首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Friedman R  Drake JW  Hughes AL 《Genetics》2004,167(3):1507-1512
To test the hypothesis that the proteins of thermophilic prokaryotes are subject to unusually stringent functional constraints, we estimated the numbers of synonymous and nonsynonymous nucleotide substitutions per site between 17,957 pairs of orthologous genes from 22 pairs of closely related species of Archaea and Bacteria. The average ratio of nonsynonymous to synonymous substitutions was significantly lower in thermophiles than in nonthermophiles, and this effect was observed in both Archaea and Bacteria. There was no evidence that this difference could be explained by factors such as nucleotide content bias. Rather, the results support the hypothesis that proteins of thermophiles are subject to unusually strong purifying selection, leading to a reduced overall level of amino acid evolution per mutational event. The results show that genome-wide patterns of sequence evolution can be influenced by natural selection exerted by a species' environment and shed light on a previous observation that relatively few of the mutations arising in a thermophilic archaeon were nucleotide substitutions in contrast to indels.  相似文献   

2.
Systematic mappings of the effects of protein mutations are becoming increasingly popular. Unexpectedly, these experiments often find that proteins are tolerant to most amino acid substitutions, including substitutions in positions that are highly conserved in nature. To obtain a more realistic distribution of the effects of protein mutations, we applied a laboratory drift comprising 17 rounds of random mutagenesis and selection of M.HaeIII, a DNA methyltransferase. During this drift, multiple mutations gradually accumulated. Deep sequencing of the drifted gene ensembles allowed determination of the relative effects of all possible single nucleotide mutations. Despite being averaged across many different genetic backgrounds, about 67% of all nonsynonymous, missense mutations were evidently deleterious, and an additional 16% were likely to be deleterious. In the early generations, the frequency of most deleterious mutations remained high. However, by the 17th generation, their frequency was consistently reduced, and those remaining were accepted alongside compensatory mutations. The tolerance to mutations measured in this laboratory drift correlated with sequence exchanges seen in M.HaeIII’s natural orthologs. The biophysical constraints dictating purging in nature and in this laboratory drift also seemed to overlap. Our experiment therefore provides an improved method for measuring the effects of protein mutations that more closely replicates the natural evolutionary forces, and thereby a more realistic view of the mutational space of proteins.  相似文献   

3.
The relationship between environment and mutation is complex [1]. Claims of Lamarkian mutation [2] have proved unfounded [3], [4] and [5]; it is apparent, however, that the external environment can influence the generation of heritable variation, through either direct effects on DNA sequence [6] or DNA maintenance and copying mechanisms [7], [8], [9] and [10], or as a consequence of evolutionary processes [11], [12], [13], [14], [15] and [16]. The spectrum of mutational events subject to environmental influence is unknown [6] and precisely how environmental signals modulate mutation is unclear. Evidence from bacteria suggests that a transient recombination-dependent hypermutational state can be induced by starvation [5]. It is also apparent that chnages in the mutability of specific loci can be influenced by alterations in DNA topology [10] and [17]. Here we describe a remarkable instance of adaptive evolution in Salmonella which is caused by a mutation that occurs in intermediate-strength osmotic environments. We show that the mutation is not ‘directed’ and describe its genetic basis. We also present compelling evidence in support of the hypothesis that the mutational event is constrained by signals transmitted from the external environment via changes in the activity of DNA gyrase.  相似文献   

4.
Because spontaneous mutation is the source of all genetic diversity, measuring mutation rates can reveal how natural selection drives patterns of variation within and between species. We sequenced eight genomes produced by a mutation-accumulation experiment in Drosophila melanogaster. Our analysis reveals that point mutation and small indel rates vary significantly between the two different genetic backgrounds examined. We also find evidence that ∼2% of mutational events affect multiple closely spaced nucleotides. Unlike previous similar experiments, we were able to estimate genome-wide rates of large deletions and tandem duplications. These results suggest that, at least in inbred lines like those examined here, mutational pressures may result in net growth rather than contraction of the Drosophila genome. By comparing our mutation rate estimates to polymorphism data, we are able to estimate the fraction of new mutations that are eliminated by purifying selection. These results suggest that ∼99% of duplications and deletions are deleterious—making them 10 times more likely to be removed by selection than nonsynonymous mutations. Our results illuminate not only the rates of new small- and large-scale mutations, but also the selective forces that they encounter once they arise.  相似文献   

5.

Background

The recent increase in human polymorphism data, together with the availability of genome sequences from several primate species, provides an unprecedented opportunity to investigate how natural selection has shaped human evolution.

Results

We compared human branch-specific substitutions with variation data in the current human population to measure the impact of adaptive evolution on human protein coding genes. The use of single nucleotide polymorphisms (SNPs) with high derived allele frequencies (DAFs) minimized the influence of segregating slightly deleterious mutations and improved the estimation of the number of adaptive sites. Using DAF ≥ 60% we showed that the proportion of adaptive substitutions is 0.2% in the complete gene set. However, the percentage rose to 40% when we focused on genes that are specifically accelerated in the human branch with respect to the chimpanzee branch, or on genes that show signatures of adaptive selection at the codon level by the maximum likelihood based branch-site test. In general, neural genes are enriched in positive selection signatures. Genes with multiple lines of evidence of positive selection include taxilin beta, which is involved in motor nerve regeneration and syntabulin, and is required for the formation of new presynaptic boutons.

Conclusions

We combined several methods to detect adaptive evolution in human coding sequences at a genome-wide level. The use of variation data, in addition to sequence divergence information, uncovered previously undetected positive selection signatures in neural genes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-599) contains supplementary material, which is available to authorized users.  相似文献   

6.
The relative contributions of neutral and adaptive substitutions to molecular evolution has been one of the most controversial issues in evolutionary biology for more than 40 years. The analysis of within-species nucleotide polymorphism and between-species divergence data supports a widespread role for adaptive protein evolution in certain taxa. For example, estimates of the proportion of adaptive amino acid substitutions (α) are 50% or more in enteric bacteria and Drosophila. In contrast, recent estimates of α for hominids have been at most 13%. Here, we estimate α for protein sequences of murid rodents based on nucleotide polymorphism data from multiple genes in a population of the house mouse subspecies Mus musculus castaneus, which inhabits the ancestral range of the Mus species complex and nucleotide divergence between M. m. castaneus and M. famulus or the rat. We estimate that 57% of amino acid substitutions in murids have been driven by positive selection. Hominids, therefore, are exceptional in having low apparent levels of adaptive protein evolution. The high frequency of adaptive amino acid substitutions in wild mice is consistent with their large effective population size, leading to effective natural selection at the molecular level. Effective natural selection also manifests itself as a paucity of effectively neutral nonsynonymous mutations in M. m. castaneus compared to humans.  相似文献   

7.
The relationship between environment and mutation is complex [1]. Claims of Lamarkian mutation [2] have proved unfounded [3-5]; it is apparent, however, that the external environment can influence the generation of heritable variation, through either direct effects on DNA sequence [6] or DNA maintenance and copying mechanisms [7-10], or as a consequence of evolutionary processes [11-16]. The spectrum of mutational events subject to environmental influence is unknown [6] and precisely how environmental signals modulate mutation is unclear. Evidence from bacteria suggests that a transient recombination-dependent hypermutational state can be induced by starvation [5]. It is also apparent that changes in the mutability of specific loci can be influenced by alterations in DNA topology [10,17]. Here we describe a remarkable instance of adaptive evolution in Salmonella which is caused by a mutation that occurs in intermediate-strength osmotic environments. We show that the mutation is not 'directed' and describe its genetic basis. We also present compelling evidence in support of the hypothesis that the mutational event is constrained by signals transmitted from the external environment via changes in the activity of DNA gyrase.  相似文献   

8.
In large populations, many beneficial mutations may be simultaneously available and may compete with one another, slowing adaptation. By finding the probability of fixation of a favorable allele in a simple model of a haploid sexual population, we find limits to the rate of adaptive substitution, [Formula: see text], that depend on simple parameter combinations. When variance in fitness is low and linkage is loose, the baseline rate of substitution is [Formula: see text], where [Formula: see text] is the population size, [Formula: see text] is the rate of beneficial mutations per genome, and [Formula: see text] is their mean selective advantage. Heritable variance [Formula: see text] in log fitness due to unlinked loci reduces [Formula: see text] by [Formula: see text] under polygamy and [Formula: see text] under monogamy. With a linear genetic map of length [Formula: see text] Morgans, interference is yet stronger. We use a scaling argument to show that the density of adaptive substitutions depends on [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] only through the baseline density: [Formula: see text]. Under the approximation that the interference due to different sweeps adds up, we show that [Formula: see text], implying that interference prevents the rate of adaptive substitution from exceeding one per centimorgan per 200 generations. Simulations and numerical calculations confirm the scaling argument and confirm the additive approximation for [Formula: see text]; for higher [Formula: see text], the rate of adaptation grows above [Formula: see text], but only very slowly. We also consider the effect of sweeps on neutral diversity and show that, while even occasional sweeps can greatly reduce neutral diversity, this effect saturates as sweeps become more common-diversity can be maintained even in populations experiencing very strong interference. Our results indicate that for some organisms the rate of adaptive substitution may be primarily recombination-limited, depending only weakly on the mutation supply and the strength of selection.  相似文献   

9.
The genome-sequencing gold rush has facilitated the use of comparative genomics to uncover patterns of genome evolution, although their causal mechanisms remain elusive. One such trend, ubiquitous to prokarya and eukarya, is the association of insertion/deletion mutations (indels) with increases in the nucleotide substitution rate extending over hundreds of base pairs. The prevailing hypothesis is that indels are themselves mutagenic agents. Here, we employ population genomics data from Escherichia coli, Saccharomyces paradoxus, and Drosophila to provide evidence suggesting that it is not the indels per se but the sequence in which indels occur that causes the accumulation of nucleotide substitutions. We found that about two-thirds of indels are closely associated with repeat sequences and that repeat sequence abundance could be used to identify regions of elevated sequence diversity, independently of indels. Moreover, the mutational signature of indel-proximal nucleotide substitutions matches that of error-prone DNA polymerases. We propose that repeat sequences promote an increased probability of replication fork arrest, causing the persistent recruitment of error-prone DNA polymerases to specific sequence regions over evolutionary time scales. Experimental measures of the mutation rates of engineered DNA sequences and analyses of experimentally obtained collections of spontaneous mutations provide molecular evidence supporting our hypothesis. This study uncovers a new role for repeat sequences in genome evolution and provides an explanation of how fine-scale sequence contextual effects influence mutation rates and thereby evolution.  相似文献   

10.
Clustered mutations may be broadly defined as the presence of two or more mutations within a spatially localized genomic region on a single chromosome. Known instances vary in terms of both the number and type of the component mutations, ranging from two closely spaced point mutations to tens or even hundreds of genomic rearrangements. Although clustered mutations can represent the observable net result of independent lesions sequentially acquired over multiple cell cycles, they can also be generated in a simultaneous or quasi-simultaneous manner within a single cell cycle. This review focuses on those mechanisms known to underlie the latter type. Both gene conversion and transient hypermutability are capable of generating closely spaced multiple mutations. However, a recently described phenomenon in human cancer cells, known as ‘chromothripsis’, has provided convincing evidence that tens to hundreds of genomic rearrangements can sometimes be generated simultaneously via a single catastrophic event. The distinctive genomic features observed in the derivative chromosomes, together with the highly characteristic junction sequences, point to non-homologous end joining (NHEJ) as being the likely underlying mutational mechanism. By contrast, replication-based mechanisms such as microhomology-mediated break-induced replication (MMBIR) which involves serial replication slippage or serial template switching probably account for those complex genomic rearrangements that comprise multiple duplications and/or triplications.  相似文献   

11.
Clustered mutations may be broadly defined as the presence of two or more mutations within a spatially localized genomic region on a single chromosome. Known instances vary in terms of both the number and type of the component mutations, ranging from two closely spaced point mutations to tens or even hundreds of genomic rearrangements. Although clustered mutations can represent the observable net result of independent lesions sequentially acquired over multiple cell cycles, they can also be generated in a simultaneous or quasi-simultaneous manner within a single cell cycle. This review focuses on those mechanisms known to underlie the latter type. Both gene conversion and transient hypermutability are capable of generating closely spaced multiple mutations. However, a recently described phenomenon in human cancer cells, known as 'chromothripsis', has provided convincing evidence that tens to hundreds of genomic rearrangements can sometimes be generated simultaneously via a single catastrophic event. The distinctive genomic features observed in the derivative chromosomes, together with the highly characteristic junction sequences, point to non-homologous end joining (NHEJ) as being the likely underlying mutational mechanism. By contrast, replication-based mechanisms such as microhomology-mediated break-induced replication (MMBIR) which involves serial replication slippage or serial template switching probably account for those complex genomic rearrangements that comprise multiple duplications and/or triplications.  相似文献   

12.
Antiviral CD8(+) T cells are a key component of the adaptive immune system against hepatitis C virus (HCV). For the development of immune therapies, it is essential to understand how CD8(+) T cells contribute to clearance of infection and why they fail so often. A mechanism for secondary failure is mutational escape of the virus. However, some substitutions in viral epitopes are associated with fitness costs and often require compensatory mutations. We hypothesized that compensatory mutations may point toward epitopes under particularly strong selection pressure that may be beneficial for vaccine design because of a higher genetic barrier to escape. We previously identified two HLA-B*15-restricted CD8(+) epitopes in NS5B (LLRHHNMVY(2450-2458) and SQRQKKVTF(2466-2474)), based on sequence analysis of a large HCV genotype 1b outbreak. Both epitopes are targeted in about 70% of HLA-B*15-positive individuals exposed to HCV. Reproducible selection of escape mutations was confirmed in an independent multicenter cohort in the present study. Interestingly, mutations were also selected in the epitope flanking region, suggesting that compensatory evolution may play a role. Covariation analysis of sequences from the database confirmed a significant association between escape mutations inside one of the epitopes (H2454R and M2456L) and substitutions in the epitope flanking region (S2439T and K2440Q). Functional analysis with the subgenomic replicon Con1 confirmed that the primary escape mutations impaired viral replication, while fitness was restored by the additional substitutions in the epitope flanking region. We concluded that selection of escape mutations inside an HLA-B*15 epitope requires secondary substitutions in the epitope flanking region that compensate for fitness costs.  相似文献   

13.
Molecular imprinting is the differential expression and/or silencing of alleles according to their parent of origin [1, 2]. Conflicts between parents, or parents and offspring, should cause "arms races," with accelerated evolution of the genes involved in imprinting. This should be detectable in the evolution of imprinting genes' protein sequences and in the promoter regions of imprinted genes. Previous studies, however, found no evidence of more amino acid substitutions in imprinting genes [1, 3]. We have analyzed sequence diversity of the Arabidopsis lyrata Medea (MEA) gene and divergence from the A. thaliana sequence, including the first study of the promoter region. In A. thaliana, MEA is imprinted, with paternal alleles silenced in endosperm cells [4, 5], and also functions in the imprinting machinery [4, 6]; MEA protein binding at the MEA promoter region indicates self-regulated imprinting [7-9]. We find the same paternal MEA allele silencing in A. lyrata endosperm but no evidence for adaptive evolution in the coding region, whereas the 5' flanking region displays high diversity, with distinct haplotypes, suggesting balancing selection in the promoter region.  相似文献   

14.
Bachtrog D 《Genetics》2003,165(3):1221-1232
The neo-sex chromosomes of Drosophila miranda constitute an ideal system to study the effects of recombination on patterns of genome evolution. Due to a fusion of an autosome with the Y chromosome, one homolog is transmitted clonally. Here, I compare patterns of molecular evolution of 18 protein-coding genes located on the recombining neo-X and their homologs on the nonrecombining neo-Y chromosome. The rate of protein evolution has significantly increased on the neo-Y lineage since its formation. Amino acid substitutions are accumulating uniformly among neo-Y-linked genes, as expected if all loci on the neo-Y chromosome suffer from a reduced effectiveness of natural selection. In contrast, there is significant heterogeneity in the rate of protein evolution among neo-X-linked genes, with most loci being under strong purifying selection and two genes showing evidence for adaptive evolution. This observation agrees with theory predicting that linkage limits adaptive protein evolution. Both the neo-X and the neo-Y chromosome show an excess of unpreferred codon substitutions over preferred ones and no difference in this pattern was observed between the chromosomes. This suggests that there has been little or no selection maintaining codon bias in the D. miranda lineage. A change in mutational bias toward AT substitutions also contributes to the decline in codon bias. The contrast in patterns of molecular evolution between amino acid mutations and synonymous mutations on the neo-sex-linked genes can be understood in terms of chromosome-specific differences in effective population size and the distribution of selective effects of mutations.  相似文献   

15.
16.
The abundance of genome polymorphism and divergence data has provided unprecedented insight into how mutation, drift and natural selection shape genome evolution. Application of the McDonald-Kreitman (MK) test to such data indicates a pervasive influence of positive selection, particularly in Drosophila species. However, evidence for positive selection in other species ranging from yeast to humans is often weak or absent. Although evidence for positive selection could be obscured in some species, there is also reason to believe that the frequency of adaptive substitutions could be overestimated as a result of epistatic fitness effects or hitchhiking of deleterious mutations. Based on these considerations it is argued that the common assumption of independence among sites must be relaxed before abandoning the neutral theory of molecular evolution.  相似文献   

17.
18.
Loewe L  Charlesworth B  Bartolomé C  Nöel V 《Genetics》2006,172(2):1079-1092
The distribution of mutational effects on fitness is of fundamental importance for many aspects of evolution. We develop two methods for characterizing the fitness effects of deleterious, nonsynonymous mutations, using polymorphism data from two related species. These methods also provide estimates of the proportion of amino acid substitutions that are selectively favorable, when combined with data on between-species sequence divergence. The methods are applicable to species with different effective population sizes, but that share the same distribution of mutational effects. The first, simpler, method assumes that diversity for all nonneutral mutations is given by the value under mutation-selection balance, while the second method allows for stronger effects of genetic drift and yields estimates of the parameters of the probability distribution of mutational effects. We apply these methods to data on populations of Drosophila miranda and D. pseudoobscura and find evidence for the presence of deleterious nonsynonymous mutations, mostly with small heterozygous selection coefficients (a mean of the order of 10(-5) for segregating variants). A leptokurtic gamma distribution of mutational effects with a shape parameter between 0.1 and 1 can explain observed diversities, in the absence of a separate class of completely neutral nonsynonymous mutations. We also describe a simple approximate method for estimating the harmonic mean selection coefficient from diversity data on a single species.  相似文献   

19.
The DNA mismatch repair machinery is involved in the correction of a wide variety of mutational intermediates. In bacterial cells, homodimers of the MutS protein bind mismatches and MutL homodimers couple mismatch recognition to downstream processing steps [1]. Eukaryotes possess multiple MutS and MutL homologs that form discrete, heterodimeric complexes with specific mismatch recognition and repair properties. In yeast, there are six MutS (Msh1-6p) and four MutL (Mlh1-3p and Pms1p) family members [2] [3]. Heterodimers comprising Msh2p and Msh3p or Msh2p and Msh6p recognize mismatches in nuclear DNA [4] [5] and the subsequent processing steps most often involve a Mlh1p-Pms1P heterodimer [6] [7]. Mlh1p also forms heterodimeric complexes with Mlh2p and Mlh3p [8], and a minor role for Mlh3p in nuclear mismatch repair has been reported [9]. No mismatch repair function has yet been assigned to the fourth yeast MutL homolog, Mlh2p, although mlh2 mutants exhibit weak resistance to some DNA damaging agents [10]. We have used two frameshift reversion assays to examine the roles of the yeast Mlh2 and Mlh3 proteins in vivo. This analysis demonstrates, for the first time, that yeast Mlh2p plays a role in the repair of mutational intermediates, and extends earlier results implicating Mlh3p in mismatch repair.  相似文献   

20.
There are many more selectively constrained noncoding than coding nucleotides in the mammalian genome, but most mammalian noncoding DNA is subject to weak selection, on average. One of the most striking discoveries to have emerged from comparisons among mammalian genomes is the hundreds of noncoding elements of more than 200 bp in length that show absolute conservation among mammalian orders. These elements represent the tip of the iceberg of a much larger class of conserved noncoding elements (CNEs). Much evidence suggests that CNEs are selectively constrained and not mutational cold-spots, and there is evidence that some CNEs play a role in the regulation of development. Here, we quantify negative and positive selection acting in murine CNEs by analyzing within-species nucleotide variation and between-species divergence of CNEs that we identified using a phylogenetically independent comparison. The distribution of fitness effects of new mutations in CNEs, inferred from within-species polymorphism, suggests that CNEs receive a higher number of strongly selected deleterious mutations and many fewer nearly neutral mutations than amino acid sites of protein-coding genes or regulatory elements close to genes. However, we also show that CNEs experience a far higher proportion of adaptive substitutions than any known category of genomic sites in murids. The absolute rate of adaptation of CNEs is similar to that of amino acid sites of proteins. This result suggests that there is widespread adaptation in mammalian conserved noncoding DNA elements, some of which have been implicated in the regulation of crucially important processes, including development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号