首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heparan sulfate from the surface of a variety of mouse cells at different cell densities was examined by ion-exchange chromatography. The results of this analysis show that: (1) The heparan sulfate from new isolates of Swiss 3T3 cells transformed by SV40 virus (a DNA tumor virus) elutes from DEAE-cellulose at a lower ionic strength than that from the parent cell type. This finding confirms our earlier observation with an established SV40-transformed cell line (Underhill and Keller, '75) and eliminates the possibility that this change is caused by extended passage in culture. (2) For both parent and transformed 3T3 cells, the heparan sulfates from low and high density cultures were the same as judged by chromatography on DEAE-cellulose. This result demonstrates that the transformation-dependent change which we have observed is independent of cell density. (3) The heparan sulfate from Balb/c 3T3 cells transformed with Kirsten murine sarcoma virus (an RNA tumor virus) elutes from DEAE-cellulose prior to that from parent Balb/c 3T3 cells. This result extends the transformation dependent change in heparan sulfate to the Balb/c 3T3 cell line and to cells transformed with an RNA virus.  相似文献   

2.
Heparan sulfates from Swiss mouse 3T3 and SV3T3 cells: O-sulfate difference   总被引:7,自引:0,他引:7  
K L Keller  J M Keller  J N Moy 《Biochemistry》1980,19(11):2529-2536
A difference in the extent of sulfation between the heparan sulfate isolated from Swiss 3T3 mouse cells and that from Swiss 3T3 cells transformed by the DNA virus SV40 has been reported previously. This variance is manifested by different chromatographic and electrophoretic properties. Heparan sulfates from the two cell types were treated with nitrous acid under conditions that gave selective deaminative cleavage of glucosaminyl residues with sulfated amino groups in order to define the nature of the difference in sulfation further. The O-sulfate containing fragments from the heparan sulfates were compared by gel filtration and ion-exchange chromatography. The results showed that the 3T3 heparan sulfate contains 8% more O-sulfate than does the SV3T3 heparan sulfate. Analysis of uronic acids revealed that both types of heparan sulfates contain 45% L-iduronic acid and 55% D-glucuronic acid. These and other observations indicate that the primary difference in sulfation between the 3T3 and SV3T3 heparan sulfates lies in the extent of O-sulfation.  相似文献   

3.
Mutational defects in either EXT1 or EXT2 genes cause multiple exostoses, an autosomal hereditary human disorder. The EXT1 and EXT2 genes encode glycosyltransferases that play an essential role in heparan sulfate chain elongation. In this study, we have analyzed heparan sulfate synthesized by primary fibroblast cell cultures established from mice with a gene trap mutation in Ext1. The gene trap mutation results in embryonic lethality, and homozygous mice die around embryonic day 14. Metabolic labeling and immunohistochemistry revealed that Ext1 mutant fibroblasts still produced small amounts of heparan sulfate. The domain structure of the mutant heparan sulfate was conserved, and the disaccharide composition was similar to that of wild type heparan sulfate. However, a dramatic difference was seen in the polysaccharide chain length. The average molecular sizes of the heparan sulfate chains from wild type and Ext1 mutant embryonic fibroblasts were estimated to be around 70 and 20 kDa, respectively. These data suggest that not only the sulfation pattern but also the length of the heparan sulfate chains is a critical determinant of normal mouse development.  相似文献   

4.
The cell surface proteoglycan fraction isolated by mild trypsin treatment of NMuMG mouse mammary epithelial cells contains largely heparan sulfate, but also 15-24% chondroitin sulfate glycosaminoglycans. We conclude that this fraction contains a unique hybrid proteoglycan bearing both heparan sulfate and chondroitin sulfate glycosaminoglycans because (i) the proteoglycan behaves as a single species by sizing, ion exchange and collagen affinity chromatography, and by isopycnic centrifugation, even in the presence of 8 M urea or 4 M guanidine hydrochloride, (ii) the behavior of the chondroitin sulfate in these separation techniques is affected by heparan sulfate-specific probes and vice versa, and (iii) proteoglycan core protein bearing both heparan sulfate and chondroitin sulfate is recognized by a single monoclonal antibody. Removal of both types of glycosaminoglycan reduces the proteoglycan to a core protein of approximately 53 kDa. The proteoglycan fraction is heterogeneous in size, largely due to a variable number and/or length of the glycosaminoglycan chains. We estimate that one or two chondroitin sulfate chains (modal Mr of 17,000) exist on the proteoglycan for every four heparan sulfate chains (modal Mr of 36,000). Synthesis of these chains is reportedly initiated on an identical trisaccharide that links the chains to the same amino acid residues on the core protein. Therefore, some regulatory information, perhaps residing in the amino acid sequence of the core protein, must determine the type of chain synthesized at any given linkage site. Post-translational addition of these glycosaminoglycans to the protein may provide information affecting its ultimate localization. It is likely that the protein is directed to specific sites on the cell surface because of the ability of the glycosaminoglycans to recognize and bind extracellular components.  相似文献   

5.
Glycosaminoglycans from the surface of cultured mouse cells (3T3, SV40-3T3, 3T6) were released by trypsin digestion and separated by ion-exchange chromatography into hyaluronic acid, heparan sulfate and chondroitin sulfate. Using a double label technique, the glycosaminoglycans from 3T3 cells were compared with those from SV40-3T3 and 3T6 cells. No differences were apparent in either the hyaluronic acid or chondroitin sulfate fractions, however, the heparan sulfate from 3T3 cells was found to elute from DEAE-cellulose at a higher ionic strength than that from transformed cells. This altered behavior implies a structural difference in the cell surface heparan sulfate which appears to be dependent upon transformation.  相似文献   

6.
A rat hepatoma cell line was shown to synthesize heparan sulfate and chondroitin sulfate proteoglycans. Unlike cultured hepatocytes, the hepatoma cells did not deposit these proteoglycans into an extracellular matrix, and most of the newly synthesized heparan sulfate proteoglycans were secreted into the culture medium. Heparan sulfate proteoglycans were also found associated with the cell surface. These proteoglycans could be solubilized by mild trypsin or detergent treatment of the cells but could not be displaced from the cells by incubation with heparin. The detergent-solubilized heparan sulfate proteoglycan had a hydrophobic segment that enabled it to bind to octyl- Sepharose. This segment could conceivably anchor the molecule in the lipid interior of the plasma membrane. The size of the hepatoma heparan sulfate proteoglycans was similar to that of proteoglycans isolated from rat liver microsomes or from primary cultures of rat hepatocytes. Ion-exchange chromatography on DEAE-Sephacel indicated that the hepatoma heparan sulfate proteoglycans had a lower average charge density than the rat liver heparan sulfate proteoglycans. The lower charge density of the hepatoma heparan sulfate can be largely attributed to a reduced number of N-sulfated glucosamine units in the polysaccharide chain compared with that of rat liver heparan sulfate. Hepatoma heparan sulfate proteoglycans purified from the culture medium had a considerably lower affinity for fibronectin-Sepharose compared with that of rat liver heparan sulfate proteoglycans. Furthermore, the hepatoma proteoglycan did not bind to the neoplastic cells, whereas heparan sulfate from normal rat liver bound to the hepatoma cells in a time-dependent reaction. The possible consequences of the reduced sulfation of the heparan sulfate proteoglycan produced by the hepatoma cells are discussed in terms of the postulated roles of heparan sulfate in the regulation of cell growth and extracellular matrix formation.  相似文献   

7.
Disulfide-bonded aggregates of heparan sulfate proteoglycans   总被引:1,自引:0,他引:1  
Heparan sulfate proteoglycans have been isolated from Swiss mouse 3T3 cells by using two nondegradative techniques: extraction with 4 M guanidine or 2.5% 1-butanol. These proteoglycans were separated from copurifying chondroitin sulfate proteoglycans by using ion-exchange chromatography on DEAE-cellulose in the presence of 2 M urea. The purified heparan sulfate proteoglycans are substantially smaller, ca. Mr 20 000, than those isolated from these same cells with trypsin, ca. Mr 720 000 [Johnston, L.S., Keller, K. L., & Keller, J. M. (1979) Biochim. Biophys. Acta 583, 81-94]. However, all of the heparan sulfate proteoglycans extracted by these three methods contain similar glycosaminoglycan chains (Mr 7500) and are derived from the same pool of cell surface associated molecules. The trypsin-released heparan sulfate proteoglycan (ca. Mr 720 000) can be significantly reduced in size (ca. Mr 33 000) under strong denaturing conditions in the presence of the disulfide reducing agent dithiothreitol, which suggests that this form of the molecule is a disulfide-bonded aggregate. The heparan sulfate proteoglycan isolated from the medium also undergoes a significant size reduction in the presence of dithiothreitol, indicating that a similar aggregate is formed as part of the normal release of heparan sulfate proteoglycans into the medium. These results suggest that well-shielded disulfide bonds between individual heparan sulfate proteoglycan monomers may account for the large variation in sizes which has been reported for heparan sulfate proteoglycans isolated from a variety of cells and tissues with a variety of extraction procedures.  相似文献   

8.
Heparan sulfate glycosaminoglycan, isolated from the cell surface of nonadhering murine myeloma cells (P3X63-Ag8653), does not bind to plasma fibronectin, but binds partially to collagen type I, as assayed by affinity chromatography with proteins immobilized on cyanogen bromide-activated Sepharose 4B. Identical results were obtained when myeloma heparan sulfate was cochromatographed, on the same fibronectin and collagen columns, with cell surface heparan sulfates collagen columns, with cell surface heparan sulfates from adhering Swiss mouse 3T3 and SV3T3 cells. These latter heparan sulfates do, however, bind to both fibronectin and collagen, as reported earlier (Stamatoglou, S.C., and J.M. Keller, 1981, Biochim. Biophys. Acta., 719:90-97). Cell adhesion assays established that hydrated collagen substrata can support myeloma cell attachment, but fibronectin cannot. Saturation of the heparan sulfate binding sites on the collagen substrata with heparan sulfate or heparin, prior to cell inoculation, abolished the ability to support cell adhesion, whereas chondroitin 4 sulfate, chondroitin 6 sulfate, and hyaluronic acid had no effect.  相似文献   

9.
Antibodies were raised against a small high-density and a large low-density form of heparan sulfate proteoglycan from a basement membrane-producing mouse tumor and were characterized by radioimmunoassays, immunoprecipitation and immunohistological methods. Antigenicity was due to the protein cores and included epitopes unique to the low density form as well as some shared by both proteoglycans. The antibodies did not cross-react with other basement membrane proteins or with chondroitin sulfate proteoglycans from interstitial connective tissues. The heparan sulfate proteoglycans occurred ubiquitously in embryonic and adult basement membranes and could be initially detected at the 2-4 cell stage of mouse embryonic development. Low levels were also found in serum. Biosynthetic studies demonstrated identical or similar proteoglycans in cultures of normal and carcinoembryonic cells and in organ cultures of fetal tissues. They could be distinguished from liver cell membrane heparan sulfate proteoglycan, indicating that the basement membrane types of proteoglycans represent a unique class of extracellular matrix proteins.  相似文献   

10.
11.
The structural alterations in heparan sulfate produced by sulfate deprivation were studied in cell cultures of the Engelbreth-Holm-Swarm tumor. Tumor cells were labeled in vitro with [3H]glucosamine and/or [35S]sulfate in media containing either 300 microM MgSO4 or no added carrier sulfate, and the newly synthesized proteoglycans isolated by chromatography on DEAE-Sephacel. The proteoglycans isolated from low sulfate cultures showed a reduced affinity for the column eluting at lower salt concentrations compared with the proteoglycans isolated from cultures containing sulfate, suggesting that the former were undersulfated. Analysis of the isolated heparan sulfate side chains indicated that two pools of heparan sulfate were present which differed in their degree of sulfation. Both pools were synthesized by both high sulfate and low sulfate cultures, but the highly sulfated pool was the predominant form produced in sulfate containing cultures, while the undersulfated pool was the predominant form synthesized in low sulfate cultures. The more sulfated pool contained more N-sulfate than the less sulfated pool. Few if any free amino groups were detected in either pool, suggesting that the initial deacetylation step in the biosynthesis of heparan sulfate is tightly coupled to the N-sulfation step in the cells.  相似文献   

12.
A number of recent studies have shown that heparan sulfate can control several important biological events on the cell surface through changes in sulfation pattern. The in vivo modification of sugar chains with sulfates, however, is complicated, and the discrimination of different sulfation patterns is difficult. Heparin, which is primarily produced by mast cells, is closely approximated by the structural analog heparan sulfate. Screening of heparin-associating peptides using phage display and antithrombin-bound affinity chromatography identified a peptide, heparin-associating peptide Y (HappY), that acts as a target of immobilized heparin. The peptide consists of 12 amino acid residues with characteristic three arginines and exclusively binds to heparin and heparan sulfate but does not associate with other glycosaminoglycans. HappY recognizes three consecutive monosaccharide residues in heparin through its three arginine residues. HappY should be a useful probe to detect heparin and heparan sulfate in studies of glycobiology.  相似文献   

13.
We have isolated heparan sulfate proteoglycans (HSPGs) from cloned rat microvascular endothelial cells using a combination of ion-exchange chromatography, affinity fractionation with antithrombin III (AT III), and gel filtration in denaturing solvents. The anticoagulantly active heparan sulfate proteoglycans (HSPGact) which bind tightly to AT III bear mainly anticoagulantly active heparan sulfate (HSact) whereas the anticoagulantly inactive heparan sulfate proteoglycans (HSPGinact) possess mainly anticoagulantly inactive heparan sulfate (HSinact). HSact and HSinact were also isolated by a combination of ion-exchange chromatography, treatment with protease and chondroitin ABC lyase, and affinity fractionation with AT III. HSact and HSinact have molecular sizes of about 25-30 kDa with the same overall composition of monosaccharides except that HSact exhibits about nine glucuronsyl 3-O-sulfated glucosamines/chain whereas HSinact possesses about three glucuronsyl 3-O-sulfated glucosamines/chain. Direct isolation of the AT III-binding site of HSact by exposing carbohydrate chains to Flavobacterium heparitinase in the presence of protease inhibitor revealed only a single interaction site which contained two to three glucuronsyl 3-O-sulfated glucosamine residues. The core proteins of HSPGact and HSPGinact were isolated by treatment with Flavobacterium heparitinase and purification by ion-exchange chromatography. The molecular sizes of the core proteins were established by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and their primary structures were examined by cleavage with trypsin or endopeptidase Glu-C as well as separation of peptides by reverse-phase high performance liquid chromatography. The results showed that both sets of core proteins exhibited three major components with molecular sizes of 50, 30, and 25 kDa, respectively. The 25-kDa species appears to be a proteolytic degradation product of the 30-kDa species. The peptide mapping revealed that HSPGact and HSPGinact possess extremely similar core proteins.  相似文献   

14.
Proteoglycans deposited in the basal lamina of [14C] glucosamine-labeled normal and [3H]glucosamine-labeled transformed mouse mammary epithelial cells grown on type I-collagen gels, were extracted in 4 M guanidinium chloride and cofractionated over Sepharose CL 4B. The heparan sulfate chains carried by these proteoglycans were isolated by treatment with alkaline borohydride, protease K, chondroitinase ABC, and cetylpyridinium chloride precipitation. Heparan sulfate isolated from transformed cell cultures consistently eluted from DEAE-cellulose at lower salt concentrations and was of smaller apparent Mr when chromatographed over Sepharose CL 6B, than heparan sulfate of normal cell cultures. Experiments using doubly labeled cultures ([3H]glucosamine and [35S]sulfate) demonstrated an approximately 30% reduction in the sulfate/hexosamine ratio in heparan sulfate derived from transformed cultures. Both N- and O-sulfate were decreased. The decreased Mr and decreased sulfation of heparan sulfate upon transformation appear sufficient to explain the altered heparan sulfate/chondroitin sulfate ratios previously observed in these cells. These changes may have implications for the molecular interactions in which these proteoglycans are normally engaged during basal lamina assembly, and cause the poor basal lamina formation displayed by these transformed cells.  相似文献   

15.
Heparan sulfate was isolated form the cell surface, cell pellet, and culture medium of exponentially growing as well as postconfluent bovine aortic smooth muscle cells (SMCs). After chromatography on DEAE-Sephadex and Sepharose 4B, the various mucopolysaccharides were examined for their ability to cause growth inhibition in a SMC bioassay. The heparan sulfate isolated from the surface of postconfluent SMCs possessed approximately eight times the antiproliferative potency per cell of the heparan sulfate obtained from the surface of exponentially growing SMCs. Heparan sulfate isolated from other fractions of exponentially growing or postconfluent SMCs possesses little growth inhibitory activity. The difference in the antiproliferative activities of heparan sulfate obtained from the surface of SMCs in the two growth states could not be attributed to the synthesis of a greater mass of mucopolysaccharide by postconfluent SMCs. Indeed, heparan sulfate isolated from the surface of the postconfluent SMCs exhibits a specific antiproliferative activity which is 13-fold greater than mucopolysaccharide obtained from the surface of exponentially growing SMCs and more than 40-fold greater than commercially available heparin. In addition, exponentially growing SMCs did not exhibit an enhanced ability to degrade the complex carbohydrate. Furthermore, other investigations indicate that the small amount of growth inhibitory activity intrinsic to heparan sulfate isolated from the surface of exponentially growing SMCs is due to residual, biologically active, mucopolysaccharide produced by the primary postconfluent SMCs from which the exponentially growing SMCs were derived. These studies suggest that bovine aortic SMCs are capable of controlling their own growth by the synthesis of a specific form of heparan sulfate with antiproliferative potency.  相似文献   

16.
Three major pools of heparan sulfate have been isolated from cultures of Swiss mouse 3T3 and SV40-transformed 3T3 cells: cell-surface, medium, and intracellular heparan sulfates. The cell-surface heparan sulfate is a high molecular weight proteogylcan which is partially degraded by pronase. Before pronase treatment, it has a peak molecular weight (as estimated by gel filtration) of appox. 7.2 · 105 in contrast to only 2.4 · 105 after pronase treatment. The medium heparan sulfate appears to be similar in structure to the cell-surface heparan sulfate, since they coelute on Bio-Gel A-15m and DEAE-cellulose, and are both proteoglycans. In contrast, the intracellular heparan sulfate has a low molecular weight (6.0 · 103) and has little if any attached protein. Both the medium and intracellular heparan sulfate exhibit the transformation-associated change in structure reported earlier for cell-surface heparan sulfate (Underhill, C.B. and Keller, J.M. (1975) Biochem. Biophys. Res. Commun. 63, 448–454). This transformation-associated change, detected by DEAE-cellulose chromatography is not the result of changes in either molecular weight or protein core. Cellulose acetate electrophoresis of the cell-surface heparan sulfate at pH 1 suggests that the transformation-associated change in structure is due to a difference in sulfate content. Both types of heparan sulfate are produced in mixed cultures ot 3T3 and SV3T3 cells, indicating that neither serum factors in the culture medium nor secreted cell products are responsible for the transformation-associated change in heparan sulfate structure. The presented date are discussed with respect to the postulated role of heparan sulfate in cell social behavior.  相似文献   

17.
Three major pools of heparan sulfate have been isolated from cultures of Swiss mouse 3T3 and SV40-transformed 3T3 cells: cell-surface, medium, and intracellular heparan sulfates. The cell-surface heparan sulfate is a high molecular weight proteoglycan which is partially degraded by pronase. Before pronase treatment, it has a peak molecular weight (as estimated by gel filtration) of approx. 7.2 . 10(5) in contrast to only 2.4 . 10(5) after pronase treatment. The medium heparan sulfate appears to be similar in structure to the cell-surface heparan sulfate, since they coelute on Bio-Gel A-15m and DEAE-cellulose, and are both proteoglycans. In contrast, the intracellular heparan sulfate has a low molecular weight (6.0 . 10(3)) and has little if any attached protein. Both the medium and intracellular heparan sulfate exhibit the transformation-associated change in structure reported earlier for cell-surface heparan sulfate (Underhill, C.B. and Keller, J.M. )1975) Biochem. Biophys. Res. Commun. 63, 448--454). This transformation-associated change, detected by DEAE-cellulose chromatography is not the result of changes in either molecular weight or protein core. Cellulose acetate electrophoresis of the cell-surface heparan sulfate at pH 1 suggests that the transformation-associated change in structure is due to a difference in sulfate content. Both types of heparan sulfate are produced in mixed cultures of 3T3 and SV3T3 cells, indicating that neither serum factors in the culture medium nor secreted cell products are responsible for the transformation-associated change in heparan sulfate structure. The presented data are discussed with respect to the postulated role of heparan sulfate in cell social behavior.  相似文献   

18.
The human colon cancer cell line Caco-2 cultured in vitro displayed morphological differentiation which was shown to be a growth-related event. We have investigated this phenomenon further in relation to the cell surface glycosaminoglycans produced by growing (5-day, i.e., prior to differentiation) and confluent (9-day, i.e., after morphological and functional differentiation) cultures. Neosynthesized [35S]glycosaminoglycans were purified on DEAE-cellulose; at confluency, they were bound more strongly to the column than the corresponding fractions from the growing cells. Analysis of Kav values of heparan sulfate and chondroitin sulfates from growing and confluent cells indicated an increase in chain length of both glycosaminoglycans in morphologically differentiated cells. Heparan sulfate was the main 35S-labeled glycosaminoglycan of the cell surface of both 5-day and 9-day cultures. Paper chromatography of the unsaturated disaccharides obtained by chondroitinase digestion showed that chondroitin sulfate chains were primarily 6-sulfated in the 2 studied extracts. Heparan sulfate chains were isolated as chondroitinase-resistant material and treated with nitrous acid. Analysis of N- and O-sulfate group-related radioactivity showed an increase in the amount of 35S-label in the form of N-sulfate groups and an increase in the O-35S-sulfation pattern in heparan sulfate from morphologically differentiated cells. Thus, the structural features of both chondroitin sulfates and heparan sulfate were significantly different when the growing cells became morphologically differentiated.  相似文献   

19.
The cellular distribution and nature of proteoglycans synthesised by human breast cancer cells in culture were studied. Proteoglycans were labelled with [35S] sulfate, purified, and characterised after ion-exchange chromatography followed by gel-filtration chromatography and treatment with glycosaminoglycan degrading enzymes. Proteoglycans were isolated from the culture medium and from cell layers of the hormono-dependent well-differentiated MCF-7 cell line, the hormono-independent poorly-differentiated MDA-MB-231 and the HBL-100 cell line which is derived from non malignant breast epithelium. HBL-100 and MDA-MB-231 cells produced larger amounts of proteoglycans which had a lower degree of sulfation than MCF-7 cells. Gel-filtration chromatography on Sepharose CL-6B indicated that HBL-100 and MDA-MB-231 cells accumulated cell surface heparan sulfate proteoglycans (HSPG), with a high apparent molecular weight (Kav 0.1). In contrast, the MCF-7 cell monolayers synthesised small sulfated macromolecules (Kav 0.4) which possessed mostly chondroitin sulfate chains. Moreover, considerable differences in the nature of the sulfated proteoglycans released into the culture medium of these breast epithelial cell lines were observed. MCF-7 cells released into the culture medium HSPG as the main proteoglycan component while MDA-MB-231 and HBL-100 cells released mainly chondroitin sulfate proteoglycans. In these three cell lines, medium-released sulfated macromolecules have a higher hydrodynamic size than cell-associated ones. Proteoglycans purified by ion-exchange chromatography were tested for their ability to bind 125I FGF-2. We demonstrated that HBL-100 and MDA-MB-231 cells bind more FGF-2 to their heparan sulfate proteoglycans than MCF-7 cells. Taken together, these results suggest that differences in proteoglycan synthesis of human breast epithelial cells could be responsible for differences in their proliferative and/or invasive properties. J. Cell. Biochem. 64:605–617. © 1997 Wiley-Liss, Inc.  相似文献   

20.
We determined the synthesis and secretion of glycosaminoglycans by three distinct preparations of mouse cultured thymic epithelial cells. These comprised primary cultures of thymic nurse cells (TNCs), which are normally located within the cortex of the thymic lobules, as well as two murine thymic epithelial cells, bearing a mixed, yet distinct, cortico-medullary phenotype. We first identified and measured the relative proportions of the various glycosaminoglycans in the three epithelial cells. Non-sulfated glycosaminoglycans are preponderantly secreted by the TNCs, while the sulfated glycans (particularly heparan sulfate) are relatively more abundant on the cell surface. The three types of epithelial cells differ markedly in their heparan sulfate composition, mainly due to different patterns of N- and O-sulfation. In addition, the cells differ in the synthesis and secretion of other glycosaminoglycans. Thus, TNCs secrete high amounts of dermatan sulfate + chondroitin sulfate to the culture medium. IT-76M1 cells secrete high proportions of heparan sulfate while 2BH4 cells show a more equilibrated proportion of dermatan sulfate/chondroitin sulfate and heparan sulfate. The three epithelial cells also differ in their capacity to produce hyaluronic acid and 2BH4 cells are distinguished by their high rate of synthesis of this glycosaminoglycan. In conclusion, our results show that distinct thymic epithelial cells can synthesize different types of glycosaminoglycans. Although it remains to be definitely determined whether these differences reflect the in vivo situation, our data provide new clues for further understanding of how glycosaminoglycan-mediated interactions behave in the thymus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号