共查询到20条相似文献,搜索用时 15 毫秒
1.
Frataxin deficiency and mitochondrial dysfunction 总被引:1,自引:0,他引:1
Pandolfo M 《Mitochondrion》2002,2(1-2):87-93
Friedreich ataxia (FA) is an inherited recessive disorder characterized by progressive neurological disability and heart abnormalities. The Friedreich ataxia gene (FRDA) encodes a small mitochondrial protein, frataxin, which is produced in insufficient amounts in the disease as a consequence of a GAA triplet repeat expansion in the first intron of the gene. Frataxin deficiency leads to excessive free radical production, dysfunction of Fe-S center containing enzymes (in particular respiratory complexes I, II and III, and aconitase), and progressive iron accumulation in mitochondria. Frataxin may be a mitochondrial iron-binding protein that prevents this metal from participating in Fenton chemistry to generate toxic hydroxyl radicals. We investigated whether frataxin deficiency may in addition interfere with signaling pathways. First, we showed that exposure of FA fibroblasts to iron fails to produce the normally observed increase in expression of the stress defense protein manganese superoxide dismutase. This impaired induction involves a nuclear factor-kappaB-independent pathway that does not require free radical signaling intermediates. We also examined the role of frataxin in neuronal differentiation by using stably transfected clones of P19 embryonic carcinoma cells with antisense or sense frataxin constructs. We found that during retinoic acid-induced neurogenesis frataxin deficiency enhances apoptosis and reduces the number of terminally differentiated neuronal-like cells. The addition of the antioxidant N-acetyl-cysteine only rescues cells non-committed to the neuronal lineage, indicating that frataxin deficiency impairs differentiation mechanisms and survival responses through different mechanisms. Both studies suggest that some abnormalities in frataxin-deficient cells are related to free radical independent signaling pathways. 相似文献
2.
Jasmin JF Rengo G Lymperopoulos A Gupta R Eaton GJ Quann K Gonzales DM Mercier I Koch WJ Lisanti MP 《American journal of physiology. Heart and circulatory physiology》2011,300(4):H1274-H1281
Caveolin (Cav)-1 has been involved in the pathogenesis of ischemic injuries. For instance, modulations of Cav-1 expression have been reported in animal models of myocardial infarction and cerebral ischemia-reperfusion. Furthermore, ablation of the Cav-1 gene in mice has been shown to increase the extent of ischemic injury in models of cerebral and hindlimb ischemia. Cav-1 has also been suggested to play a role in myocardial ischemic preconditioning. However, the role of Cav-1 in myocardial ischemia (MI)-induced cardiac dysfunction still remains to be determined. We determined the outcome of a permanent left anterior descending coronary artery (LAD) ligation in Cav-1 knockout (KO) mice. Wild-type (WT) and Cav-1 KO mice were subjected to permanent LAD ligation for 24 h. The progression of ischemic injury was monitored by echocardiography, hemodynamic measurements, 2,3,5-triphenyltetrazolium chloride staining, β-binding analysis, cAMP level measurements, and Western blot analyses. Cav-1 KO mice subjected to LAD ligation display reduced survival compared with WT mice. Despite similar infarct sizes, Cav-1 KO mice subjected to MI showed reduced left ventricular (LV) ejection fraction and fractional shortening as well as increased LV end-diastolic pressures compared with their WT counterparts. Mechanistically, Cav-1 KO mice subjected to MI exhibit reduced β-adrenergic receptor density at the plasma membrane as well as decreased cAMP levels and PKA phosphorylation. In conclusion, ablation of the Cav-1 gene exacerbates cardiac dysfunction and reduces survival in mice subjected to MI. Mechanistically, Cav-1 KO mice subjected to LAD ligation display abnormalities in β-adrenergic signaling. 相似文献
3.
Liu J Lee P Galbiati F Kitsis RN Lisanti MP 《American journal of physiology. Cell physiology》2001,280(4):C823-C835
The potential role of caveolin-1 in apoptosis remains controversial. Here, we investigate whether caveolin-1 expression is proapoptotic or antiapoptotic using a well-defined antisense approach. We show that NIH/3T3 cells harboring antisense caveolin-1 are resistant to staurosporine-induced apoptosis, as assessed using cell morphology, DNA content, caspase 3 activation, and focal adhesion kinase cleavage. Importantly, sensitivity to apoptosis is recovered when caveolin-1 levels are restored. Conversely, recombinant stable expression of caveolin-1 in T24 bladder carcinoma cells sensitizes these cells to caspase 3 activation. Consistent with the observations using NIH/3T3 cells, downregulation of caveolin-1 in T24 cells substantially diminishes caspase 3-like activity. Loss of sensitivity to apoptotic stimulation is recovered by inhibition of the phosphatidylinositol 3-kinase pathway using LY-294002, suggesting a possible mechanism for the sensitizing effect of caveolin-1. Thus our results suggest that caveolin-1 may act as a coupling or sensitizing factor in signaling apoptotic cell death in both fibroblastic (NIH/3T3) and epithelial (T24) cells. 相似文献
4.
5.
6.
Michael W.J. Cleeter Kai-Yin Chau Caroline Gluck Atul Mehta Derralynn A. Hughes Michael Duchen Nicholas William Wood John Hardy J. Mark Cooper Anthony Henry Schapira 《Neurochemistry international》2013
Mutations of the gene for glucocerebrosidase 1 (GBA) cause Gaucher disease (GD), an autosomal recessive lysosomal storage disorder. Individuals with homozygous or heterozygous (carrier) mutations of GBA have a significantly increased risk for the development of Parkinson’s disease (PD), with clinical and pathological features that mirror the sporadic disease. The mechanisms whereby GBA mutations induce dopaminergic cell death and Lewy body formation are unknown. There is evidence of mitochondrial dysfunction and oxidative stress in PD and so we have investigated the impact of glucocerebrosidase (GCase) inhibition on these parameters to determine if there may be a relationship of GBA loss-of-function mutations to the known pathogenetic pathways in PD. We have used exposure to a specific inhibitor (conduritol-β-epoxide, CβE) of GCase activity in a human dopaminergic cell line to identify the biochemical abnormalities that follow GCase inhibition. We show that GCase inhibition leads to decreased ADP phosphorylation, reduced mitochondrial membrane potential and increased free radical formation and damage, together with accumulation of alpha-synuclein. Taken together, inhibition of GCase by CβE induces abnormalities in mitochondrial function and oxidative stress in our cell culture model. We suggest that GBA mutations and reduced GCase activity may increase the risk for PD by inducing these same abnormalities in PD brain. 相似文献
7.
A characteristic of apoptosis is the rapid accumulation of cytoplasmic lipid droplets, which are composed largely of neutral lipids. The proton signals from these lipids have been used for the non-invasive detection of cell death using magnetic resonance spectroscopy. We show here that despite an apoptosis-induced decrease in the levels and activities of enzymes involved in lipogenesis, which occurs downstream of p53 activation and inhibition of the mTOR signaling pathway, the increase in lipid accumulation is due to increased de novo lipid synthesis. This results from inhibition of mitochondrial fatty acid β-oxidation, which coupled with an increase in acyl-CoA synthetase activity, diverts fatty acids away from oxidation and into lipid synthesis. The inhibition of fatty acid oxidation can be explained by a rapid rise in mitochondrial membrane potential and an attendant increase in the levels of reactive oxygen species. 相似文献
8.
Neointima formation is a process characterized by smooth muscle cell (SMC) proliferation and extracellular matrix deposition in the vascular intimal layer. Here, we critically evaluate the role of caveolin-1 (Cav-1) in the pathogenesis of neointima formation. Cav-1 and caveolae organelles are particularly abundant in SMCs, where they are thought to function in membrane trafficking and signal transduction events. To directly evaluate the role of Cav-1 in the pathogenesis of neointimal lesions, we used Cav-1-deficient (Cav-1 -/-) mice as a model system. The right common carotid artery of wild-type and Cav-1 -/- mice was ligated just proximal to its bifurcation. Specimens were then harvested 4-weeks postligation and processed for morphometric and immunohistochemical analyses. The carotids of Cav-1 -/- mice showed significantly more intimal hyperplasia with subtotal luminal obstruction, as compared to wild-type mice. These neointimal lesions consisted mainly of SMCs. Mechanistically, neointimal lesions derived from Cav-1 -/- mice exhibited higher levels of phospho-p42/44 MAP kinase and cyclin D1 immunostaining, consistent with the idea that Cav-1 functions as a negative regulator of signal transduction. A significant increase in phospho-Rb (Ser780) immunostaining was also observed, in line with the upregulation of cyclin D1. In conclusion, using a carotid artery blood-flow cessation model, we show that genetic ablation of Cav-1 in mice stimulates SMC proliferation (neointimal hyperplasia), with concomitant activation of the p42/44 MAP kinase cascade and upregulation of cyclin D1. Importantly, our current study is the first to investigate the role of Cav-1 in SMC proliferation in the vascular system using Cav-1 -/- mice. 相似文献
9.
Heimerl S Liebisch G Le Lay S Böttcher A Wiesner P Lindtner S Kurzchalia TV Simons K Schmitz G 《Biochemical and biophysical research communications》2008,367(4):826-833
Caveolae are specialized membrane microdomains formed as the result of local accumulation of cholesterol, glycosphingolipids, and the structural protein caveolin-1 (Cav-1). To further elucidate the role of Cav-1 in lipid homeostasis in-vivo, we analyzed fasting and post-prandial plasma from Cav-1 deficient mice on low or on high fat diet. In total plasma analysis, an increase in ceramide and hexosylceramide was observed. In cholesteryl ester (CE), we found an increased saturated + monounsaturated/polyunsaturated fatty acid ratio in fasting plasma of low fat fed Cav-1(−/−) mice with increased proportions of CE16:1, CE18:1, CE20:3, and decreased proportions of CE18:2 and CE22:6. Under high fat diet HDL-CE, free cholesterol and pre-β-HDL were increased accompanied by a shift from slow to fast migrating α-HDL and expansion of apoE containing HDL. Our results demonstrate a significant role of Cav-1 in HDL-cholesterol metabolism and may reflect a variety of Cav-1 functions including modulation of ACAT activity and SR-BI function. 相似文献
10.
We showed that renal calpain 10, a mitochondrial and cytosolic Ca(2+)-regulated cysteine protease, is specifically decreased in kidneys of diabetic rats and mice, and is associated with diabetic nephropathy. The goals of this study were to examine renal calpain 10 and mitochondrial dysfunction in streptozotocin-induced hyperglycemic rats and determine the effects of siRNA-mediated knock down of renal calpain 10 on mitochondrial function. Four weeks after streptozotocin injection, calpain 10 protein and mRNA were decreased and calpain 10 substrates accumulated. We detected increased state 2 respiration in isolated renal mitochondria and increased markers of mitochondrial fission and mitophagy. All changes were prevented by daily insulin injection. Compared to scrambled siRNA, calpain 10 siRNA resulted in a marked decrease in renal calpain 10 at 2, 5 and 7 days. In concert with the loss of renal calpain 10, calpain 10 substrates accumulated, mitochondrial fusion decreased, mitochondrial fission and mitophagy increased. In summary, insulin-sensitive hyperglycemia induced loss of renal calpain 10 is correlated with renal mitochondrial dysfunction, fission and mitophagy, and specific depletion of renal calpain 10 produces similar mitochondrial defects. These results provide evidence that diabetes-induced renal mitochondrial dysfunction and renal injury may directly result from the loss of renal calpain 10. 相似文献
11.
12.
Ae Jeong Kim Hye Jin Jee Naree Song Minjee Kim Seon-Young Jeong Jeanho Yun 《Biochemical and biophysical research communications》2013,430(2):653-658
p21WAF1/CIP1 is a critical regulator of cell cycle progression. However, the role of p21 in mitochondrial function remains poorly understood. In this study, we examined the effect of p21 deficiency on mitochondrial function in HCT116 human colon cancer cells. We found that there was a significant increase in the mitochondrial mass of p21?/? HCT116 cells, as measured by 10-N-nonyl-acridine orange staining, as well as an increase in the mitochondrial DNA content. In contrast, p53?/? cells had a mitochondrial mass comparable to that of wild-type HCT116 cells. In addition, the expression levels of the mitochondrial biogenesis regulators PGC-1α and TFAM and AMPK activity were also elevated in p21?/? cells, indicating that p21 deficiency induces the rate of mitochondrial biogenesis through the AMPK-PGC-1α axis. However, the increase in mitochondrial biogenesis in p21?/? cells did not accompany an increase in the cellular steady-state level of ATP. Furthermore, p21?/? cells exhibited significant proliferation impairment in galactose medium, suggesting that p21 deficiency induces a defect in the mitochondrial respiratory chain in HCT116 cells. Taken together, our results suggest that the loss of p21 results in an aberrant increase in the mitochondrial mass and in mitochondrial dysfunction in HCT116 cells, indicating that p21 is required to maintain proper mitochondrial mass and respiratory function. 相似文献
13.
14.
Namdar M Gebhard C Studiger R Shi Y Mocharla P Schmied C Brugada P Lüscher TF Camici GG 《PloS one》2012,7(4):e36373
Background
Fabry disease (FD) is caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (GLA) resulting in the accumulation of globotriaosylsphingosine (Gb3) in a variety of tissues. While GLA deficiency was always considered as the fulcrum of the disease, recent attention shifted towards studying the mechanisms through which Gb3 accumulation in vascular cells leads to endothelial dysfunction and eventually multiorgan failure. In addition to the well-described macrovascular disease, FD is also characterized by abnormalities of microvascular function, which have been demonstrated by measurements of myocardial blood flow and coronary flow reserve. To date, the relative importance of Gb3 accumulation versus GLA deficiency in causing endothelial dysfunction is not fully understood; furthermore, its differential effects on cardiac micro- and macrovascular endothelial cells are not known.Methods and Results
In order to assess the effects of Gb3 accumulation versus GLA deficiency, human macro- and microvascular cardiac endothelial cells (ECs) were incubated with Gb3 or silenced by siRNA to GLA. Gb3 loading caused deregulation of several key endothelial pathways such as eNOS, iNOS, COX-1 and COX-2, while GLA silencing showed no effects. Cardiac microvascular ECs showed a greater susceptibility to Gb3 loading as compared to macrovascular ECs.Conclusions
Deregulation of key endothelial pathways as observed in FD vasculopathy is likely caused by intracellular Gb3 accumulation rather than deficiency of GLA. Human microvascular ECs, as opposed to macrovascular ECs, seem to be affected earlier and more severely by Gb3 accumulation and this notion may prove fundamental for future progresses in early diagnosis and management of FD patients. 相似文献15.
Hirano M Martí R Spinazzola A Nishino I Nishigaki Y 《Nucleosides, nucleotides & nucleic acids》2004,23(8-9):1217-1225
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by mutations in the gene encoding thymidine phosphorylase (TP). The disease is characterized clinically by impaired eye movements, gastrointestinal dysmotility, cachexia, peripheral neuropathy, myopathy, and leukoencephalopathy. Molecular genetic studies of MNGIE patients' tissues have revealed multiple deletions, depletion, and site-specific point mutations of mitochondrial DNA. TP is a cytosolic enzyme required for nucleoside homeostasis. In MNGIE, TP activity is severely reduced and consequently levels of thymidine and deoxyuridine in plasma are dramatically elevated. We have hypothesized that the increased levels of intracellular thymidine and deoxyuridine cause imbalances of mitochondrial nucleotide pools that, in turn, lead to the mtDNA abnormalities. MNGIE was the first molecularly characterized genetic disorder caused by abnormal mitochondrial nucleoside/nucleotide metabolism. Future studies are likely to reveal further insight into this expanding group of diseases. 相似文献
16.
Adhihetty PJ Ljubicic V Hood DA 《American journal of physiology. Endocrinology and metabolism》2007,292(3):E748-E755
Chronic contractile activity of skeletal muscle induces an increase in mitochondria located in proximity to the sarcolemma [subsarcolemmal (SS)] and in mitochondria interspersed between the myofibrils [intermyofibrillar (IMF)]. These are energetically favorable metabolic adaptations, but because mitochondria are also involved in apoptosis, we investigated the effect of chronic contractile activity on mitochondrially mediated apoptotic signaling in muscle. We hypothesized that chronic contractile activity would provide protection against mitochondrially mediated apoptosis despite an elevation in the expression of proapoptotic proteins. To induce mitochondrial biogenesis, we chronically stimulated (10 Hz; 3 h/day) rat muscle for 7 days. Chronic contractile activity did not alter the Bax/Bcl-2 ratio, an index of apoptotic susceptibility, and did not affect manganese superoxide dismutase levels. However, contractile activity increased antiapoptotic 70-kDa heat shock protein and apoptosis repressor with a caspase recruitment domain by 1.3- and 1.4-fold (P<0.05), respectively. Contractile activity elevated SS mitochondrial reactive oxygen species (ROS) production 1.4- and 1.9-fold (P<0.05) during states IV and III respiration, respectively, whereas IMF mitochondrial state IV ROS production was suppressed by 28% (P<0.05) and was unaffected during state III respiration. Following stimulation, exogenous ROS treatment produced less cytochrome c release (25-40%) from SS and IMF mitochondria, and also reduced apoptosis-inducing factor release (approximately 30%) from IMF mitochondria, despite higher inherent cytochrome c and apoptosis-inducing factor expression. Chronic contractile activity did not alter mitochondrial permeability transition pore (mtPTP) components in either subfraction. However, SS mitochondria exhibited a significant increase in the time to Vmax of mtPTP opening. Thus, chronic contractile activity induces predominantly antiapoptotic adaptations in both mitochondrial subfractions. Our data suggest the possibility that chronic contractile activity can exert a protective effect on mitochondrially mediated apoptosis in muscle. 相似文献
17.
H Plun-Favreau V S Burchell K M Holmstr?m Z Yao E Deas K Cain V Fedele N Moisoi M Campanella L Miguel Martins N W Wood A V Gourine A Y Abramov 《Cell death & disease》2012,3(6):e335
Loss of the mitochondrial protease HtrA2 (Omi) in mice leads to mitochondrial dysfunction, neurodegeneration and premature death, but the mechanism underlying this pathology remains unclear. Using primary cultures from wild-type and HtrA2-knockout mice, we find that HtrA2 deficiency significantly reduces mitochondrial membrane potential in a range of cell types. This depolarisation was found to result from mitochondrial uncoupling, as mitochondrial respiration was increased in HtrA2-deficient cells and respiratory control ratio was dramatically reduced. HtrA2-knockout cells exhibit increased proton translocation through the ATP synthase, in combination with decreased ATP production and truncation of the F1 α-subunit, suggesting the ATP synthase as the source of the proton leak. Uncoupling in the HtrA2-deficient mice is accompanied by altered breathing pattern and, on a cellular level, ATP depletion and vulnerability to chemical ischaemia. We propose that this vulnerability may ultimately cause the neurodegeneration observed in these mice. 相似文献
18.
19.
Mitochondrial dysfunction represents a critical event during the pathogenesis of Parkinson's disease (PD) and expanding evidences demonstrate that an altered balance in mitochondrial fission/fusion is likely an important mechanism leading to mitochondrial and neuronal dysfunction/degeneration. In this study, we investigated whether DJ-1 is involved in the regulation of mitochondrial dynamics and function in neuronal cells. Confocal and electron microscopic analysis demonstrated that M17 human neuroblastoma cells over-expressing wild-type DJ-1 (WT DJ-1 cells) displayed elongated mitochondria while M17 cells over-expressing PD-associated DJ-1 mutants (R98Q, D149A and L166P) (mutant DJ-1 cells) showed significant increase of fragmented mitochondria. Similar mitochondrial fragmentation was also noted in primary hippocampal neurons over-expressing PD-associated mutant forms of DJ-1. Functional analysis revealed that over-expression of PD-associated DJ-1 mutants resulted in mitochondria dysfunction and increased neuronal vulnerability to oxidative stress (H(2) O(2)) or neurotoxin. Further immunoblot studies demonstrated that levels of dynamin-like protein (DLP1), also known as Drp1, a regulator of mitochondrial fission, was significantly decreased in WT DJ-1 cells but increased in mutant DJ-1 cells. Importantly, DLP1 knockdown in these mutant DJ-1 cells rescued the abnormal mitochondria morphology and all associated mitochondria/neuronal dysfunction. Taken together, these studies suggest that DJ-1 is involved in the regulation of mitochondrial dynamics through modulation of DLP1 expression and PD-associated DJ-1 mutations may cause PD by impairing mitochondrial dynamics and function. 相似文献
20.
Parkinson's disease (PD) is a neurodegenerative disorder associated with a selective loss of dopaminergic neurons in the substantia nigra. While the underlying cause of PD is not clearly understood, oxidative stress and mitochondrial dysfunction are thought to play a role. We have previously suggested tetrahydrobiopterin (BH4), an obligatory cofactor for the dopamine synthesis enzyme tyrosine hydroxylase and present selectively in monoaminergic neurons in the brain, as an endogenous molecule that contributes to the dopaminergic neurodegeneration. In the present study, we show that BH4 leads to inhibition of activities of complexes I and IV of the electron transport chain (ETC) and reduction of mitochondrial membrane potential. BH4 appears to be different from rotenone and MPP(+), the synthetic compounds used to generate Parkinson models, in its effect on complex IV. BH4 also induces the release of mitochondrial cytochrome c. Pretreatment with the sulfhydryl antioxidant N-acetylcysteine or the quinone reductase inducer dimethyl fumarate prevents the ETC inhibition and cytochrome c release following BH4 exposure, suggesting the involvement of quinone products. Together with our previous observation that BH4 leads to generation of oxidative stress and selective dopaminergic neurodegeneration both in vitro and in vivo via inducing apoptosis, the mitochondrial involvement in BH4 toxicity further suggests possible relevance of this endogenous molecule to pathogenesis of PD. 相似文献