首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyanelles of glaucocystophytes may be the most primitive of the known plastids based on their peptidoglycan content and the sequence phylogeny of cyanelle DNA. In this study, EM observations have been made to characterize the cyanelle division of Cyanophora paradoxa Korshikov and to gain insights into the evolution of plastid division. Constriction of cyanelles involves ingrowth of the septum at the cleavage site with the inner envelope membrane invaginating at the leading edge and the outer envelope membrane invaginating behind the septum. This means the inner and outer envelope membranes do not constrict simultaneously as they do in plastid division in other plants. The septum and the cyanelle envelope became stained after a silver‐methenamine staining was applied for in situ detection of polysaccharides. Septum formation was inhibited by β‐lactams and vancomycin, which are potent inhibitors of bacterial peptidoglycan biosynthesis. These results suggest the presence of peptidoglycan at the septum and the cyanelle envelope. In dividing cyanelles, a single electron‐dense ring (cyanelle ring) was observed on the stromal face of the inner envelope membrane at the isthmus, but no ring‐like structures were detected on the outer envelope membrane. Thus a single, stromal cyanelle ring such as this is quite unique and also distinct from FtsZ rings, which are not detectable by TEM. These features suggest that the cyanelle division of glaucocystophytes represents an intermediate stage between cyanobacterial and plastid division. If monophyly of all plastids is true, the cyanelle ring and the homologous inner plastid dividing ring might have evolved earlier than the outer plastid dividing ring.  相似文献   

2.
The cyanelles of glaucocystophytes are probably the most primitive of known extant plastids and the closest to cyanobacteria. Their kidney shape and FtsZ arc during the early stage of division define cyanelle division. In order to deepen and expand earlier results (Planta 227:177–187, 2007), cells of Cyanophora paradoxa were fixed with two different chemical and two different freeze-fixation methods. In addition, cyanelles from C. paradoxa were isolated to observe the surface structure of dividing cyanelles using field emission scanning electron microscopy (FE-SEM). A shallow furrow started on one side of the division plane. The furrow subsequently extended, covering the entire division circle, and then invaginated deeply, becoming clearly visible. The typical FtsZ arc was 2.3–3.4 μm long. This length matches that of the cleavage furrow observed using FE-SEM. The cyanelle cleavage furrows are from one-fourth to one-half of the circumference of the division plane. The shallow furrow that appears on the cyanelle outer surface effectively changes the division plane. Using freeze-fixation methods, the electron-dense stroma and peptidoglycan could be distinguished. In addition, an electron-dense belt structure (the cyanelle ring) was observed inside the leading edge at the cyanelle division plane. The FtsZ arc is located at the division plane ahead of the cyanelle ring. Immunogold-TEM localization shows that FtsZ is located interiorly of the cyanelle ring. The lack of an outer PD ring, together with the arch-shaped furrow, suggests that the mechanical force of the initial (arch shaped) septum furrow constriction comes from inside the cyanelle.  相似文献   

3.
Sato M  Nishikawa T  Kajitani H  Kawano S 《Planta》2007,227(1):177-187
Cyanelles of the biflagellate protist Cyanophora paradoxa have retained the peptidoglycan layer, which is critical for division, as indicated by the inhibitory effects of β-lactam antibiotics. An FtsZ ring is formed at the division site during cyanelle division. We used immunofluorescence microscopy to observe the process of FtsZ ring formation, which is expected to lead cyanelle division, and demonstrated that an FtsZ arc and a split FtsZ ring emerge during the early and late stages of cyanelle division, respectively. We used an anti-FtsZ antibody to observe cyanelle FtsZ rings. We observed bright, ring-shaped fluorescence of FtsZ in cyanelles. Cyanelles were kidney-shaped shortly after division. Fluorescence indicated that FtsZ did not surround the division plane at an early stage of division, but rather formed an FtsZ arc localized at the constriction site. The constriction spread around the cyanelle, which gradually became dumbbell shaped. After the envelope’s invagination, the ring split parallel to the cyanelle division plane without disappearing. Treatment of C. paradoxa cells with ampicillin, a β-lactam antibiotic, resulted in spherical cyanelles with an FtsZ arc or ring on the division plane. Transmission electron microscopy of the ampicillin-treated cyanelle envelope membrane revealed that the surface was not smooth. Thus, the inhibition of peptidoglycan synthesis by ampicillin causes the inhibition of septum formation and a marked delay in constriction development. The formation of the FtsZ arc and FtsZ ring is the earliest sign of cyanelle division, followed by constriction and septum formation.  相似文献   

4.
The flagellate Cyanophora paradoxa contains blue-greenish, organelle-like inclusions termed cyanelles which perform photosynthetic CO2-fixation in place of chloroplasts. By the use of the HPLC-technique, Cyanophora was shown to form glucose, sucrose, maltose, mannitol, ribose, glycerol and trehalose. Extracts from the whole organism and from the eucaryotic host, but not from the cyanelles, convert 14C-labelled UDP-glucose to polyglucan. Synthesis of sucrose from UDP-glucose and fructose-6-P or fructose could not be demonstrated in any extract from Cyanophora. The transfer of metabolites into cyanelles was monitored by the silicone oil filtering technique. The solute spaces for 14C-labelled sorbitol and 3H2O were the same indicating that sorbitol freely penetrated the plasma membrane of cyanelles in contrast to the situation found in chloroplasts. The measurements of the solute spaces for the different compounds showed that maltose and sucrose were not accumulated by isolated cyanelles. Other compounds like fructose, fucose, glutamine or glycine had intermediate sizes of their solute spaces. Cyanelles apparently possess a rapidly transporting glucose carrier and not a malate/oxaloacetate shuttle and also not an ATP/ADP translocator. The carrier composition at the plasma membrane of cyanelles and at the inner envelope membrane of chloroplasts seems to be totally different.  相似文献   

5.
L. Floener  H. Bothe 《Planta》1982,156(1):78-83
Isolated cyanelles of Cyanophora paradoxa perform photosystem I and II dependent Hill reactions. The photosynthetic electron transport of the cyanelles does not show special features uncommon in cyanobacteria or chloroplasts of red algae. A preparation of cyanelles performs photosynthetic O2-evolution with approximately 1/3 of the rate of intact Cyanophora, in only, however, the first three minutes of the experiment. All attempts to stabilize the CO2-fixation activity of isolated cyanelles failed. Isolated cyanelles do not perform KCN-sensitive O2-uptake, indicating that respiratory cytochrome oxidase is lacking in cyanelles. O2-consumption by crude extracts from Cyanophora is inhibited by KCN when N-tetramethyl-p-phenylenediamine/ascorbate or NADH but not NADPH are supplied as the electron donors in contrast to the situation in cyanobacteria. These findings suggest that cyanelles do not respire. It is concluded that cyanelles are not so much related to cyanobacteria as formerly believed, but share many properties with chloroplasts of eukaryotic cells.Abbreviations Chl chlorophyll - DCPIP dichlorophenol-indophenol - TMPD N-tetramethyl-p-phenylenediamine To whom correspondence should be addressed  相似文献   

6.
The cyanelles of the glaucocystophyte alga Cyanophora paradoxa resemble endosymbiotic cyanobacteria in morphology, pigmentation and, especially, in the presence of a peptidoglycan wall situated between the inner and outer envelope membranes. However, it is now clear that cyanelles in fact are primitive plastids. Phylogenetic analyses of plastid, nuclear and mitochondrial genes support a single primary endosymbiotic event. In this scenario cyanelles and all other plastid types are derived from an ancestral photosynthetic organelle combining the high plastid gene content of the Porphyra purpurea rhodoplast and the peptidoglycan wall of glaucocystophyte cyanelles. This means that the import apparatus of all primary plastids should be homologous. Indeed, heterologous in vitro import can now be shown in both directions, provided a phenylalanine residue essential for cyanelle import is engineered into the N-terminal part of chloroplast transit peptides. The cyanelle and likely also the rhodoplast import apparatus can be envisaged as prototypes with a single receptor showing this requirement for N-terminal phenylalanine. In chloroplasts, multiple receptors with overlapping and less stringent specificities have evolved explaining the efficient heterologous import of native precursors from C. paradoxa. With respect to conservative sorting in cyanelles, both the Sec and Tat pathways could be demonstrated. Another cyanobacterial feature, the dual location of the Sec translocase in thylakoid and inner envelope membranes, is also unique to cyanelles. For the first time, protease protection of internalized lumenal proteins could be shown for cyanobacteria-like, phycobilisome-bearing thylakoid membranes after import into isolated cyanelles.  相似文献   

7.
Summary The nucleotide sequences of the ribosomal protein genesrps18, rps19, rpl2, rpl33, and partial sequence ofrpl22 from cyanelles, the photosynthetic organelles of the protistCyanophora paradoxa, have been determined. These genes form two clusters oriented in opposite and divergent directions. One cluster contains therpl33 andrps18 genes; the other contains therpl2, rps19, andrpl22 genes, in that order. Phylogenetic trees were constructed from both the DNA sequences and the deduced protein sequences of cyanelles,Euglena gracilis and land plant chloroplasts, andEscherichia coli, using parsimony or maximum likelihood methods. In addition, a phylogenetic tree was built from a distance matrix comparing the number of nucleotide substitutions per site. The phylogeny inferred from all these methods suggests that cyanelles fall within the chloroplast line of evolution and that the evolutionary distances between cyanelles and land plant chloroplasts are shorter than betweenE. gracilis chloroplasts and land plant chloroplasts.  相似文献   

8.
Glaucocystophyte algae (sensu Kies, Berl. Deutsch. Bot. Ges. 92, 1979) contain plastids (cyanelles) that retain the peptidoglycan wall of the putative cyanobacterial endosymbiont; this and other ultrastructural characters (e.g., unstacked thylakoids, phycobilisomes) have suggested that cyanelles are primitive plastids that may represent undeveloped associations between heterotrophic host cells (i.e., glaucocystophytes) and cyanobacteria. To test the monophyly of glaucocystophyte cyanelles and to determine their evolutionary relationship to other plastids, complete 16S ribosomal RNA sequences were determined for Cyanophora paradoxa, Glaucocystis nostochinearum, Glaucosphaera vacuolata, and Gloeochaete wittrockiana. Plastid rRNAs were analyzed with the maximum-likelihood, maximumparsimony, and neighbor joining methods. The phylogenetic analyses show that the cyanelles of C. paradoxa, G. nostochinearum, and G. wittrockiana form a distinct evolutionary lineage; these cyanelles presumably share a monophyletic origin. The rDNA sequence of G. vacuolata was positioned within the nongreen plastid lineage. This result is consistent with analyses of nuclear-encoded rRNAs that identify G. vacuolata as a rhodophyte and support its removal from the Glaucocystophyta. Results of a global search with the maximumlikelihood method suggest that cyanelles are the first divergence among all plastids; this result is consistent with a single loss of the peptidoglycan wall in plastids after the divergence of the cyanelles. User-defined tree analyses with the maximum-likelihood method indicate, however, that the position of the cyanelles is not stable within the rRNA phylogenies. Both maximumparsimony and neighbor-joining analyses showed a close evolutionary relationship between cyanelles and nongreen plastids; these phylogenetic methods were sensitive to inclusion/exclusion of the G. wittrockiana cyanelle sequence. Base compositional bias within the G. wittrockiana 16S rRNA may explain this result. Taken together the phylogenetic analyses are interpreted as supporting a near-simultaneous radiation of cyanelles and green and nongreen plastids; these organelles are all rooted within the cyanobacteria.Correspondence to: D. Bhattacharya  相似文献   

9.
A cyanobacterium (WPI-I) and cyanelles of Glaucocystis nostochinearum Itz, have been introduced into epidermal cells of Allium cepa L. cv. Downing Yellow Globe bulb scales by microinjection. Uptake of cyanelles into protoplasts of Allium cepa and Daucus carota L. cv. Imperator 58 has also been induced with polyethylene glycol. Protoplasts were cultured until new cell walls were synthesized.  相似文献   

10.
S. Marten  P. Brandt  W. Wiessner 《Planta》1982,155(2):190-192
The prokaryote Cyanocyta korschikoffiana was isolated from the eukaryote Cyanophora paradoxa. The synthesis of several thylakoid proteins in these cyanelles is influenced by light and darkness and is sensitive to cycloheximide, the inhibitor of the eukaryotic host's translation. The possibility of a direct coordination between the translations of the host and of the cyanelles is discussed.Abbreviations CHM treatment addition of cycloheximide - CPN chlorophylline - PBN phycobiline - SDS-PAGE sodium-dodecylsulphate-polyacrylamide gelelectrophoresis  相似文献   

11.
Most euglyphids, a group of testate amoebae, have a shell that is constructed from numerous siliceous scales. The euglyphid Paulinella chromatophora has photosynthetic organelles (termed cyanelles or chromatophores), allowing it to be cultivated more easily than other euglyphids. Like other euglyphids, P. chromatophora has a siliceous shell made of brick‐like scales. These scales are varied in size and shape. How a P. chromatophora cell makes this shell is still a mystery. We examined shell construction process in P. chromatophora in detail using time‐lapse video microscopy. The new shell was constructed by a specialized pseudopodium that laid out each scale into correct position, one scale at a time. The present study inferred that the sequence of scale production and secretion was well controlled.  相似文献   

12.
The earliest stage of cell division in bacteria is the formation of a Z ring, composed of a polymer of the FtsZ protein, at the division site. Z rings appear to be synthesized in a bi‐directional manner from a nucleation site (NS) located on the inside of the cytoplasmic membrane. It is the utilization of a NS specifically at the site of septum formation that determines where and when division will occur. However, a Z ring can be made to form at positions other than at the division site. How does a cell regulate utilization of a NS at the correct location and at the right time? In rod‐shaped bacteria such as Escherichia coli and Bacillus subtilis, two factors involved in this regulation are the Min system and nucleoid occlusion. It is suggested that in B. subtilis, the main role of the Min proteins is to inhibit division at the nucleoid‐free cell poles. In E. coli it is currently not clear whether the Min system can direct a Z ring to the division site at mid‐cell or whether its main role is to ensure that division inhibition occurs away from mid‐cell, a role analogous to that in B. subtilis. While the nucleoid negatively influences Z‐ring formation in its vicinity in these rod‐shaped organisms, the exact relationship between nucleoid occlusion and the ability to form a mid‐cell Z ring is unresolved. Recent evidence suggests that in B. subtilis and Caulobacter crescentus, utilization of the NS at the division site is intimately linked to the progress of a round of chromosome replication and this may form the basis of achieving co‐ordination between chromosome replication and cell division.  相似文献   

13.
Glaucocystis nostochinearum is a eukaryotic organism with chloroplasts that have usually been assumed to be cyanelles — i.e., endosymbiotic cyanobacteria. Previous attempts by others to support this assumption by demonstrating the presence of a limiting peptidoglycan envelope have been unsuccessful.In the present study disruption of intact Glaucocystis cells with a glass tissue homogenizer permitted the isolation of the uniquely-shaped cyanelles. That these cyanelles were lunited by a peptidoglycan-containing envelope was concluted from the following evidence: (1) stability of isolated cyanelles in distilled water as determined by the preservation of their intactness and peculiar asymmetrical shape; (2) lysozyme sensitivity as demonstrated by lysis of isolated cyanelles when treated with low concentrations of lysozyme; (3) inhibition of the lysozyme-mediated lysis by N-acetyl-glucosamine-2, a known competitive inhibitor of lysozyme, (4) visualization of a thin, electron dense layer between the two limiting membranes around the cyanelle, and (5) isolation and identification of the peptidoglycan-specific amino acid, diaminopimelic acid, from the cyanelles.  相似文献   

14.
Mycobacteria lack several of the components that are essential in model systems as Escherichia coli or Bacillus subtilis for the formation of the divisome, a ring‐like structure assembling at the division site to initiate bacterial cytokinesis. Divisome assembly depends on the correct placement of the FtsZ protein into a structure called the Z ring. Notably, early division proteins that assist in the localisation of the Z ring to the cytoplasmic membrane and modulate its structure are missing in the so far known mycobacterial cell division machinery. To find mycobacterium‐relevant components of the divisome that might act at the level of FtsZ, a yeast two‐hybrid screening was performed with FtsZ from Mycobacterium tuberculosis. We identified the SepF homolog as a new interaction partner of mycobacterial FtsZ. Depending on the presence of FtsZ, SepF‐GFP fusions localised in ring‐like structures at potential division sites. Alteration of SepF levels in Mycobacterium smegmatis led to filamentous cells, indicating a division defect. Depletion of SepF resulted in a complete block of division. The sepF gene is highly conserved in the M. tuberculosis complex members. We therefore propose that SepF is an essential part of the core division machinery in the genus Mycobacterium.  相似文献   

15.
Ludwig Kies 《Protoplasma》1974,80(1-3):69-89
Zusammenfassung Die Feinstruktur der Cyanellen vonPaulinella chromatophora sowie die Bildung und Struktur der Kieselschuppen, die das Gehäuse dieser Thekamöbe aufbauen, wurden untersucht.Die beiden wurstförmigen Cyanellen besitzen eine 6–13 nm dicke Wandschicht. Sie liegen eingeschlossen in Vesikeln im Cytoplasma des Wirtes. Das Chromatoplasma der Cyanelle enthält 15–20 konzentrisch angeordnete Thylakoide, Plastoglobuli und Phycobilisomen. Das Centroplasma enthält polyedrische Körper.Das Gehäuse der Thekamöbe besteht aus verkieselten rechteckigen Schuppen, die sehr regelmäßig zum Gehäuse zusammengefügt sind. Die Schuppen haben eine komplizierte Feinstruktur. Sie entstehen, vielleicht unter Mitwirkung von Mikrotubuli, vor der Zellteilung in Vesikeln, die wahrscheinlich aus Zisternen des einzigen Dictyosomes der Thekamöbe hervorgehen. Dieses Dictyosom liegt dem Zellkern am aboralen Pol derPaulinella an. Hexagonale Körper (Virionen?) werden aus dem Zellkern und dem Cytoplasma des Wirtes beschrieben.
Electron microscopical investigations onPaulinella chromatophora Lauterborn, a thecamoeba containing blue-green endosymbionts (cyanelles)
Summary The ultrastructure of the sausage-shaped cyanelles and the ultrastructure and formation of the thecal scales ofPaulinella chromatophora were investigated. The cyanelles have a 6–13 nm thick wall. They are lying within vesicles in the cytoplasma of the host. The chromatoplasma has 15–20 concentrically arranged thylakoids, plastoglobuli and phycobilisomes. The centroplasma contains polyhedral bodies. The theca ofPaulinella chromatophora is composed of rectangular scales arranged in a very regular manner. These scales exhibit a very complex ultrastructure. They are produced prior to cell division in large vesicles probably derived from cisternae of the only dictyosom which is located close to the nucleus in the aboral part of the thecamoeba. Microtubules may play a role in the morphogenesis of these scales.Hexagonal particles (virions?) are described from the nucleus and the cytoplasma of some of the thecamoebae.


FräuleinBrigitte Schendel danke ich für ihre gute technische Mitarbeit, der Deutschen Forschungsgemeinschaft danke ich für Sachbeihilfe.  相似文献   

16.
Cyanophyte-like prokaryotes are widely presumed to be the progenitors of eukaryote plastids. A few rare protistan species bearing cyanophyte-like cyanelles may represent intermediate stages in the evolution of true organelles. Cyanophyte DNA disposition in the cell, so far as is known from electron microscopy, seems uniform within the group and distinctly different from the several known arrangements of DNA in plastids. Therefore a survey of representative cyanophytes and protistan cyanelles was undertaken to determine whether forms reminiscent of plastids could be found. DNA-specific fluorochromes were utilized, along with epifluorescent microscopy, to study the DNA arrangement in situ in whole cells. Only the endospore (baeocyte)-forming Cyanophyta contained more than one, centrally located DNA skein per cell, and then only for the period just preceding visible baeocyte formation. Such forms might, with modification, presage the “scattered nucleoid” DNA disposition found in plastids of several groups, including Rhodophytes, Cryptophytes, Chlorophytes and higher plants. The DNA arrangement in cyanelles of two protists, Cyanophora and Glaucocystis, appear different from each other and possibly related to, respectively, the cyanophytes Gloeobacter and Synechococcus. Cyanelles of the third protist, Glaucosphaera, like the cells of the unique prokaryote Prochloron, appear to have multiple sites of DNA, somewhat similar to those of the “scattered nucleoid” line of plastid evolution. No obvious precursor of the “ring nucleoid” or other types of plastid DNA conformation was found.  相似文献   

17.
The cyanelles of Cyanophora paradoxa, plastids surrounded by a peptidoglycan wall, are considered as a surviving example for an early stage of plastid evolution from endosymbiotic cyanobacteria. We highlight the model character of the system by focusing on three aspects: “organelle wall” structure, plastid genome organization, and protein translocation.

The biosynthetic pathway for cyanelle peptidoglycan appears to be analogous to that in Escherichia coli. Also, the basic structure of this peculiar organelle wall corresponds to that of the E. coli sacculus, with one notable exception: the C-1 carboxyl group of the D-isoglutamyl residue is partially amidated with N-acetylputrescine. Cyanelles harbor on their completely sequenced 135.6-kb genome genes for approximately 150 polypeptides, many of which are nucleus encoded in higher plants. Nevertheless, there are striking parallels in genome organization between cyanelles (and other primitive plastids) and higher plant chloroplasts. The transit sequences of nucleus-encoded cyanelle preproteins resemble stroma targeting peptides of higher plant chloroplast precursors. Heterologous import of precursors from C. paradoxa into isolated pea chloroplasts is possible and vice versa. Cyanelles are considered to represent a very early, diverging branch of plastid evolution and are derived from the semiautonomous endosymbiont that had already abandoned about 90% of its genetic information but still retained its prokaryotic wall. Recent data on the molecular biology of cyanelles and rhodoplasts are consistent with the assumption of a primary endosymbiotic event that was not only monophyletic with respect to the cyanobacterial invader, but also singular.

Cyanophora paradoxa is the best-investigated member of the glaucocystophyceae, phototrophic protists containing cyanelles, that is, plastids stabilized by a peptidoglycan-containing envelope. The classification of this group, comprising only eight (mostly monotypic) genera, is also based on parallels in morphology and organization of the “host cells” (Kies, 1992). Recently, this was corroborated by 16S and 18S rRNA-based phylogenetic analysis (Helmchen et al., 1995; Bhattacharya et al, 1995). Apart from C. paradoxa, only Glaucocystis nostochinearum can be grown at a reasonable rate. Thus, biochemical and molecular genetic data are mostly available for C. paradoxa and more precisely for the isolate 555UTEX (Pringsheim) that is kept in the major culture collections of algae. Biochemical work done on C. paradoxa and the sequencing of individual cyanelle genes have been described in several recent reviews (Schenk, 1992; Löffelhardt and Bohnert, 1994a,b). Here we discuss three topics: the cyanelle wall, aspects deduced from the complete cyanelle genome sequence, and protein translocation into and within cyanelles.  相似文献   


18.
Accurate positioning of the division site is essential to generate appropriately sized daughter cells with the correct chromosome number. In bacteria, division generally depends on assembly of the tubulin homologue FtsZ into the Z‐ring at the division site. Here, we show that lack of the ParA‐like protein PomZ in Myxococcus xanthus resulted in division defects with the formation of chromosome‐free minicells and filamentous cells. Lack of PomZ also caused reduced formation of Z‐rings and incorrect positioning of the few Z‐rings formed. PomZ localization is cell cycle regulated, and PomZ accumulates at the division site at midcell after chromosome segregation but prior to FtsZ as well as in the absence of FtsZ. FtsZ displayed cooperative GTP hydrolysis in vitro but did not form detectable filaments in vitro. PomZ interacted with FtsZ in M. xanthus cell extracts. These data show that PomZ is important for Z‐ring formation and is a spatial regulator of Z‐ring formation and cell division. The cell cycle‐dependent localization of PomZ at midcell provides a mechanism for coupling cell cycle progression and Z‐ring formation. Moreover, the data suggest that PomZ is part of a system that recruits FtsZ to midcell, thereby, restricting Z‐ring formation to this position.  相似文献   

19.
In flowering plants, male gametes arise via meiosis of diploid pollen mother cells followed by two rounds of mitotic division. Haploid microspores undergo polar nuclear migration and asymmetric division at pollen mitosis I to segregate the male germline, followed by division of the germ cell to generate a pair of sperm cells. We previously reported two gemini pollen (gem) mutants that produced twin‐celled pollen arising from polarity and cytokinesis defects at pollen mitosis I in Arabidopsis. Here, we report an independent mutant, gem3, with a similar division phenotype and severe genetic transmission defects through pollen. Cytological analyses revealed that gem3 disrupts cell division during male meiosis, at pollen mitosis I and during female gametophyte development. We show that gem3 is a hypomorphic allele (aug6‐1) of AUGMIN subunit 6, encoding a conserved component in the augmin complex, which mediates microtubule (MT)‐dependent MT nucleation in acentrosomal cells. We show that MT arrays are disturbed in gem3/aug6‐1 during male meiosis and pollen mitosis I using fluorescent MT‐markers. Our results demonstrate a broad role for the augmin complex in MT organization during sexual reproduction, and highlight gem3/aug6‐1 mutants as a valuable tool for the investigation of augmin‐dependent MT nucleation and dynamics in plant cells.  相似文献   

20.
The cyanelles of Glaucocystis nostochinearum were isolated after disruption of the algal cells by sonication. The aqueous extracts from these cyanelles were subjected to molecular filtration and electrophoresis on polyacrylamide gels. By comparison with extracts of a unicellular Chroococcalian alga, Anacystis nidulans treated in the same way only about half the number of protein bands were found. The proteins were water-soluble with a MW in excess of 10 000. Three protein-pigment complexes were detected in Anacystis. Two of these (phycoerythrin and phycocyanin) were not present in the cyanelles of Glaucocystis. Three branching glucosyltransferase isozymes capable of converting amylopectin to phytoglycogen were present in the Cyanophyte; only two branching isozymes with typical Chlorophycean ‘Q’ activity were present in the cyanelles of Glaucocystis. It seems improbable that the cyanelles of this alga are endosymbiotic blue-green algae; rather, they may represent some intermediate stage in the development of the chloroplast of green algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号