首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purification and analysis of rat hematopoietic stem cells by flow cytometry   总被引:2,自引:0,他引:2  
The monoclonal antibody OX7 recognizes an epitope expressed on the Thy-1 glycoprotein, OX22 recognizes the high molecular weight form(s) on leukocyte common antigen, and W3/13 recognized determinants found on certain sialoglycoproteins. Recently, the rat colony-forming unit spleen (CFU-S) was characterized as being OX7 upper 20% positive (OX7u20%), OX22 negative (OX22-), and W3/13 weakly positive (W3/13+). In the present study these observations have been extended to include the hematopoietic stem cell (HSC). Rat marrow cells were incubated with allophycocyanine-OX7 Fab' (APC-OX7 Fab') and phycoerythrin B-OX22 Fab' (Phy B-OX22 Fab'). The cells were sorted with a FACS-II instrument by using a Krypton laser tuned to the 530 nm spectral line for phycobiliprotein excitation. It was found that marrow cells capable of protecting lethally irradiated Lewis rats (9.5 Gy total body radiation, 0.4 Gy/min Co60) had the phenotype OXu20%, OX22-. The percentage of cells in the marrow with this phenotype was found to be 0.34 +/- 0.01 (mean +/- S.E.). Three thousand of these cells were required to rescue 50% of lethally irradiated recipients (30-d survival), while the number of unsorted bone marrow cells required was 1.05 X 10(6). Thus, a 350-fold purification of the HSC was realized. Although CFU-S copurified with HSC, purification of only 105-fold was obtained. This might indicate that purified HSC have a reduced capacity to generate splenic hematopoietic colonies. The OX7u20%, OX22- -enriched HSC population could be further divided into W3/13 dim and W3/13+ subpopulations by three-parameter immunofluorescence analysis with the use of a new optical bench arrangement.  相似文献   

2.
Using the monoclonal antibody W3/13, which recognizes a determinant expressed on a sialoglycoprotein, rat marrow cells with the phenotype Thy-1 antigen upper 20% positive (Ox720) and high molecular weight leukocyte common antigen negative (Ox22-) were separated into W3/13 dim (W3/13d) and W3/13 bright (W3/13b) subpopulations by single-laser cell sorting. The spleen colony-forming unit (CFU-s) was found in the W3/13d fraction. A 468-fold enrichment of CFU-s was achieved. Only 20% of the Ox720, Ox22-, and W3/13d cells were in the S phase of the cell cycle as compared to 56% of Ox720, Ox22-, and W3/13b cells. Using Indo-1, it was not possible to demonstrate increases in cytosolic Ca++ levels within the enriched CFU-s population by colony-stimulating factors (CSFs) or interleukins 1, 2, and 3. However, challenge with the Ca++ ionophore, ionomycin, demonstrated apparent heterogeneity of intracellular Ca++ management within the enriched CFU-s population. The source of this heterogeneity is not known. Only a 12-day CFU-s was detected in the rat, and it was predominantly, but not exclusively, a Rhodamine 123 (Rh123) dull cell.  相似文献   

3.
Experimental autoimmune encephalomyelitis (EAE) is a cell-mediated autoimmune disease of the central nervous system that has been extensively studied in the rat. The Lewis rat is highly susceptible to the induction of EAE, while the Lewis resistant (LeR) rat is known to be resistant. In this paper, we demonstrate that the LeR rat, which was derived from the Lewis strain by inbreeding of fully resistant animals, is histocompatible with the Lewis strain. Radiation chimeras, a tool for distinguishing between immunologic and nonimmunologic resistance mechanisms, were utilized to analyze the cellular mechanisms involved in genetic resistance to EAE. By transplanting bone marrow cells from LeR rats into irradiated Lewis recipients, Lewis rats were rendered resistant to EAE induction. Likewise, transplanting Lewis bone marrow cells into irradiated LeR recipients rendered LeR rats susceptible. Mixed lymphoid cell chimeras using bone marrow, spleen, and thymus cells in Lewis recipient rats revealed individual lymphoid cell types and cell interactions that significantly affected the incidence and severity of EAE. Our results suggest that LeR resistance is mediated by hematopoietic/immune cells, and that cells located in the spleen appear to play a critical role in the resistance/susceptibility to EAE induction. Depletion of splenic adherent cells did not change the patterns of EAE resistance. In vivo cell mixing studies suggested the presence of a suppressor cell population in the LeR spleen preparations which exerted an inhibitory effect on Lewis autoimmune responses. Thus, the mechanism of LeR resistance appears to be different from that in other EAE-resistant animals.  相似文献   

4.
Streptococcal cell wall (SCW)-induced arthritis and adjuvant arthritis (AA) are rat models for chronic, erosive polyarthritis. Both models can be induced in susceptible Lewis rats, whereas F344 rats are resistant. In AA as well as in SCW arthritis, antigen-specific T lymphocytes have been demonstrated to be crucial for chronic disease. In this communication we describe our studies to probe the cellular mechanism responsible for the difference in susceptibility of Lewis and F344, using bone marrow chimeras. By transplanting bone marrow cells from F344 into lethally irradiated Lewis recipients, Lewis rats were rendered resistant to SCW arthritis induction. F344 rats reconstituted with Lewis bone marrow, i.e., Lewis----F344 chimeras, develop an arthritis upon SCW injection. For AA comparable results were obtained. These data suggest that both resistance and susceptibility to bacterium-induced chronic arthritis are mediated by hemopoietic/immune cells and that the recipiental environment does not influence the susceptibility to chronic joint inflammation.  相似文献   

5.
In this study, cellular requirements for rejection are examined by the use of adoptive transfer assays in the ACI to Lewis cardiac allograft model. The findings show that adoptive transfer of 1 x 10(8) spleen cells (SpL), 5 x 10(7) T-cells, and 2 x 10(7) helper T-cells (W3/25+) obtained from normal, nonsensitized donors restores acute ACI graft rejection in sublethally irradiated (750 rad) Lewis recipients. In contrast, reconstitution with 2 x 10(7) cytotoxic T-cells (0X8+) does not restore first-set graft rejection. Reconstitution of the irradiated recipients with either W3/25+ or 0X8+ T-cells obtained from specifically sensitized syngeneic donors resulted in acute rejection. The W3/25+ T-cell subset was significantly more potent (P less than 0.01) in effecting rejection on a per-cell basis. Adoptive transfer of SpL, T-cells, and 0X8+ T-cells obtained from sensitized rats led to accelerated cardiac allograft rejection in the naive secondary recipients while W3/25+ T-cells did not. This study suggests that although the W3/25+ T-cells alone have the capacity to initiate first-set graft rejection, both W3/25+ and 0X8+ subsets appear to be critical to the completion of rejection of heart allografts. We also examined the capacity of adoptively transferred B-cells from sensitized donors to influence graft rejection. Our findings suggest that while B-cells fail to restore the capacity for graft rejection in irradiated recipients, they can, however, present MHC antigens to the secondary naive host thus causing allosensitization which results in accelerated rejection of a subsequent graft.  相似文献   

6.
A permanent ovalbumin-specific T cell line of "helper/inducer" cell phenotype (W 3/13+, W 3/25+, OX 8-) was used to study the homing pattern in normal untreated Lewis rats. After i.v. injection, the migration of these cells was followed directly by using 51Cr- or [14C]thymidine-labeled cells. In addition, I tried to retrieve the cells from different lymphatic tissues by antigen restimulation. I found that most of the radiolabeled cells migrate to the lung, liver, kidney, and spleen. Other lymphoid tissues such as the thymus and the cervical and mesenteric lymph nodes were almost devoid of such cells with one exception: the perithymic lymph nodes (pt-LN). Twenty-four hours after the cell transfer, viable antigen-specific cells could be recovered from these organs. Within 9 days the pt-LN enlarged, the percentage of W 3/13+ and W 3/25+ T lymphocytes was enhanced, and both relatively high spontaneous and antigen-driven responses were measurable in cell cultures of these lymph nodes. All the effects were observed if viable but not irradiated antigen-specific T blasts were transferred. Moreover, after active immunization, antigen-reactive cells appeared to accumulate not only in the draining but also in the pt-LN. In both experimental situations, the adoptive transfer and the in vivo activation of antigen-specific lymphocytes, the pt-LN appear to play an important role in the homing of such cells.  相似文献   

7.
Two monoclonal antibodies specific for different rat T-cell subpopulations, the anti-helper-T-cell antibody, W3/25, and the OX8 suppressor cell antibody were used to investigate lectin-stimulated T-lymphocyte differentiation of F-344 rat bone marrow cells in culture. Cytofluorometric analysis of freshly isolated lymphocytes from thymus and spleen revealed that these tissues contained both W3/25? and OX8-positive populations but differed with respect to the number of cells and receptor density distribution. By contrast, bone marrow-derived lymphocytes exhibited negligible W3/25? or OX8-associated fluorescence. However, several days after stimulation of bone marrow lymphocytes with phytohemagglutinin (PHA), cells appeared bearing these markers. Two-parameter histogram analysis of light scatter measurements with cell surface immunoflu-orescence indicated that this phenomenon represented the appearance of a new population of cells, presumably mature T cells, bearing an increased density of marker. These findings suggest an induction of differentiation of bone marrow T precursor cells by nonthymic factors (PHA) since lymphocytes lacking mature T-cell marker expression developed this characteristic after several days in culture.  相似文献   

8.
The influence of 89Sr-treatment on the recovery of the B cell compartment in lethally irradiated, fetal liver reconstituted mice was studied by means of membrane fluorescence. 89Sr is a bone-seeking radio-isotope which causes in a dose of 3 μCi 89Sr/g body weight a depletion of all nucleated cells, including immunoglobulin-bearing (B) cells, of the bone marrow.Treatment of irradiated and fetal liver reconstituted mice with 3 μCi 89Sr/g body weight immediately and at 17 days after irradiation and reconstitution prevented recovery of the nucleated cell population, including B cells, in the bone marrow. In the spleen of such mice both nucleated cells and B cells reappeared at day 7 and 14 respectively. The B cell population in the spleen did not recover up to normal values during the experimental period of 45 days. It is concluded that B cell differentiation in lethally irradiated, fetal liver reconstituted mice can take place outside the bone marrow. The efficiency of this extra-medullary differentiation is discussed. The conclusion was drawn that mice with a 89Sr-induced bone marrow aplasia are able to generate B lymphocytes. Consequently the bone marrow microenvironment seems not to be obligate to the differentiation of B lymphocytes. The peripheral lymphoid organs of such mice were found to be unable to compensate completely for the absence of B lymphocyte production in the bone marrow.  相似文献   

9.
Effect of transplantation of syngeneic bone marrow in the dose of 1 X 10(7) cell/ml on the state of pancreatic gland in lethally irradiated recipients has been studied at different stages of posttransplantation period for 3 months using 250 linear male rats G (CBA x C57B). Histological and biochemical investigation, conducted in dynamics, have shown that transplantation of native and cryopreserved bone marrow to lethally irradiated animals facilitates activation of compensatory-restoration processes manifesting themselves in mitotic division of glandular and epithelial cells, as well as optimizes exchange of carbohydrates in the irradiated organism.  相似文献   

10.
The effect of mouse serum interferon (IF) in vitro and an inducer in vivo on the proliferation of a pluripotent stem cell population with high turnover rate was studied. Proliferation rate was characterized by the number of CFUs in the S phase of the cell cycle. Increased proliferation of bone marrow stem cell populations was produced either by irradiating the donor mice with 3·36 Gy (336 rad) 60Co-gamma rays 7 days before the experiment or by incubating normal bone marrow cells with 10–11 M concentration of isoproterenol. IF considerably reduced the number of CFUs in S phase in both cases without reducing the CFUs content of the samples. Injection of IF inducer (4 mg/kg poly I:C) into regenerating mice also inhibited the proliferation of CFUs without decreasing the femoral CFUs level. Regeneration kinetics of CFUs from irradiated poly I:C-treated mice ran parallel with that of irradiated untreated animals but showed a characteristic delay corresponding to approximately one CFUs doubling. A transient, non-cytotoxic proliferation inhibitory effect of IF or IF inducer is, therefore, proposed.  相似文献   

11.
The removal from stored autologous host bone marrow of a monocytoid cell population by exposure to methylprednisolone is associated with successful introduction of unresponsiveness to renal allografts in irradiated recipients reconstituted with such treated marrow. The eliminated cells are a prominent component of the canine long bone marrow interstitium and share a number of important properties with dendritic cells (DC), including size and shape; poor or nonadherence to plastic or glass surfaces; negative staining for neutral esterase, acid phosphatase, or peroxidase; nonphagocytic; Ia positive, but negative for IgG or IgM; ability to act as accessory cells in augmenting the intensity of allogeneic mixed-lymphocyte reactions. Both cell types are of bone marrow origin and are susceptible to steroids in vitro. The results suggest that the bone marrow interstitial cells identified in the course of this study may be enriched with populations of canine dendritic cell precursors and dendritic cells at various stages of differentiation. The detection of a receptor site for Helix promatia on the surface of such cells may be of usefulness in their further characterization and in the analysis of their precise role in the modulation of allogeneic unresponsiveness.  相似文献   

12.
Bone marrow cells were separated according to buoyant density, velocity sedimentation and cell surface charge. Fractionated (C3H × AKR)F1 bone marrow cells were transplanted into lethally-irradiated C3H recipients. In all fractions, the CFUs content and the capacity to restore the thymus cell population were determined. For all the physical parameters tested, thymocyte progenitor cells show the same distribution as CFUs. the relationship between number of thymocyte progenitor cells and number of CFUs is dependent on density. Bone marrow progenitors of PHA responsive cells are of low buoyant density and show a distribution which resembles the distribution of the progenitors of Thy 1 positive cells. After transplantation of large numbers of bone marrow cells into irradiated mice, no significant change in the CFUs content of the thymus was observed.  相似文献   

13.
During their development, immature CD4CD8 double positive thymocytes become committed to either the CD4 or CD8 lineage. The final size of the peripheral CD4 and CD8 T cell compartments depends on thymic output and on the differential survival and proliferation of the respective T cell subsets in the periphery. Our results reveal that the development of the distinct peripheral CD4/CD8 T cell ratio between Lewis and Brown Norway rats originates in the thymus and, as shown by the use of radiation bone marrow chimeras, is determined by selection on radio-resistant stromal cells. Furthermore, this difference is strictly correlated with the MHC haplotype and is the result of a reduction in the absolute number of CD8 T cells in Brown Norway rats. These data suggest that the distinct CD4/CD8 T cell ratio between these two rat strains is the consequence of differential interactions of the TCR/CD8 coreceptor complex with the respective MHC class I haplotypes during selection in the thymus.  相似文献   

14.
Lymphohemopoietic precursor cells in rat bone marrow are members of a subset of lymphocyte-like cells that bears the bone marrow lymphocyte antigen (BMLA) and that lacks antigens present on peripheral B and T cells. This was demonstrated by two experimental approaches. In the first, bone marrow cells with the potential to form hemopoietic colonies in spleen (CFU-S), to repopulate lumphoid tissues and blood, and to rescue lethally irradiated recipients were enriched approximately 10-fold by a fractionation procedure designed to isolate a "null" population of bone marro lymphocytes. In the second approach, the lymphohemopoietic precursor cell activity in bone marrow was completely abrogated by opsonization with rabbit antiserum (ALSBM) raised against this "null" population of bone marrow cells. Precursor cell activity was not affected by treatment with antiserum to T and B cells. Quantitative cross-absorption studies showed that the antigen detected by ALSBM on lymphohemopoietic precursor cells had the same cellular distribution as did the previously described bone marrow lymphocyte antigen. It is likely that this antigen is present both on pluripotent stem cells and on committed progenitors of the myelocytic, erythrocytic and lymphocytic series.  相似文献   

15.
The effect of mouse serum interferon (IF) in vitro and an inducer in vivo on the proliferation of a pluripotent stem cell population with high turnover rate was studied. Proliferation rate was characterized by the number of CFUs in the S phase of the cell cycle. Increased proliferation of bone marrow stem cell populations was produced either by irradiating the donor mice with 3.36 Gy (336 rad) 60Co-gamma rays 7 days before the experiment or by incubating normal bone marrow cells with 10(-11) M concentration of isoproterenol. IF considerably reduced the number of CFUs in S phase in both cases without reducing the CFUs content of the samples. Injection of IF inducer (4 mg/kg poly I:C) into regenerating mice also inhibited the proliferation of CFUs without decreasing the femoral CFUs level. Regeneration kinetics of CFUs from irradiated poly I:C-treated mice ran parallel with that of irradiated untreated animals but showed a characteristic delay corresponding to approximately one CFUs doubling. A transient, non-cytotoxic proliferation inhibitory effect of IF or IF inducer is, therefore, proposed.  相似文献   

16.
The study of adhesive properties of multipotent mesenchymal stromal cells evaluated from fibroblast colony-forming units in the bone marrow of adult mice and rats in populations of cells attached and unattached to plastic substrate after 2 h to 7 days in culture demonstrated both similarities and differences. The increase in the fibroblast colony-forming units in the adhesive population peaked on day 7 of in vitro culture in both cases; however, nearly no fibroblast colony-forming units were observed in the nonadhesive population from the mouse bone marrow in this period. Conversely, the number of colonies from the rat bone marrow nonadhesive population on day 7 of culture considerably increased, and this nonadhesive population in long-term culture became the source for subsequent nonadhesive subpopulations containing fibroblast colony-forming units. After 7 days of in vitro culture, the suspension of cells isolated from the liver of 17-day-old rat fetuses also contained a fraction of unattached fibroblast colony-forming units. In the nonadhesive subpopulations from the bone marrow and fetal liver, fibroblast colony-forming units were observed up to day 48 and 30, respectively. Stromal cell precursors of nonadhesive subpopulations from the rat bone marrow featured a period of colony formation reduced to 7 days (i.e., they were formed 1.5-2 times faster compared to the primary culture). The total number of fibroblast colony-forming units from all nonadhesive subpopulations was roughly 6 and 7.4 times that of the adhesive population of the primary culture from the bone marrow and fetal liver, respectively. Considering that the mammalian bone marrow remains the preferred source of mesenchymal stromal cells, using nonadhesive subpopulations in the presented culture system can considerably increase the yield of stromal precursor cells  相似文献   

17.
Vascularized allogeneic skeletal tissue transplantation without the need for host immunosuppression would increase reconstructive options for treating congenital and acquired defects. Because the immune system of a fetus or neonate is immature, it may be possible to induce tolerance to allogeneic skeletal tissues by alloantigen injection during this permissive period. Within 12 hours after birth, 17 neonatal Lewis rats were injected through the superficial temporal vein with 3.5 to 5 million Brown Norway bone marrow cells in 0.1 ml normal saline. Ten weeks after the injection, peripheral blood from the Lewis rats was analyzed for the presence of Brown Norway cells to determine hemopoietic chimerism. The Lewis rats then received a heterotopic, vascularized limb tissue transplant (consisting of the knee, the distal femur, the proximal tibia, and the surrounding muscle on a femoral vascular pedicle) from Brown Norway rat donors to determine their tolerance to the allogeneic tissue. A positive control group (n = 6) consisted of syngeneic transplants from Lewis rats into naive Lewis rats to demonstrate survival of transplants. A negative control group (n = 6) consisted of Brown Norway transplants into naive Lewis rats not receiving bone marrow or other immunosuppressive treatment. The animals were assessed for transplant viability 30 days after transplantation using histologic and bone fluorochrome analysis. All the syngeneic controls (Lewis to Lewis) remained viable throughout the experiment, whereas all the Brown Norway to Lewis controls had rejected. Ten of the 17 allografts transplanted into bone marrow recipients were viable at 30 days, with profuse bleeding from the ends of the bone graft and the surrounding graft muscle. The percent of chimerism correlated with survival, with 3.31 percent (SD = 1.9) of peripheral blood, Brown Norway chimerism present in the prolonged survival groups and 0.75 percent (SD = 0.5) of Brown Norway chimerism in the rejected graft group. This study demonstrated prolonged survival of allogeneic skeletal tissue without immunosuppression after early neonatal injection of allogeneic bone marrow in a rat model.  相似文献   

18.
Previous studies have shown that immunization of MAXX rats with spleen and lymph node cells from the MHC-identical BN strain results in the formation of antibodies that react with the renal endothelial alloantigen Eag-1. In the present study, the reactivity of MAXX anti-BN sera was further characterized. No reactivity of the antisera was detected with unseparated spleen, lymph node, thymus and bone marrow cell suspensions, peripheral blood, or cells obtained from lung lavages. The antisera did, however, react with splenic macrophages, as well as with peritoneal granulocytes and macrophages from BN, BMA, BN.1L, and PVG rats. Genetic studies revealed that the antigen, provisionally designated Pag-1, segregates independently of Eag-1, the RT1 complex, sex, and the hooded and albino traits. Pag-1 appears to be absent in the kidney, since absorption of MAXX anti-BN sera with BN kidney homogenates did not remove the reactivity against Pag-1, and antisera raised against BN peritoneal cells did not bind with the renal endothelium. Pag-1 is expressed on bone marrow-derived cells, since peritoneal cells from lethally irradiated MAXX rats that were reconstituted with bone marrow cells from BN donors reacted with MAXX anti-BN sera, whereas peritoneal cells from BN rats reconstituted with MAXX bone marrow did not.Abbreviations used in this paper BSA bovine serum albumin - CDC complement-dependent microcytotoxicity - MHC major histocompatibility complex - PBS phosphate-buffered saline  相似文献   

19.
The binding of tolerogen to specific receptors of lymphocytes and the subsequent fate of such cells was directly studied in Lewis rats injected with fluorescein-labeled sheep gamma globulin (F-SGG). This tolerogen produced unresponsiveness both in SGG-specific T cells (carrier tolerance) and F-specific antibody-forming cell precursors. The former (T-cell tolerance) was still significant more than 60 days after tolerogen whereas tolerance in the latter (B-cell tolerance) had waned by that time.Cells which have bound the tolerogen (antigen-binding cells, ABC) in vivo were detectable by direct immunofluorescence of washed spleen cell suspensions from rats injected with F-SGG up to 7 days previously. These cells were isolated using antifluorescein affinity columns, and shown to contain immunocompetent precursors for F- and SGG specific responses.The frequency of such ABC was between 30 and 80 per 105 spleen, lymph node or bone marrow cells; no ABC were detected in the thymus. Both Ig positive and Ig negative cells were found to be ABC; Ig negative ABC usually showed a “capped” fluorescent pattern whereas Ig positive ABC generally were “spotted.”By 10 days after injection, ABC were not detectable in the spleen, lymph nodes, thymus or bone marrow of tolerant rats. Furthermore, reinjection of F-SGG after this time did not label any cells. This suggests that antigen-binding cells are not present at this time or that such cells, if available, lack receptors. In contrast, rats previously injected with a lower non-tolerogenic dose of F-SGG or an immunogenic form (F-SGG on bentonite) possessed cells at these later times which could be labeled with F-SGG. Thus, ABC remain detectable following immunogen or a subtolerogeic dose of F-SGG, but disappear in tolerant rats.By approximately 40 days after initial high dose tolerogen injection (when B cell tolerance has started to wane), cells capable of binding a second dose of F-SGG again became detectable. It is suggested that high doses of F-SGG are bound by specific lymphocytes (identifiable as ABC) and that these cells either fail to regenerate new receptors or die. As tolerance begins to wane, either new receptors or new cells are generated.  相似文献   

20.
We scored sister-chromatid exchanges (SCE) in bone marrow cells in 3-month-old rats as a function of time after 2 Gy of whole-body neutron irradiation. This dose reduced the mean survival time to 445 days after irradiation, and induced more than one tumor per animal; by 200 days post irradiation, all animals bore tumors at autopsy, but bone marrow was not a significant target for tumor induction. In controls, the mean SCE/cell remained constant from 3 to 24 months of age (2.38 SCE/cell, S.D. = 0.21). Irradiation induced 2 distinct increases in SCE: the first occurred during the days following exposure, and the second, from days 150 to 240. Thereafter, SCE values formed a plateau at 3.37 SCE/cell (S.D. = 0.39) until day 650. Between the two increases (i.e. from days 15 to 150), SCE dropped to control values. Analysis of SCE distribution per cell shows that the entire dividing cell population altered homogeneously during the increase in SCE. These results suggest that in our irradiated rats, the second increase in SCE coincides with tumor growth, whereas the first increase might be due to DNA damage that was rapidly repaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号