首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lateralization of function is a well-known phenomenon in humans. The two hemispheres of the human brain are functionally specialized such that certain cognitive skills, such as language or musical ability, conspecific recognition, and even emotional responses, are mediated by one hemisphere more than the other [1, 2]. Studies over the past 30 years suggest that lateralization occurs in other vertebrate species as well [3-11]. In general, lateralization is observed in different sensory modalities in humans as well as vertebrates, and there are interesting parallels (reviewed in [12]). However, little is known about functional asymmetry in invertebrates [13, 14] and there is only one investigation in insects [15]. Here we show, for the first time, that the honeybee Apis mellifera displays a clear laterality in responding to learned odors. By training honeybees on two different versions of the well-known proboscis extension reflex (PER) paradigm [16, 17], we demonstrate that bees respond to odors better when they are trained through their right antenna. To our knowledge, this is the first demonstration of asymmetrical learning performance in an insect.  相似文献   

2.
The behavioral and cognitive characteristics of dangerous drivers differ significantly from those of safe drivers. However, differences in emotional information processing have seldom been investigated. Previous studies have revealed that drivers with higher anger/anxiety trait scores are more likely to be involved in crashes and that individuals with higher anger traits exhibit stronger negativity biases when processing emotions compared with control groups. However, researchers have not explored the relationship between emotional information processing and driving behavior. In this study, we examined the emotional information processing differences between dangerous drivers and safe drivers. Thirty-eight non-professional drivers were divided into two groups according to the penalty points that they had accrued for traffic violations: 15 drivers with 6 or more points were included in the dangerous driver group, and 23 drivers with 3 or fewer points were included in the safe driver group. The emotional Stroop task was used to measure negativity biases, and both behavioral and electroencephalograph data were recorded. The behavioral results revealed stronger negativity biases in the dangerous drivers than in the safe drivers. The bias score was correlated with self-reported dangerous driving behavior. Drivers with strong negativity biases reported having been involved in mores crashes compared with the less-biased drivers. The event-related potentials (ERPs) revealed that the dangerous drivers exhibited reduced P3 components when responding to negative stimuli, suggesting decreased inhibitory control of information that is task-irrelevant but emotionally salient. The influence of negativity bias provides one possible explanation of the effects of individual differences on dangerous driving behavior and traffic crashes.  相似文献   

3.
Emotions can bias human decisions- for example depressed or anxious people tend to make pessimistic judgements while those in positive affective states are often more optimistic. Several studies have reported that affect contingent judgement biases can also be produced in animals. The animals, however, cannot self-report; therefore, the valence of their emotions, to date, could only be assumed. Here we present the results of an experiment where the affect-contingent judgement bias has been produced by objectively measured positive emotions. We trained rats in operant Skinner boxes to press one lever in response to one tone to receive a food reward and to press another lever in response to a different tone to avoid punishment by electric foot shock. After attaining a stable level of discrimination performance, the animals were subjected to either handling or playful, experimenter-administered manual stimulation – tickling. This procedure has been confirmed to induce a positive affective state in rats, and the 50-kHz ultrasonic vocalisations (rat laughter) emitted by animals in response to tickling have been postulated to index positive emotions akin to human joy. During the tickling and handling sessions, the numbers of emitted high-frequency 50-kHz calls were scored. Immediately after tickling or handling, the animals were tested for their responses to a tone of intermediate frequency, and the pattern of their responses to this ambiguous cue was taken as an indicator of the animals'' optimism. Our findings indicate that tickling induced positive emotions which are directly indexed in rats by laughter, can make animals more optimistic. We demonstrate for the first time a link between the directly measured positive affective state and decision making under uncertainty in an animal model. We also introduce innovative tandem-approach for studying emotional-cognitive interplay in animals, which may be of great value for understanding the emotional-cognitive changes associated with mood disorders.  相似文献   

4.
One of the major topics of applied ethology is the welfare of animals reared by humans. Welfare can be defined as a state of harmony between an individual and its environment. Any marked deviation from this state, if perceived by the individual, results in a welfare deficit due to negative emotional experiences. In humans, verbal language helps to assess emotional experiences. In animals, only behavioural and physiological measurements help to detect emotions. However, how to interpret these responses in terms of emotional experiences remains an open question. The information on the cognitive abilities of farm animals, which are available but scattered, could help the understanding of their emotions. We propose a behavioural approach based on cognitive psychology: emotions can be investigated in farm animals in terms of the individual's appraisal of the situation. This evaluative process depends on: (a) the intrinsic characteristics of the eliciting event (suddenness, novelty, pleasantness); (b) the degree of conflict of that event with the individual's needs or expectations; and (c) the individual's coping possibilities offered by the environment. The result of such an evaluation determines the negative versus positive emotions. We propose an analysis of the emotional repertoire of farm animals in terms of the relationship between the evaluative process of the event on the one hand and the behavioural and physiological responses on the other hand.  相似文献   

5.
Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, but emotional states are difficult to directly assess in animals. Researchers have assessed pain using behavioural and physiological measures, but these approaches are limited to understanding the arousal rather than valence of the emotional experience. Cognitive bias tasks show that depressed humans judge ambiguous events negatively and this technique has been applied to assess emotional states in animals. However, limited research has examined how pain states affect cognitive processes in animals. Here we present the first evidence of cognitive bias in response to pain in any non-human species. In two experiments, dairy calves (n = 17) were trained to respond differentially to red and white video screens and then tested with unreinforced ambiguous colours in two or three test sessions before and two sessions after the routine practice of hot-iron disbudding. After disbudding calves were more likely to judge ambiguous colours as negative. This ‘pessimistic’ bias indicates that post-operative pain following hot-iron disbudding results in a negative change in emotional state.  相似文献   

6.
Cognitive bias, the altered information processing resulting from the background emotional state of an individual, has been suggested as a promising new indicator of animal emotion. Comparable to anxious or depressed humans, animals in a putatively negative emotional state are more likely to judge an ambiguous stimulus as if it predicts a negative event, than those in positive states. The present study aimed to establish a cognitive bias test for mice based on a spatial judgment task and to apply it in a pilot study to serotonin transporter (5-HTT) knockout mice, a well-established mouse model for the study of anxiety- and depression-related behavior. In a first step, we validated that our setup can assess different expectations about the outcome of an ambiguous stimulus: mice having learned to expect something positive within a maze differed significantly in their behavior towards an unfamiliar location than animals having learned to expect something negative. In a second step, the use of spatial location as a discriminatory stimulus was confirmed by showing that mice interpret an ambiguous stimulus depending on its spatial location, with a position exactly midway between a positive and a negative reference point provoking the highest level of ambiguity. Finally, the anxiety- and depression-like phenotype of the 5-HTT knockout mouse model manifested - comparable to human conditions - in a trend for a negatively distorted interpretation of ambiguous information, albeit this effect was not statistically significant. The results suggest that the present cognitive bias test provides a useful basis to study the emotional state in mice, which may not only increase the translational value of animal models in the study of human affective disorders, but which is also a central objective of animal welfare research.  相似文献   

7.
The ability to reflect on one's own mental processes, termed metacognition, is a defining feature of human existence [1, 2]. Consequently, a fundamental question in comparative cognition is whether nonhuman animals have knowledge of their own cognitive states [3]. Recent evidence suggests that people and nonhuman primates [4-8] but not less "cognitively sophisticated" species [3, 9, 10] are capable of metacognition. Here, we demonstrate for the first time that rats are capable of metacognition--i.e., they know when they do not know the answer in a duration-discrimination test. Before taking the duration test, rats were given the opportunity to decline the test. On other trials, they were not given the option to decline the test. Accurate performance on the duration test yielded a large reward, whereas inaccurate performance resulted in no reward. Declining a test yielded a small but guaranteed reward. If rats possess knowledge regarding whether they know the answer to the test, they would be expected to decline most frequently on difficult tests and show lowest accuracy on difficult tests that cannot be declined [4]. Our data provide evidence for both predictions and suggest that a nonprimate has knowledge of its own cognitive state.  相似文献   

8.
The nature and evolution of positive emotion is a major question remaining unanswered in science and philosophy. The study of feelings and emotions in humans and animals is dominated by discussion of affective states that have negative valence. Given the clinical and social significance of negative affect, such as depression, it is unsurprising that these emotions have received more attention from scientists. Compared to negative emotions, such as fear that leads to fleeing or avoidance, positive emotions are less likely to result in specific, identifiable, behaviours being expressed by an animal. This makes it particularly challenging to quantify and study positive affect. However, bursts of intense positive emotion (joy) are more likely to be accompanied by externally visible markers, like vocalisations or movement patterns, which make it more amenable to scientific study and more resilient to concerns about anthropomorphism. We define joy as intense, brief, and event-driven (i.e. a response to something), which permits investigation into how animals react to a variety of situations that would provoke joy in humans. This means that behavioural correlates of joy are measurable, either through newly discovered ‘laughter’ vocalisations, increases in play behaviour, or reactions to cognitive bias tests that can be used across species. There are a range of potential situations that cause joy in humans that have not been studied in other animals, such as whether animals feel joy on sunny days, when they accomplish a difficult feat, or when they are reunited with a familiar companion after a prolonged absence. Observations of species-specific calls and play behaviour can be combined with biometric markers and reactions to ambiguous stimuli in order to enable comparisons of affect between phylogenetically distant taxonomic groups. Identifying positive affect is also important for animal welfare because knowledge of positive emotional states would allow us to monitor animal well-being better. Additionally, measuring if phylogenetically and ecologically distant animals play more, laugh more, or act more optimistically after certain kinds of experiences will also provide insight into the mechanisms underlying the evolution of joy and other positive emotions, and potentially even into the evolution of consciousness.  相似文献   

9.
Previous research has suggested that children do not rely on prosody to infer a speaker''s emotional state because of biases toward lexical content or situational context. We hypothesized that there are actually no such biases and that young children simply have trouble in using emotional prosody. Sixty children from 5 to 13 years of age had to judge the emotional state of a happy or sad speaker and then to verbally explain their judgment. Lexical content and situational context were devoid of emotional valence. Results showed that prosody alone did not enable the children to infer emotions at age 5, and was still not fully mastered at age 13. Instead, they relied on contextual information despite the fact that this cue had no emotional valence. These results support the hypothesis that prosody is difficult to interpret for young children and that this cue plays only a subordinate role up until adolescence to infer others’ emotions.  相似文献   

10.
Stress experienced in childhood is associated with an increased risk of developing psychiatric disorders in adulthood. These disorders are particularly characterized by disturbances to emotional and cognitive processes, which are not currently fully modeled in animals. Assays of cognitive bias have recently been used with animals to give an indication of their emotional/cognitive state. We used a cognitive bias test, alongside a traditional measure of anxiety (elevated plus maze), to investigate the effects of juvenile stress (JS) on adulthood behaviour using a rodent model. During the cognitive bias test, animals were trained to discriminate between two reward bowls based on a stimulus (rough/smooth sandpaper) encountered before they reached the bowls. One stimulus (e.g. rough) was associated with a lower value reward than the other (e.g. smooth). Once rats were trained, their cognitive bias was explored through the presentation of an ambiguous stimulus (intermediate grade sandpaper): a rat was classed as optimistic if it chose the bowl ordinarily associated with the high value reward. JS animals were lighter than controls, exhibited increased anxiety-like behaviour in the elevated plus maze and were more optimistic in the cognitive bias test. This increased optimism may represent an optimal foraging strategy for these underweight animals. JS animals were also faster than controls to make a decision when presented with an ambiguous stimulus, suggesting altered decision making. These results demonstrate that stress in the juvenile phase can increase anxiety-like behaviour and alter cognitive bias and decision making in adulthood in a rat model.  相似文献   

11.
Physiological state profoundly influences the expression of the behaviour of individuals and can affect social interactions between animals. How physiological state influences food sharing and social behaviour in social insects is poorly understood. Here, we examined the social interactions and food sharing behaviour of honeybees with the aim of developing the honeybee as a model for understanding how an individual's state influences its social interactions. The state of individual honeybees was manipulated by either starving donor bees or feeding them sucrose or low doses of ethanol to examine how a change in hunger or inebriation state affected the social behaviours exhibited by two closely-related nestmates. Using a lab-based assay for measuring individual motor behaviour and social behaviour, we found that behaviours such as antennation, willingness to engage in trophallaxis, and mandible opening were affected by both hunger and ethanol intoxication. Inebriated bees were more likely to exhibit mandible opening, which may represent a form of aggression, than bees fed sucrose alone. However, intoxicated bees were as willing to engage in trophallaxis as the sucrose-fed bees. The effects of ethanol on social behaviors were dose-dependent, with higher doses of ethanol producing larger effects on behaviour. Hungry donor bees, on the other hand, were more likely to engage in begging for food and less likely to antennate and to display mandible opening. We also found that when nestmates received food from donors previously fed ethanol, they began to display evidence of inebriation, indicating that ethanol can be retained in the crop for several hours and that it can be transferred between honeybee nestmates during trophallaxis.  相似文献   

12.
The energetic cost of cognitive functions can lead to either impairments in learning and memory, or to trade-offs with other functions, when the amount of available energy is limited. However, it has been suggested that, under such conditions, social groups such as honeybees might be able to ward off cognitive impairments in individual bees by adjusting resource allocation at the colony level. Using two complementary experiments, one that tests the effect of learning on subsequent energetic state and survival, and another that tests the effect of energetic state on learning and retention, we show that individual bees pay a significant energetic cost for learning and therefore suffer from significant cognitive deficits under energetic stress. We discuss the implications of such cognitive impairments for the recent observations of bees disappearing from their colonies as well as for social life in general.  相似文献   

13.
An effective visual signal elicits a strong receiver response. The visual receptors of most insects are sensitive to ultraviolet (UV), blue and green light. The decorations of certain orb web spiders may be described as a type of visual signal, a sensory trap, as they exploit visual biases in insects. We filtered UV and blue light from the decorations of Argiope keyserlingi , under field conditions, using plastic sheets to test if the UV and blue light reflected affects the type of prey caught. We found that houseflies, blowflies, stingless bees, honeybees and vespid wasps were caught more frequently in webs with decorations than webs without, while ichneumonid wasps were caught less frequently. Blowflies, stingless bees, honeybees and vespid wasps were caught more often in unfiltered decorated webs. These insects also have receptor sensitivities in the blue and UV. We showed that exploiting visual sensory biases plays an integral role in attracting insects to orb web decorations. Whether UV light, blue light, or both, are the most important cue, however, requires further study.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 221–229.  相似文献   

14.
Calibration of vector navigation in desert ants.   总被引:4,自引:0,他引:4  
Desert ants (Cataglyphis sp.) monitor their position relative to the nest using a form of dead reckoning [1] [2] [3] known as path integration (PI) [4]. They do this with a sun compass and an odometer to update an accumulator that records their current position [1]. Ants can use PI to return to the nest [2] [3]. Here, we report that desert ants, like honeybees [5] and hamsters [6], can also use PI to approach a previously visited food source. To navigate to a goal using only PI information, a forager must recall a previous state of the accumulator specifying the goal, and compare it with the accumulator's current state [4]. The comparison - essentially vector subtraction - gives the direction to the goal. This whole process, which we call vector navigation, was found to be calibrated at recognised sites, such as the nest and a familiar feeder, throughout the life of a forager. If a forager was trained around a one-way circuit in which the result of PI on the return route did not match the result on the outward route, calibration caused the ant's trajectories to be misdirected. We propose a model of vector navigation to suggest how calibration could produce such trajectories.  相似文献   

15.
Previous empirical work suggests that emotion can influence accuracy and cognitive biases underlying recognition memory, depending on the experimental conditions. The current study examines the effects of arousal and valence on delayed recognition memory using the diffusion model, which allows the separation of two decision biases thought to underlie memory: response bias and memory bias. Memory bias has not been given much attention in the literature but can provide insight into the retrieval dynamics of emotion modulated memory. Participants viewed emotional pictorial stimuli; half were given a recognition test 1-day later and the other half 7-days later. Analyses revealed that emotional valence generally evokes liberal responding, whereas high arousal evokes liberal responding only at a short retention interval. The memory bias analyses indicated that participants experienced greater familiarity with high-arousal compared to low-arousal items and this pattern became more pronounced as study-test lag increased; positive items evoke greater familiarity compared to negative and this pattern remained stable across retention interval. The findings provide insight into the separate contributions of valence and arousal to the cognitive mechanisms underlying delayed emotion modulated memory.  相似文献   

16.
Humans differ in terms of biased attention for emotional stimuli and these biases can confer differential resilience and vulnerability to emotional disorders. Selective processing of positive emotional information, for example, is associated with enhanced sociability and well-being while a bias for negative material is associated with neuroticism and anxiety. A tendency to selectively avoid negative material might also be associated with mental health and well-being. The neurobiological mechanisms underlying these cognitive phenotypes are currently unknown. Here we show for the first time that allelic variation in the promotor region of the serotonin transporter gene (5-HTTLPR) is associated with differential biases for positive and negative affective pictures. Individuals homozygous for the long allele (LL) showed a marked bias to selectively process positive affective material alongside selective avoidance of negative affective material. This potentially protective pattern was absent among individuals carrying the short allele (S or SL). Thus, allelic variation on a common genetic polymorphism was associated with the tendency to selectively process positive or negative information. The current study is important in demonstrating a genotype-related alteration in a well-established processing bias, which is a known risk factor in determining both resilience and vulnerability to emotional disorders.  相似文献   

17.
Flowers exhibit characteristics through which they exploit thesensory biases of pollinating insects, and both signaler andreceiver benefit from this interaction, either through reproductiveservice or food reward. However, the preferences of pollinatorsfor certain flower traits such as color or odor might be exploitedby predators that target pollinating insects. Crab spiders,Thomisus spectabilis, position themselves on flowers to preyon pollinators such as honeybees, Apis mellifera. We gave bothhoneybees and crab spiders the choice between two randomly chosenwhite Chrysanthemum frutescens, including olfactory signalsin one experiment and excluding odor in a second experiment.When olfactory signals were included, crab spiders and honeybeesclearly preferred the same flower out of a pair. However, agreementlevel was at chance in the absence of olfactory signals. Wealso analyzed the visual flower characteristics that might influencethe decision of the animals. Neither the size of flowers (diameterof flower and diameter of reproductive flower center) nor thereflectance properties (receptor excitation values in ultraviolet,blue, and green; overall brightness) influenced the choicesof crab spiders and honeybees. Therefore, odor seems to be thefloral signal that bees use to identify high-quality flowersand that crab spiders exploit to encounter honeybees.  相似文献   

18.
Raine NE  Chittka L 《PloS one》2007,2(6):e556
Innate sensory biases could play an important role in helping na?ve animals to find food. As inexperienced bees are known to have strong innate colour biases we investigated whether bumblebee (Bombus terrestris) colonies with stronger biases for the most rewarding flower colour (violet) foraged more successfully in their local flora. To test the adaptive significance of variation in innate colour bias, we compared the performance of colour-na?ve bees, from nine bumblebee colonies raised from local wild-caught queens, in a laboratory colour bias paradigm using violet (bee UV-blue) and blue (bee blue) artificial flowers. The foraging performance of the same colonies was assessed under field conditions. Colonies with a stronger innate bias for violet over blue flowers in the laboratory harvested more nectar per unit time under field conditions. In fact, the colony with the strongest bias for violet (over blue) brought in 41% more nectar than the colony with the least strong bias. As violet flowers in the local area produce more nectar than blue flowers (the next most rewarding flower colour), these data are consistent with the hypothesis that local variation in flower traits could drive selection for innate colour biases.  相似文献   

19.
Following from previous research on intensity bias and the accessibility model of emotional self-report, the present study examined the role of emotional exhaustion in explaining the discrepancy in teachers’ reports of their trait (habitual) versus state (momentary, “real”) emotions. Trait reports (habitual emotions, exhaustion) were assessed via trait questionnaires, and state reports (momentary emotions) were assessed in real time via the experience sampling method by using personal digital assistants (N = 69 high school teachers; 1,089 measures within teachers). In line with our assumptions, multi-level analyses showed that, as compared to the state assessment, teachers reported higher levels of habitual teaching-related emotions of anger, anxiety, shame, boredom, enjoyment, and pride. Additionally, the state-trait discrepancy in self-reports of negative emotions was accounted for by teachers’ emotional exhaustion, with high exhaustion levels corresponding with a greater state-trait discrepancy. Exhaustion levels did not moderate the state-trait discrepancy in positive emotions indicating that perceived emotional exhaustion may reflect identity-related cognitions specific to the negative belief system. Implications for research and educational practice are discussed.  相似文献   

20.
Naug D  Arathi HS 《Biology letters》2007,3(6):635-637
Mechanistic models of animal signals posit the occurrence of biases on the part of receivers that could be potentially exploited by signallers. Such biases are most obvious when animals are confronted with exaggerated versions of signals they normally encounter. Signalling systems operating in plant-pollinator interactions are among the most highly coevolved, with plants using a variety of floral signals to attract pollinators. A number of observations suggest that pollinators preferentially visit larger floral displays although the benefit of this to either the plant or the pollinator is not always clear. We use a standard dual-choice experimental protocol to show that honeybees display a receiver bias for exaggerated size and colour contrast--two important components of floral signals--even when such signals do not indicate quality. We discuss the implications of this receiver bias for the evolution of floral displays and its possible exploitation by invading alien plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号