首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conserved signal transduction pathways that use phosphorelay from histidine kinases through an intermediate transfer protein (H2) to response regulators have been found in a variety of eukaryotic microorganisms. Several of these pathways are linked to mitogen-activated protein kinase cascades. These networks control different physiological responses including osmoregulation, cAMP levels and cellular morphogenesis.  相似文献   

2.
Two-component systems in plant signal transduction   总被引:16,自引:0,他引:16  
In plants, two-component systems play important roles in signal transduction in response to environmental stimuli and growth regulators. Genetic and biochemical analyses indicate that sensory hybrid-type histidine kinases, ETR1 and its homologs, function as ethylene receptors and negative regulators in ethylene signaling. Two other hybrid-type histidine kinases, CKI1 and ATHK1, are implicated in cytokinin signaling and osmosensing processes, respectively. A data base search of Arabidopsis ESTs and genome sequences has identified many homologous genes encoding two-component regulators. We discuss the possible origins and functions of these two-component systems in plants.  相似文献   

3.
4.
Two-component and phosphorelay signal transduction   总被引:11,自引:0,他引:11  
Two-component and phosphorelay signal transduction systems are the major means by which bacteria recognize and respond to a variety of environmental stimuli. Recent results have implicated these systems in the regulation of a variety of essential processes including cell-cycle progression, pathogenicity, and developmental pathways. Elucidation of the structures of the interacting domains is leading to an understanding of the mechanisms of molecular recognition and phosphotransfer in these systems.  相似文献   

5.
G protein multiplicity in eukaryotic signal transduction systems   总被引:28,自引:0,他引:28  
M A Lochrie  M I Simon 《Biochemistry》1988,27(14):4957-4965
  相似文献   

6.
Two-component signal transduction pathways in Arabidopsis   总被引:19,自引:0,他引:19       下载免费PDF全文
Hwang I  Chen HC  Sheen J 《Plant physiology》2002,129(2):500-515
The two-component system, consisting of a histidine (His) protein kinase that senses a signal input and a response regulator that mediates the output, is an ancient and evolutionarily conserved signaling mechanism in prokaryotes and eukaryotes. The identification of 54 His protein kinases, His-containing phosphotransfer proteins, response regulators, and related proteins in Arabidopsis suggests an important role of two-component phosphorelay in plant signal transduction. Recent studies indicate that two-component elements are involved in plant hormone, stress, and light signaling. In this review, we present a genome analysis of the Arabidopsis two-component elements and summarize the major advances in our understanding of Arabidopsis two-component signaling.  相似文献   

7.
8.
Two-component signal transduction in human fungal pathogens   总被引:3,自引:0,他引:3  
Signal transduction pathways provide mechanisms for adaptation to stress conditions. One of the most studied of these pathways is the HOG1 MAP kinase pathway that in Saccharomyces cerevisiae is used to adapt cells to osmostress. The HOG1 MAPK has also been studied in Candida albicans, and more recently observations on the Hog1p functions have been described in two other human pathogens, Aspergillus fumigatus and Cryptococcus neoformans. The important, but not surprising, concept is that this pathway is used for different yet similar functions in each of these fungi, given their need to adapt to different environmental signals. Current studies of C. albicans focus upon the identification of two-component signal proteins that, in both C. albicans and S. cerevisiae, regulate the HOG1 MAPK. In C. albicans, these proteins regulate cell wall biosynthesis (and, therefore, adherence to host cells), osmotic and oxidant adaptation, white-opaque switching, morphogenesis, and virulence of the organism.  相似文献   

9.
The two-component signal transduction systems (TCSTSs), consisting of a histidine kinase sensor (HK) and a response regulator (RR), are the dominant molecular mechanisms by which prokaryotes sense and respond to environmental stimuli. Genomes of Xanthomonas generally contain a large repertoire of TCSTS genes (approximately 92 to 121 for each genome), which encode diverse structural groups of HKs and RRs. Among them, although a core set of 70 TCSTS genes (about two-thirds in total) which accumulates point mutations with a slow rate are shared by these genomes, the other genes, especially hybrid HKs, experienced extensive genetic recombination, including genomic rearrangement, gene duplication, addition or deletion, and fusion or fission. The recombinations potentially promote the efficiency and complexity of TCSTSs in regulating gene expression. In addition, our analysis suggests that a co-evolutionary model, rather than a selfish operon model, is the major mechanism for the maintenance and microevolution of TCSTS genes in the genomes of Xanthomonas. Genomic annotation, secondary protein structure prediction, and comparative genomic analyses of TCSTS genes reviewed here provide insights into our understanding of signal networks in these important phytopathogenic bacteria.  相似文献   

10.
One of the most fundamental and widespread mechanisms of signal perception/transduction in prokaryotes is generally referred to as the "two-component regulatory system (TCS)." The concept of TCS has already been introduced a decade ago from extensive studies on the model prokaryotic bacterium Escherichia coli. Results of recent studies on the model higher plant Arabidopsis thaliana have led us to learn a new scenario as to the versatility of TCS in eukaryotic species. In the plant, on the one hand, TCS are crucially involved in the signal transduction mechanism underlying the regulation of sophisticated plant development in response to hormones (e.g., cytokinin and ethylene). On the other hand, a unique TCS variant is essentially integrated into the plant clock function that generates circadian rhythms, and also tells us the time and season on this regularly spinning and revolving world. In this review, recent progress with regard to studies on TCS in higher plants will be discussed, focusing particularly on the model higher plant Arabidopsis thaliana.  相似文献   

11.
12.
The evolutionary origin of eukaryotic transmembrane signal transduction   总被引:1,自引:0,他引:1  
1. A comparison was made of transmembrane signal transduction mechanisms in different eukaryotes and prokaryotes. 2. Much attention was given to eukaryotic microbes and their signal transduction mechanisms, since these organisms are intermediate in complexity between animals, plants and bacteria. 3. Signal transduction mechanisms in eukaryotic microbes, however, do not appear to be intermediate between those in animals, plants and bacteria, but show features characteristic of the higher eukaryotes. 4. These similarities include the regulation of receptor function, adenylate cyclase activity, the presence of a phosphatidylinositol cycle and of GTP-binding regulatory proteins. 5. It is proposed that the signal transduction systems known to operate in present-day eukaryotes evolved in the earliest eukaryotic cells.  相似文献   

13.
血管紧张素受体及其信号转导   总被引:7,自引:0,他引:7  
由于高选择性拮抗剂和分子生物学技术的应用,使得血管紧张素受体的研究有了很大 进展。目前认为血管紧张素受体至少可以分为AT1R和AT2R两型,本文予以概要介绍。  相似文献   

14.
15.
16.
钙依赖性粘附素及其信号转导   总被引:1,自引:0,他引:1  
Yan WS  Jiang Y 《生理科学进展》2000,31(4):353-356
钙依赖性粘附素介导的粘附连接在决定和维持发育及成年机体的组织结构中起着重要作用。钙依赖性粘附素结合的特异性取决于其细胞外段,但完整的生理性粘附还需其胞质尾段与胞质相关蛋白以及细胞骨架的相互作用和联系。粘附连接的调节涉及到钙依赖性粘附素基因表达、聚集和磷酸化以及缝隙连接通讯等;此外,钙依赖性粘附素-连环素复合体还参与信号转导过程,从而影响组织的结构和功能。  相似文献   

17.
Information processing in neurobiological systems is commonly thought to rely on the assessment of a signal-to-noise ratio as the key mechanism of signal detection; it assumes and requires that both signal and noise are concurrently available. An alternative theory holds that detection proceeds by the system appreciating any instantaneous input by the input’s departure from the moving average of past activity. The evidence reviewed here suggests that this latter transduction mechanism provides a unique, formal account of the highly dynamic, neuroadaptative plasticity (i.e., tolerance, dependence, sensitization) that ensues upon μ-opioid receptor activation. The mechanism would appear already to operate with the receptor-G protein coupling that occurs upon agonist binding to μ-opioid receptors, and also with highly integrated responses such as whole-organism analgesia. The mechanism may perhaps operate ubiquitously with further neuronal and non-neuronal, cell surface, and intracellular-signaling systems, and may govern the experience-dependent regulation of synaptic strength. The transduction mechanism defines a continuously evolving process; the process’s most peculiar feature is that it makes any input generate not one but two outcomes that are paradoxical, or opposite in sign.  相似文献   

18.
Single-molecule imaging analysis of chemotactic response in eukaryotic cells has revealed a stochastic nature in the input signals and the signal transduction processes. This leads to a fundamental question about the signaling processes: how does the signaling system operate under stochastic fluctuations or noise? Here, we report a stochastic model of chemotactic signaling in which noise and signal propagation along the transmembrane signaling pathway by chemoattractant receptors can be analyzed quantitatively. The results obtained from this analysis reveal that the second-messenger-production reactions by the receptors generate noisy signals that contain intrinsic noise inherently generated at this reaction and extrinsic noise propagated from the ligand-receptor binding. Such intrinsic and extrinsic noise limits the directional sensing ability of chemotactic cells, which may explain the dependence of chemotactic accuracy on chemical gradients that has been observed experimentally. Our analysis also reveals regulatory mechanisms for signal improvement in the stochastically operating signaling system by analyzing how the SNR of chemotactic signals can be improved on or deteriorated by the stochastic properties of receptors and second-messenger molecules. Theoretical consideration of noisy signal transduction by chemotactic signaling systems can further be applied to signaling systems in general.  相似文献   

19.
Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparently linear pathways, thereby establishing networks that integrate multiple signals. We show that sequence conservation and cross talk can extend across kingdoms and can be exploited to produce a synthetic plant signal transduction system. In response to HK cross talk, heterologously expressed bacterial response regulators, PhoB and OmpR, translocate to the nucleus on HK activation. Using this discovery, combined with modification of PhoB (PhoB‐VP64), we produced a key component of a eukaryotic synthetic signal transduction pathway. In response to exogenous cytokinin, PhoB‐VP64 translocates to the nucleus, binds a synthetic PlantPho promoter, and activates gene expression. These results show that conserved‐signaling components can be used across kingdoms and adapted to produce synthetic eukaryotic signal transduction pathways.  相似文献   

20.
《Current biology : CB》2019,29(15):R724-R725
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号