首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pedigree analysis of plasmid segregation in yeast   总被引:71,自引:0,他引:71  
A W Murray  J W Szostak 《Cell》1983,34(3):961-970
We have used pedigree analysis to investigate the mitotic segregation of circular and linear DNA plasmids in Saccharomyces cerevisae. Circular ARS plasmids, which bear putative chromosomal replication origins, have a high segregation frequency and a strong bias to segregate to the mother cell at mitosis. The segregation bias explains how the fraction of plasmid-bearing cells can be small despite the high average copy number of circular ARS plasmids. Linear ARS plasmids do not show strong segregation bias, nor does the 2 mu ori-containing plasmid YEp 13, when it is present in strains containing intact 2 mu circles. In the absence of endogenous 2 mu circles, YEp 13 behaves like an ARS plasmid, showing a strong maternal segregation bias. The presence of a centromere on circular ARS plasmids eliminates segregation bias. We discuss a model for plasmid segregation, which explains these findings and the possible biological significance of mother-daughter segregation bias.  相似文献   

2.
Telomere repeat sequences (TRSs) can dramatically improve the segregation of unstable circular autonomously replicating sequence (ARS) plasmids in Saccharomyces cerevisiae. Deletion analysis demonstrated that yeast TRSs, which conform to the general sequence (C(1-3)A)n, are able to stabilize circular ARS plasmids. A number of TRS clones of different primary sequence and C(1-3)A tract length confer the plasmid stabilization phenotype. TRS sequences do not appear to improve plasmid replication efficiency, as determined by plasmid copy number analysis and functional assays for ARS activity. Pedigree analysis confirms that TRS-containing plasmids are missegregated at low frequency and that missegregated TRS-containing plasmids, like ARS plasmids, are preferentially retained by the mother cell. Plasmids stabilized by TRSs have properties that distinguish them from centromere-containing plasmids and 2 microns-based recombinant plasmids. Linear ARS plasmids, which include two TRS tracts at their termini, segregate inefficiently, while circular plasmids with one or two TRS tracts segregate efficiently, suggesting that plasmid topology or TRS accessibility interferes with TRS segregation function on linear plasmids. In strains carrying the temperature-sensitive mutant alleles rap1grc4 and rap1-5, TRS plasmids are not stable at the semipermissive temperature, suggesting that RAP1 protein is involved in TRS plasmid stability. In Schizosaccharomyces pombe, an ARS plasmid was stabilized by the addition of S. pombe telomere sequence, suggesting that the ability to improve the segregation of ARS plasmids is a general property of telomere repeats.  相似文献   

3.
Nuclear pore complexes (NPCs) are essential protein assemblies that span the nuclear envelope and establish nuclear–cytoplasmic compartmentalization. We have investigated mechanisms that control NPC number in mother and daughter cells during the asymmetric division of budding yeast. By simultaneously tracking existing NPCs and newly synthesized NPC protomers (nups) through anaphase, we uncovered a pool of the central channel nup Nsp1 that is actively targeted to the bud in association with endoplasmic reticulum. Bud targeting required an intact actin cytoskeleton and the class V myosin, Myo2. Selective inhibition of cytoplasmic Nsp1 or inactivation of Myo2 reduced the inheritance of NPCs in daughter cells, leading to a daughter-specific loss of viability. Our data are consistent with a model in which Nsp1 releases a barrier that otherwise prevents NPC passage through the bud neck. It further supports the finding that NPC inheritance, not de novo NPC assembly, is primarily responsible for controlling NPC number in daughter cells.  相似文献   

4.
Centrosomes comprise a pair of centrioles surrounded by an amorphous network of pericentriolar material (PCM). In certain stem cells, the two centrosomes differ in size, and this appears to be important for asymmetric cell division [1, 2]. In some cases, centrosome asymmetry is linked to centriole age because the older, mother centriole always organizes more PCM than the daughter centriole, thus ensuring that the mother centriole is always retained in the stem cell after cell division [3]. This has raised the possibility that an "immortal" mother centriole may help maintain stem cell fate [4, 5]. It is unclear, however, how centrosome size asymmetry is generated in stem cells. Here we provide compelling evidence that centrosome size asymmetry in Drosophila neuroblasts is generated by the differential regulation of Cnn incorporation into the PCM at mother and daughter centrioles. Shortly after centriole separation, mother and daughter centrioles organize similar amounts of PCM, but Cnn incorporation is then rapidly downregulated at the mother centriole, while it is maintained at the daughter centriole. This ensures that the daughter centriole maintains its PCM and so its position at the apical cortex. Thus, the?daughter centriole, rather than an "immortal" mother centriole, is ultimately retained in these stem cells.  相似文献   

5.
Yeast autonomously replicating sequence (ARS) plasmids exhibit an unusual segregation pattern during mitosis. While the nucleus divides equally into mother and daughter cells, all copies of the ARS plasmid will often remain in the mother cell. A screen was designed to isolate mutations that suppress this segregation bias. A plasmid with a weak ARS (wARS) that displayed an extremely high segregation bias was constructed. When cells were grown under selection for the wARS plasmid, the resulting colonies grew slowly and had abnormal morphology. A spontaneous recessive mutation that restored normal colony morphology was identified. This mutation suppressed plasmid segregation bias, as indicated by the increased stability of the wARS plasmid in the mutant cells even though the plasmid was present at a lower copy number. An ARS1 plasmid was also more stable in mutant cells than in wild-type cells. The wild-type allele for this mutant gene was cloned and identified as POL delta (CDC2). This gene encodes DNA polymerase delta, which is essential for DNA replication. These results indicate that DNA polymerase delta plays some role in causing the segregation bias of ARS plasmids.  相似文献   

6.
Mitochondria are indispensable for normal eukaryotic cell function. As they cannot be synthesized de novo and are self-replicating, mitochondria must be transferred from mother to daughter cells. Studies in the budding yeast Saccharomyces cerevisiae indicate that mitochondria enter the bud immediately after bud emergence, interact with the actin cytoskeleton for linear, polarized movement of mitochondria from mother to bud, but are equally distributed among mother and daughter cells [1] [2] [3]. It is not clear how the mother cell maintains its own supply of mitochondria. Here, we found that mother cells retain mitochondria by immobilization of some mitochondria in the 'retention zone', the base of the mother cell distal to the bud. Retention requires the actin cytoskeleton as mitochondria colocalized with actin cables in the retention zone, and mutations that perturb actin dynamics or actin-mitochondrial interactions produced retention defects. Our results support the model that equal distribution of mitochondria during cell division is a consequence of two actin-dependent processes: movement of some mitochondria into the daughter bud and immobilization of others in the mother cell.  相似文献   

7.
Circular plasmids in yeast carrying only an origin of DNA replication (ARS) exhibit maternal inheritance bias (MIB) and are poorly transmitted from mother to daughter cell during division. A variety of different sequences that overcome MIB have been described, including centromeric sequences (CEN), telomere-associated repeats, silencer sequences and a specific system encoded by the endogenous 2 micron circle plasmid requiring the cis-acting locus STB and the proteins Rep1 and Rep2. In each case, DNA segregation between mother and daughter cells is dependent on DNA-protein interactions. Using plasmids carrying multiple copies of a lac repressor binding sequence, we have localised DNA molecules in the yeast nucleus using a green fluorescent protein (GFP)-lac repressor fusion protein. We compared GFP localised plasmids carrying a centromere sequence with plasmids based on 2 micron circle carrying or lacking the STB sequences required for their segregation. We show that GFP localised plasmid carrying the complete STB locus co-localises with the plasmid proteins Rep1 and Rep2 to discrete chromatin sites. These sites are distinct from both the telomeres and from sites of cohesin binding. Deletion of the region of STB essential for the stability of the plasmid, leads to a loss of plasmid association with chromatin, relocalisation of plasmids towards the nuclear periphery, and a decrease in the Rep1 protein associated with the plasmid. We conclude that specific plasmid localisation is likely to be important in the overcoming of MIB in yeast.  相似文献   

8.
Bardin AJ  Visintin R  Amon A 《Cell》2000,102(1):21-31
Exit from mitosis must not occur prior to partitioning of chromosomes between daughter cells. We find that the GTP binding protein Tem1, a regulator of mitotic exit, is present on the spindle pole body that migrates into the bud during S phase and mitosis. Tem1's exchange factor, Lte1, localizes to the bud. Thus, Tem1 and Lte1 are present in the same cellular compartment (the bud) only after the nucleus enters the bud during nuclear division. We also find that the presence of Tem1 and Lte1 in the bud is required for mitotic exit. Our results suggest that the spatial segregation of Tem1 and Lte1 ensures that exit from mitosis only occurs after the genetic material is partitioned between mother and daughter cell.  相似文献   

9.
The recombinant plasmids containing autonomously replicating sequence (ARS) of yeast rDNA repeat are characterized by a high instability in transformed yeast cells. The instability of chimaric plasmids in yeast may result from improper replication and/or irregular mitotic segregation. To study the replication properties alone we have constructed series of hybrid plasmids containing centromeric DNA (CEN3), a selective marker (leu2) and ARS of rDNA. Each of these plasmids with the functional centromere should exhibit chromosomal i. e. regular type of mitotic segregation. The study of mitotic segregation of constructed plasmids has shown that the ARS rDNA from yeast is distinguished from other ARSs described in literature: ARS1, ARS2, ARS o-micron DNA. 1. The activation of replication of ARS rDNA is accidental, i. e. probability of ARS rDNA in the cell cycle is much less than one. 2. Some nuclear mutations as well as rho- mutation result in the increase of replicative activity of ARS rDNA. In some yeast strains the activity of ARS rDNA can reach the activity of ARS1, i. e. was close to one. The features of ARS rDNA may account for the phenomenon of amplification of rDNA genes.  相似文献   

10.
Zhou C  Slaughter BD  Unruh JR  Eldakak A  Rubinstein B  Li R 《Cell》2011,147(5):1186-1196
During yeast cell division, aggregates of damaged proteins are segregated asymmetrically between the bud and the mother. It is thought that protein aggregates are cleared from the bud via actin cable-based retrograde transport toward the mother and that Bni1p formin regulates this transport. Here, we examined the dynamics of Hsp104-associated protein aggregates by video microscopy, particle tracking, and image correlation analysis. We show that protein aggregates undergo random walk without directional bias. Clearance of heat-induced aggregates from the bud does not depend on formin proteins but occurs mostly through dissolution via Hsp104p chaperon. Aggregates formed naturally in aged cells also exhibit random walk but do not dissolve during observation. Although our data do not disagree with a role for actin or cell polarity in aggregate segregation, modeling suggests that their asymmetric inheritance can be a predictable outcome of aggregates' slow diffusion and the geometry of yeast cells.  相似文献   

11.
During asymmetric cell division, spindle positioning is critical for ensuring the unequal inheritance of polarity factors. In budding yeast, the mother-bud neck determines the cleavage plane and a correct nuclear division between mother and daughter cell requires orientation of the mitotic spindle along the mother-bud axis. A surveillance device called the spindle position/orientation checkpoint (SPOC) oversees this process and delays mitotic exit and cytokinesis until the spindle is properly oriented along the division axis, thus ensuring genome stability. Cytoskeletal proteins called septins form a ring at the bud neck that is essential for cytokinesis. Furthermore, septins and septin-associated proteins are implicated in spindle positioning and SPOC. In this review, we discuss the emerging connections between septins and the SPOC and the role of the mother-bud neck as a signaling platform to couple proper chromosome segregation to cytokinesis.  相似文献   

12.
Asymmetric cell divisions occur repeatedly during plant development, but the mechanisms by which daughter cells are directed to adopt different fates are not well understood [1,2]. Previous studies have demonstrated roles for positional information in specification of daughter cell fates following asymmetric divisions in the embryo [3] and root [4]. Unequally inherited cytoplasmic determinants have also been proposed to specify daughter cell fates after some asymmetric cell divisions in plants [1,2,5], but direct evidence is lacking. Here we investigate the requirements for specification of stomatal subsidiary cell fate in the maize leaf by analyzing four mutants disrupting the asymmetric divisions of subsidiary mother cells (SMCs). We show that subsidiary cell fate does not depend on proper localization of the new cell wall during the SMC division, and is not specified by positional information acting on daughter cells after completion of the division. Instead, our data suggest that specification of subsidiary cell fate depends on polarization of SMCs and on inheritance of the appropriate daughter nucleus. We thus provide evidence of a role for unequal inheritance of an intracellular determinant in specification of cell fate after an asymmetric plant cell division.  相似文献   

13.
In Saccharomyces cerevisiae, the spindle position checkpoint ensures that cells do not exit mitosis until the mitotic spindle moves into the mother/bud neck and thus guarantees that each cell receives one nucleus [1-6]. Mitotic exit is controlled by the small G protein Tem1p. Tem1p and its GTPase activating protein (GAP) Bub2p/Bfa1p are located on the daughter-bound spindle pole body. The GEF Lte1p is located in the bud. This segregation helps keep Tem1p in its inactive GDP state until the spindle enters the neck. However, the checkpoint functions without Lte1p and apparently senses cytoplasmic microtubules in the mother/bud neck [7-9]. To investigate this mechanism, we examined mutants defective for septins, which compose a ring at the neck [10]. We found that the septin mutants sep7Delta and cdc10Delta are defective in the checkpoint. When movement of the spindle into the neck was delayed, mitotic exit occurred, inappropriately leaving both nuclei in the mother. In sep7Delta and cdc10Delta mutants, Lte1p is mislocalized to the mother. In sep7Delta, but not cdc10Delta, mutants, inappropriate mitotic exit depends on Lte1p. These results suggest that septins serve as a diffusion barrier for Lte1p, and that Cdc10p is needed for the septin ring to serve as a scaffold for a putative microtubule sensor.  相似文献   

14.
Spatial coordination between the axis of the spindle and the division plane is critical in asymmetric cell divisions. In the budding yeast S. cerevisiae, orientation of the mitotic spindle responds to two intertwined programs dictating the position of the spindle poles: one providing the blueprint for built-in pole asymmetry, the other sequentially confining microtubule-cortex interactions to the bud and the bud neck. The first program sets a temporal asymmetry to limit astral microtubules to a single pole prior to spindle pole separation. The second enforces this polarity by allowing these early formed microtubules to undergo capture at the bud cell cortex while stopping newly formed microtubules once cortical capture shifts to the bud neck. The remarkable precision of this integrated program results in an invariant pattern of spindle pole inheritance in which the "old" spindle pole is destined to the bud. An additional layer of asymmetry is superimposed to couple successful chromosomal segregation between the mother and the bud with mitotic exit. This is based on the asymmetric localization to the committed daughter-bound pole of signaling components of the mitotic exit network. This system operates irrespective of intrinsic spindle polarity to ensure that it is always the pole translocating into the bud that carries the signal to regulate mitotic exit.  相似文献   

15.
The vacuole of the yeast Saccharomyces cerevisiae was visualized with three unrelated fluorescent dyes: FITC-dextran, quinacrine, and an endogenous fluorophore produced in ade2 yeast. FITC-dextran, which enters cells by endocytosis, had been previously developed as a vital stain for yeast vacuoles. Quinacrine, which diffuses across membranes and accumulates in acidic compartments in mammalian cells, can also be used as a marker for yeast vacuoles. ade2 yeast accumulate an endogenous fluorophore in their vacuoles. Using these stains, yeast were examined for vacuole morphology throughout the cell division cycle. In both the parent cell and the bud, a single vacuole was the most common morphology at every stage. Two or more vacuoles could also be found in the mother cell or in the bud; however, this morphology was not correlated with any stage of the cell division cycle. Even small buds (in early S phase) often contained a small vacuole. By the time the bud was half the diameter of the mother cell, it almost always bore a vacuole. This picture of vacuole division and segregation differs from what is seen with synchronized cultures. In ade2 yeast, the bud usually inherits a substantial portion of its vacuole contents from the mother cell. We propose that vacuolar segregation is accomplished by vesicular traffic between the parent cell and the bud.  相似文献   

16.
The proper spatial and temporal coordination of mitosis and cytokinesis is essential for maintaining genomic integrity. We describe the identification and characterization of the Saccharomyces cerevisiae IBD1 gene, which encodes a novel protein that regulates the proper nuclear division and bud separation. IBD1 was identified by the limited homology to byr4, a dosage-dependent regulator of cytokinesis in Schizosaccharomyces pombe. IBD1 is not an essential gene, and the knock-out cells show no growth defects except for the reduced mating efficiency [1]. However, upon ectopic expression from an inducible promoter, IBD1 is lethal to the cell and leads to abnormal nuclear division and bud separation. In detail, approximately 90% of the IBD1 overexpressing cells arrest at large bud stages with dividing or divided nuclei. In some IBD1 overexpressing cells, spindle elongation and chromosome separation occur within the mother cell, leading to anucleated and binucleate daughter cells. The anucleated cell can not bud, but the binucleate cell proceeds through another cell cycle(s) to produce a cell with multiple nuclei and multiple buds. Observations of the F-actin and chitin rings in the IBD1 overexpressing cells reveal that these cells lose the polarity for bud site selection and growth or attain the hyper-polarity for growth. Consistent with the phenotypes, the IBD1 overexpressing cells contain a broad range of DNA content, from 2 to 4 N or more. A functional Ibd1p-GFP fusion protein localizes to a single dot at the nuclear DNA boundary in the divided nuclei or to double dots in dividing nuclei, suggesting its localization on the spindle pole body (SPB). The cross-species expressions of IBD1 in S. pombe and byr4 in S. cerevisiae cause defects in shape, implicating the presence of a conserved mechanism for the control of cytokinesis in eukaryotes. We propose that Ibd1p is an SPB associated protein that links proper nuclear division to cytokinesis and bud separation.  相似文献   

17.
Spatial coordination between the axis of the spindle and the division plane is critical in asymmetric cell divisions. In the budding yeast S. cerevisiae, orientation of the mitotic spindle responds to two intertwined programs dictating the position of the spindle poles: one providing the blueprint for built-in pole asymmetry, the other sequentially confining microtubule-cortex interactions to the bud and the bud neck. The first program sets a temporal asymmetry to limit astral microtubules to a single pole prior to spindle pole separation. The second enforces this polarity by allowing these early formed microtubules to undergo capture at the bud cell cortex while stopping newly formed microtubules once cortical capture shifts to the bud neck. The remarkable precision of this integrated program results in an invariant pattern of spindle pole inheritance in which the "old" spindle pole is destined to the bud. An additional layer of asymmetry is superimposed to couple successful chromosomal segregation between the mother and the bud with mitotic exit. This is based on the asymmetric localization to the committed daughter-bound pole of signaling components of the mitotic exit network. This system operates irrespective of intrinsic spindle polarity to ensure that it is always the pole translocating into the bud that carries the signal to regulate mitotic exit.

Key Words:

Cell cycle, Polarity, checkpoint, Microtubule, Cortical cues  相似文献   

18.
During asymmetric cell division, protein determinants are segregated into one of the two daughter cells. The Numb protein acts as a segregating determinant during both mouse and Drosophila development. In flies, Numb localizes asymmetrically and is required for cell-fate specification in the central and peripheral nervous systems, as well as during muscle and heart development. Whether its asymmetric segregation is important to the performance of these functions is not firmly established. Here, we demonstrate that Numb acts both in a localization-dependent and in a localization-independent manner. We have generated numb mutants that affect only the asymmetric localization of the protein during mitosis. We demonstrate that asymmetric segregation of Numb into one of the two daughter cells is absolutely essential for cell-fate specification in the Drosophila peripheral nervous system. Numb localization is also essential in MP2 neuroblasts in the central nervous system and during muscle development. Surprisingly, in dividing ganglion mother cells or during heart development, Numb function is independent of its ability to segregate asymmetrically in mitosis. Our results suggest that two classes of asymmetric cell division exist, each with different requirements for asymmetric inheritance of cell-fate determinants.  相似文献   

19.
Yeast prion [PSI+] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI+] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI+]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI+] destabilization, sometimes persisting for several cell divisions after heat shock. Prion loss occurring in the first division after heat shock is preferentially detected in a daughter cell, indicating the impairment of prion segregation that results in asymmetric prion distribution between a mother cell and a bud. Longer heat shock or prolonged incubation in the absence of nutrients after heat shock led to [PSI+] recovery. Both prion destabilization and recovery during heat shock depend on protein synthesis. Maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps such as Hsp70-Ssa. Deletions of individual SSA genes increase prion destabilization and/or counteract recovery. The dynamics of prion aggregation during destabilization and recovery are consistent with the notion that efficient prion fragmentation and segregation require a proper balance between Hsp104 and other (e.g., Hsp70-Ssa) chaperones. In contrast to heat shock, [PSI+] destabilization by osmotic stressors does not always depend on cell proliferation and/or protein synthesis, indicating that different stresses may impact the prion via different mechanisms. Our data demonstrate that heat stress causes asymmetric prion distribution in a cell division and confirm that the effects of Hsps on prions are physiologically relevant.  相似文献   

20.
The Drosophila Inscuteable protein acts as a key regulator of asymmetric cell division during the development of the nervous system [1] [2]. In neuroblasts, Inscuteable localizes into an apical cortical crescent during late interphase and most of mitosis. During mitosis, Inscuteable is required for the correct apical-basal orientation of the mitotic spindle and for the asymmetric segregation of the proteins Numb [3] [4] [5], Prospero [5] [6] [7] and Miranda [8] [9] into the basal daughter cell. When Inscuteable is ectopically expressed in epidermal cells, which normally orient their mitotic spindle parallel to the embryo surface, these cells reorient their mitotic spindle and divide perpendicularly to the surface [1]. Like the Inscuteable protein, the inscuteable RNA is asymmetrically localized [10]. We show here that inscuteable RNA localization is not required for Inscuteable protein localization. We found that a central 364 amino acid domain - the Inscuteable asymmetry domain - was necessary and sufficient for Inscuteable localization and function. Within this domain, a separate 100 amino acid region was required for asymmetric localization along the cortex, whereas a 158 amino acid region directed localization to the cell cortex. The same 158 amino acid fragment could localize asymmetrically when coexpressed with the full-length protein, however, and could bind to Inscuteable in vitro, suggesting that this domain may be involved in the self-association of Inscuteable in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号