug treatments. Here, we developed an improved methodology based on flow cytometry to measure variations of DNA methylation level in melanoma and leukemia cells. The accuracy of DNA methylation quantification was validated with LC-ESI mass spectrometry analysis. The new protocol was used to detect small variations of cytosine methylation occurring in individual cells during their cell cycle and those induced by the demethylating agent 5-aza-2''-deoxycytidine (5AzadC). Kinetic experiments confirmed that inheritance of DNA methylation occurs efficiently in S phase and revealed a short delay between DNA replication and completion of cytosine methylation. In addition, this study suggests that the uncoupling of 5AzadC effects on DNA demethylation and cell proliferation might be related to the duration of the DNA replication phase.  相似文献   

19.
Tost J  Gut IG 《Nature protocols》2007,2(9):2265-2275
Pyrosequencing is a sequencing-by-synthesis method that quantitatively monitors the real-time incorporation of nucleotides through the enzymatic conversion of released pyrophosphate into a proportional light signal. Quantitative measures are of special importance for DNA methylation analysis in various developmental and pathological situations. Analysis of DNA methylation patterns by pyrosequencing combines a simple reaction protocol with reproducible and accurate measures of the degree of methylation at several CpGs in close proximity with high quantitative resolution. After bisulfite treatment and PCR, the degree of each methylation at each CpG position in a sequence is determined from the ratio of T and C. The process of purification and sequencing can be repeated for the same template to analyze other CpGs in the same amplification product. Quantitative epigenotypes are obtained using this protocol in approximately 4 h for up to 96 DNA samples when bisulfite-treated DNA is already available as the starting material.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号