首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
昆虫病原线虫感染寄主行为研究进展   总被引:3,自引:2,他引:1  
李慧萍  韩日畴 《昆虫知识》2007,44(5):637-642
昆虫病原线虫斯氏属Steinernema和异小杆属Heterorhabditids线虫是新型的生物杀虫剂。其感染期幼虫是惟一能够侵染寄主昆虫的虫态。这类线虫感染寄主的行为分为寻找寄主、识别寄主和侵染寄主。文章综述昆虫病原线虫感染寄主昆虫的行为以及在感染寄主过程中的影响因素。  相似文献   

2.
昆虫病原线虫感染期幼虫恢复发育的研究进展   总被引:3,自引:0,他引:3  
昆虫病原线虫的感染期幼虫(infective juvenile,IJ)是其一生中唯一具有侵染能力和可自由生活于寄主体外的虫态,一般滞育不取食,体外包裹着已经蜕去的第2龄幼虫的表皮,对外界不良环境的耐受能力强,又称为耐受态幼虫(dauer juvenile,DJ),类似于秀丽隐杆线虫Caenorhabditis elegans的耐受态幼虫。在食物信息的诱导下,感染期幼虫脱鞘,释放出共生细菌,恢复取食并继续发育,这个过程称为感染期幼虫的恢复(IJ recovery)。这个过程是发生在寄生性线虫入侵寄主时的发育过程,对于成功寄生是必要的,在线虫的产业化培养中发挥着重要作用,感染期线虫的恢复率及其发育的同步性直接影响了线虫的产量。本文概述了感染期线虫的恢复发育过程,并对诱导感染期线虫恢复发育的食物信号(food signals)、恢复的影响因素及其检测手段进行了综述,同时讨论了未来的研究方向。  相似文献   

3.
The entomopathogenic nematodes Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema glaseri, and Steinernema feltiae were exposed to freezing while inside their hosts. Survival was assessed by observing live and dead nematodes inside cadavers and by counting the infective juveniles (IJs) that emerged after freezing. We (1) measured the effects of 24h of freezing at different times throughout the course of an infection, (2) determined the duration of freezing entomopathogenic nematodes could survive, (3) determined species differences in freezing survival. Highest stage-specific survival was IJs for S. carpocapsae, and adults for H. bacteriophora. When cadavers were frozen two or three days after infection, few IJs emerged from them. Freezing between five and seven days after infection had no negative effect on IJ production. No decrease in IJ production was measured for H. bacteriophora after freezing. H. bacteriophora also showed improved survival inside versus outside their host when exposed to freezing.  相似文献   

4.
More than a quarter of the world's population is infected with nematode parasites, and more than a hundred species of nematodes are parasites of humans [1-3]. Despite extensive morbidity and mortality caused by nematode parasites, the biological mechanisms of host-parasite interactions are poorly understood, largely because of the lack of genetically tractable model systems. We have demonstrated that the insect parasitic nematode Heterorhabditis bacteriophora, its bacterial symbiont Photorhabdus luminescens, and the fruit fly Drosophila melanogaster constitute a tripartite model for nematode parasitism and parasitic infection. We find that infective juveniles (IJs) of Heterorhabditis, which contain Photorhabdus in their gut, can infect and kill Drosophila larvae. We show that infection activates an immune response in Drosophila that results in the temporally dynamic expression of a subset of antimicrobial peptide (AMP) genes, and that this immune response is induced specifically by Photorhabdus. We also investigated the cellular and molecular mechanisms underlying IJ recovery, the developmental process that occurs in parasitic nematodes upon host invasion and that is necessary for successful parasitism. We find that the chemosensory neurons and signaling pathways that control dauer recovery in Caenorhabditis elegans also control IJ recovery in Heterorhabditis, suggesting conservation of these developmental processes across free-living and parasitic nematodes.  相似文献   

5.
Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis and their associated bacteria (Xenorhabdus spp. and Photorhabdus spp., respectively) are lethal parasites of soil dwelling insects. We collected 168 soil samples from five provinces, all located in southern Thailand. Eight strains of EPNs were isolated and identified to species using restriction profiles and sequence analysis. Five of the isolates were identified as Heterorhabditis indica, and one as Heterorhabditis baujardi. Two undescribed Steinernema spp. were also discovered which matched no published sequences and grouped separately from the other DNA restriction profiles. Behavioral tests showed that all Heterorhabditis spp. were cruise foragers, based on their attraction to volatile cues and lack of body-waving and standing behaviors, while the Steinernema isolates were more intermediate in foraging behavior. The infectivity of Thai EPN strains against Galleria mellonella larvae was investigated using sand column bioassays and the LC(50) was calculated based on exposures to nematodes in 24-well plates. The LC(50) results ranged from 1.99-6.95 IJs/insect. Nine centimeter columns of either sandy loam or sandy clay loam were used to determine the nematodes' ability to locate and infect subterranean insects in different soil types. The undescribed Steinernema sp. had the greatest infection rate in both soil types compared to the other Thai isolates and three commercial EPNs (Heterorhabditis bacteriophora, Steinernema glaseri and Steinernema riobrave).  相似文献   

6.
Two spinning disc spray application systems, the Micron Herbaflex and Micron Ulva+, were assessed for their potential for the application of infective juveniles (IJs) of entomopathogenic nematodes (EPNs) against larvae of the diamondback moth (DBM), Plutella xylostella. The effect of initial concentration of IJs on subsequent infection was examined for three species of EPNs: Steinernema sp. (M87), Steinernema sp. (SSL85), and Heterorhabditis sp. Increasing the concentration of IJs generally resulted in a significant increase in both DBM mortality and the mean number of nematodes per larva following spray application with the Micron Herbaflex sprayer. Application with the Micron Ulva+ was examined using two different initial concentration of IJs, which generally resulted in an increase in DBM mortality and intensity of infection. The effect of changing the flow rate to the Ulva+ was also examined. This generally resulted in increased DBM mortality as flow rate was increased but there was little change in the mean number of nematodes per host larva. The effect of addition of a number of adjuvants to the spray solution on subsequent infection showed that DBM mortality by the IJs was not significantly affected but that the mean number of nematodes infecting was significantly enhanced by some of the adjuvants. Desiccation survival studies with IJs of Heterorhabditis sp. following application with both sprayers onto Chinese cabbage leaf discs, with or without the addition of an adjuvant, showed that the survival time of 50% of IJs was over 3 h. Infection of DBM larvae was also assessed following desiccation on Chinese cabbage leaf discs. High levels of infection were attainable, in terms of resultant DBM mortality, for at least 150 min following spray application.  相似文献   

7.
Seven Pakistani strains of entomopathogenic nematodes belonging to the genera Steinernema and Heterorhabditis were tested against last instar and adult stages of the pulse beetle, Callosobruchus chinensis (L.). These nematodes included Steinernema pakistanense Shahina, Anis, Reid and Maqbool (Ham 10 strain); S. asiaticum Anis, Shahina, Reid and Rowe (211 strain); S. abbasi Elawad, Ahmad and Reid (507 strain); S. siamkayai Stock, Somsook and Reid (157 strain); S. feltiae Filipjev (A05 strains); Heterorhabditis bacteriophora Poinar (1743 strain); and H. indica Poinar, Karunakar and David (HAM-64 strain). Activity of all strains was determined at four different nematode densities in Petri dishes and in concrete containers. A significant nematode density effect was detected for all nematode species tested. Overall, Heterorhabditis bacteriophora, S. siamkayai, and S. pakistanense were among those that showed the highest virulence to pulse beetle larvae and adults. For all nematode species, the last larval stage of the pulse beetle seems to be more susceptible than the adult. LC(50) values in Petri dish and concrete containers were 14-340 IJs/larvae and 41-441 IJs/larvae, respectively, and 59-1376 IJs/adult and 170-684/adult, respectively.  相似文献   

8.
In this work, we investigate the investment of entomopathogenic Steinernema nematodes (Rhabditidae) in their symbiotic association with Xenorhabdus bacteria (Enterobacteriaceae). Their life cycle comprises two phases: (1) a free stage in the soil, where infective juveniles (IJs) of the nematode carry bacteria in a digestive vesicle and search for insect hosts, and (2) a parasitic stage into the insect where bacterial multiplication, nematode reproduction, and production of new IJs occur. Previous studies clearly showed benefits to the association for the nematode during the parasitic stage, but preliminary data suggest the existence of costs to the association for the nematode in free stage. IJs deprived from their bacteria indeed survive longer than symbiotic ones. Here we show that those bacteria-linked costs and benefits lead to a trade-off between fitness traits of the symbiotic nematodes. Indeed IJs mortality positively correlates with their parasitic success in the insect host for symbiotic IJs and not for aposymbiotic ones. Moreover mortality and parasitic success both positively correlate with the number of bacteria carried per IJ, indicating that the trade-off is induced by symbiosis. Finally, the trade-off intensity depends on parental effects and, more generally, is greater under restrictive environmental conditions.  相似文献   

9.
The survival and infectivity of infective juveniles (IJs) of three species of entomopathogenic nematodes, Steinernema carpocapsae Weiser, S. arenarium (Artyukhovsky) (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), were determined after exposure to different concentrations (250, 500, 1000 and 2000 ppm) of fipronil, an insecticide acting on the GABA receptors to block the chloride channel. Heterorhabditis bacteriophora was very tolerant to all concentrations of fipronil, with the highest mortality of 17% being observed at 2000 ppm of fipronil after 72 h exposure. Steinernema carpocapsae showed a similar response, with the highest mortality of 11.25% of IJs being observed after 72 h exposure to 2000 ppm of fipronil. Steinernema arenarium was, however, more sensitive to fipronil, and at 2000 ppm mortality rates of 94.6% and 100% were observed after 24 and 72 h, respectively. Fipronil had negligible effects on the infectivity of the three nematode species tested. The IJs which survive exposure to all concentrations of fipronil tested can infect and reproduce in Galleria larvae. The moderate effects on entomopathogenic nematodes of a lower fipronil concentration (250 ppm) and the field rates (12-60 ppm) of fipronil used as insecticide, suggest that direct mixing of entomopathogenic nematodes and fipronil at field rates is a viable integrated pest management option.  相似文献   

10.
Nonfeeding infective juvenile (IJ) entomopathogenic nematodes (EPNs) are used as biological agents to control soil-dwelling insects, but poor storage stability remains an obstacle to their widespread acceptance by distributors and growers as well as a frustration to researchers. Age is one factor contributing to variability in EPN efficacy. We hypothesized that age effects on the infectiousness of IJs would be evident within the length of time necessary for IJs to infect a host. The penetration behavior of "young" (<1-wk-old) and "old" (2- to 4-wk-old) Heterorhabditis bacteriophora (GPS 11 strain), Steinernema carpocapsae (All strain), and Steinernema feltiae (UK strain) IJs was evaluated during 5 "exposure periods" to the larvae of the wax moth, Galleria mellonella. Individual larvae were exposed to nematode-infested soil for exposure periods of 4, 8, 16, 32, and 64 hr. Cadavers were dissected after 72 hr, and the IJs that penetrated the larvae were counted. Larval mortality did not differ significantly between 72- and 144-hr "observation periods," or points at which larval mortality was noted, for any age class or species. However, age and species effects were noted in G. mellonella mortality and nematode penetration during shorter time periods. Initial mortality caused by S. carpocapsae and H. bacteriophora IJs declined with nematode age but increased with S. feltiae IJ age. Young S. carpocapsae IJs penetrated G. mellonella larvae at higher rates than old members of the species (27-45% vs. 1-4%). Conversely, old S. feltiae IJs had higher penetration rates than young IJs (approximately 8 to 57% vs. 4 to approximately 31%), whereas H. bacteriophora IJs had very low penetration rates regardless of age (3-5.6%). Our results show that the effect of age on IJ infectiousness can be detected in IJs aged only 2 wk by a 4-hr exposure period to G. mellonella. These results have important implications for storage and application of EPNs and suggest the possibility of shortening the time required to detect nematodes in the soil.  相似文献   

11.
A 3-year study was conducted in a Pinus halepensis reforestation of Apulia Region (Southern Italy) injecting IJs (infective juveniles) of Steinernema feltiae , S. carpocapsae and Heterorhabditis bacteriophora in aqueous and gel suspensions (Idrosorb SR 2002 [Nigem ® ], and Compex) into the nests of Thaumetopoea pityocampa caterpillar. This study showed that the gel suspensions do not percolate and that slow release of water from the gels allowed nematodes to survive and complete their life cycle in the host. Results demonstrate the feasibility of reducing overwintering larval populations by injecting gel suspension of S. feltiae . We found no negative effects on the endoparasite Phryxe caudata .  相似文献   

12.
Movement behavior of foraging animals is critical to the determination of their spatial ecology and success in exploiting resources. Individuals sometimes gain advantages by foraging in groups to increase their efficiency in garnering these resources. Group movement behavior has been studied in various vertebrates. In this study we explored the propensity for innate group movement behavior among insect parasitic nematodes. Given that entomopathogenic nematodes benefit from group attack and infection, we hypothesised that the populations would tend to move in aggregate in the absence of extrinsic cues. Movement patterns of entomopathogenic nematodes in sand were investigated when nematodes were applied to a specific locus or when the nematodes emerged naturally from infected insect hosts; six nematode species in two genera were tested (Heterorhabditis bacteriophora, Heterorhabditis indica, Steinernema carpocapsae, Steinernema feltiae, Steinernema glaseri and Steinernema riobrave). Nematodes were applied in aqueous suspension via filter paper discs or in infected insect host cadavers (to mimic emergence in nature). We discovered that nematode dispersal resulted in an aggregated pattern rather than a random or uniform distribution; the only exception was S. glaseri when emerging directly from infected hosts. The group movement may have been continuous from the point of origin, or it may have been triggered by a propensity to aggregate after a short period of random movement. To our knowledge, this is the first report of group movement behavior in parasitic nematodes in the absence of external stimuli (e.g., without an insect or other apparent biotic or abiotic cue). These findings have implications for nematode spatial distribution and suggest that group behavior is involved in nematode foraging.  相似文献   

13.
In 1992 and 1993, the field effectiveness of Heterorhabditis sp. (NL-HL81 strain), H. bacteriophora (HP 88 strain) and Steinernema carpocapsae ('All' strain) against the larvae of Temnorhinus mendicus Gyll. was assessed. The biological tests were compared with two chemical treatments (cypermethrin or deltamethrin) and one untreated control. In 1992, S. carpocapsae gave better results than Heterorhabditis sp. in reducing the percentage of infested roots, as compared with the untreated sample and the chemical one; similarly, the irrigated control gave the best results. In 1993, three concentrations of entomopathogenic nematodes (EPNs) were tested: 0.250 106 infective juveniles (IJs) m - 2, 0.125 106 IJs m - 2 and 0.075 106 IJs m - 2. The different numbers of EPNs did not give very different results from each other; however, H. bacteriophora at 0.075 106 IJs m - 2 was the least effective. In general, cypermethrin was more effective than deltamethrin, but one treatment with EPNs followed by irrigation was always more effective than two chemical applications.  相似文献   

14.
In laboratory bioassays, Steinernema glaseri Steiner, Steinernema riobrave Cabanillas, Poinar & Raulston, Heterorhabditis bacteriophora Poinar, and Heterorhabditis marelatus Liu & Berry were capable of infecting and killing the bark scorpion, Centruroides exilicauda (Wood). Steinernema feltiae (Filipjev) and Steinernema carpocapsae (Weiser) failed to infect C. exilicauda at 22 degrees C. S. glaseri, H. marelatus, and H. bacteriophora caused significant mortality at 22 degrees C, indicating the potential role of these parasites as a biocontrol option. Efficacy of S. glaseri and H. bacteriophora was reduced in an assay conducted at 25 degrees C. Only S. glaseri was able to reproduce in the target host. Dissection of scorpions at the end of the experimental periods revealed inactive juvenile S. riobrave, H. marelatus, and H. bacteriophora nematodes. Both mermithid and oxyurid nematodes have been documented as nematode parasites of scorpions, but rhabditids have not been reported until now. Field studies are warranted to assess the usefulness of entomopathogenic nematodes as biocontrol agents of bark scorpions.  相似文献   

15.
Sugar beet, Beta vulgaris L. is a strategic crop of sugar industry in Egypt. It is threatened by several insect pests among most important of them is the beet fly Pegomyia mixta. This work deals with the biological control of this insect using four entomopathogenic nematodes (EPNs). The nematodes included Steinernema carpocapsae S2, Steinernema feltiae, Heterorhabditis bacteriophora (HB1-3) and Heterorhabditis bacteriophora S1. Daily mortality of larvae and pupae of P. mixta were recorded after treatment with serial concentrations (500, 1000, 2000 and 4000 infective juveniles (IJs)/ml) of each of four studied EPNs. In the laboratory all tested nematodes killed the larvae inside their mines in the sugar beet leaves and developed in their bodies in different extends. They also killed the insect pupae in the soil and developed in their bodies. Young larvae were more susceptible than old ones. New pupae were more susceptible than old ones. In the field a single spray of S. feltiae or H. bacteriophora caused 81.3 or 75.9% reduction in the larval population of the in sugar beet leaves.  相似文献   

16.
Entomopathogenic nematodes survive in the soil as stress-resistant infective juveniles that seek out and infect insect hosts. Upon sensing internal host cues, the infective juveniles regurgitate bacterial pathogens from their gut that ultimately kill the host. Inside the host, the nematode develops into a reproductive adult and multiplies until unknown cues trigger the accumulation of infective juveniles. Here, we show that the entomopathogenic nematode Heterorhabditis bacteriophora uses a small-molecule pheromone to control infective juvenile development. The pheromone is structurally related to the dauer pheromone ascarosides that the free-living nematode Caenorhabditis elegans uses to control its development. However, none of the C. elegans ascarosides are effective in H. bacteriophora, suggesting that there is a high degree of species specificity. Our report is the first to show that ascarosides are important regulators of development in a parasitic nematode species. An understanding of chemical signaling in parasitic nematodes may enable the development of chemical tools to control these species.  相似文献   

17.
Larvae of Pseudaletia unipuncta are moderately susceptible to infections caused by entomopathogenic nematodes, being a desirable host to study pathogenic processes caused by Heterorhabditis bacteriophora, Steinernema carpocapsae, and Steinernema glaseri and their associated bacteria. The ability of the infective stage of these nematodes to invade hosts is quite different. S. carpocapsae invades the highest number of insects and presents the highest penetration rate, followed by H. bacteriophora. Regression analysis between the number of insects parasitized and the number of IJs counted per insect, over time, showed a high correlation for S. carpocapsae whereas for H. bacteriophora it was low. Dose-response was most evident at a concentration below 100 IJs per insect on H. bacteriophora, whereas on S. carpocapsae it was found for doses ranging from 100 to 2,000 IJs. Student's t test analysis of dose-response showed parallel, yet unequal, slopes for both strains of H. bacteriophora, whereas distinct regressions were obtained for S. carpocapsae and S. glaseri, thus, evidencing each species develop a distinct pathogenic process. Insects injected with Photorhabdus luminescens died within 50 h after injection, whereas those treated with X. nematophila died much later. Moreover, the mortality in insects exposed to H. bacteriophora complex and injected with P. luminescens was close, but insects injected with bacteria died faster. Insect mortality in treatments with complexes S. carpocapsae and S. glaseri was significantly higher than that which was observed in insects injected with symbiotic bacteria.  相似文献   

18.
Agar plate assays were used to assess the effect of density, incubation time and age of nematodes and the presence of insect hosts on the dispersal of infective juveniles (IJs) of Heterorhabditis megidis (strain NLH-E87.3). IJs dispersed faster and further at high densities than at low densities. Dispersal was also influenced by the age of the IJs. Individuals stored for a period of 1.5 and 4.5 weeks showed to be more active than those stored for 2.5 and 3.5 weeks. The presence of a host insect enhanced the dispersion of nematodes. The increasing in the incubation period showed that IJs responded positively to host cues from Galleria mellonella but poorly to cues from Otiorhynchus sulcatus larvae.  相似文献   

19.
Predation of the entomopathogenic nematode, Steinernema feltiae (Rhabditida: Steinernematidae), by Sancassania sp. (Acari: Acaridae) isolated from field-collected scarab larvae was examined under laboratory conditions. Adult female mites consumed more than 80% of the infective juvenile (IJ) stage of S. feltiae within 24 h. When S. feltiae IJs were exposed to the mites for 24 h and then exposed to Galleria mellonella (Lepidoptera: Pyralidae) larvae, the number of nematodes penetrating into the larvae was significantly lower compared to S. feltiae IJs that were not exposed to mites (control). Soil type significantly affected the predation rate of IJs by the mites. Mites preyed more on nematodes in sandy soil than in loamy soil. We also observed that the mites consumed more S. feltiae IJs than Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae). No phoretic relationship was observed between mites and nematodes and the nematodes did not infect the mites.  相似文献   

20.
Entomopathogenic nematodes cannot be considered only as parasitic organisms. With dead Galleria mellonella larvae, we demonstrated that these nematodes use scavenging as an alternative survival strategy. We consider scavenging as the ability of entomopathogenic nematodes to penetrate, develop and produce offspring in insects which have been killed by causes other than the nematode-bacteria complex. Six Steinernema and two Heterorhabditis species scavenged but there were differences among them in terms of frequency of colonisation and in the time after death of G. mellonella larvae that cadavers were penetrated. The extremes of this behaviour were represented by Steinernema glaseri which was able to colonise cadavers which had been freeze-killed 240 h earlier and Heterorhabditis indica which only colonised cadavers which had been killed up to 72 h earlier. Also, using an olfactometer, we demonstrated that entomopathogenic nematodes were attracted to G. mellonella cadavers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号