首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The majority of the Arabidopsis fruit comprises an ovary with three primary tissue types: the valves, the replum and the valve margins. The valves, which are derived from the ovary walls, are separated along their entire length by the replum. The valve margin, which consists of a separation layer and a lignified layer, forms as a narrow stripe of cells at the valve-replum boundaries. The valve margin identity genes are expressed at the valve-replum boundary and are negatively regulated by FUL and RPL in the valves and replum, respectively. In ful rpl double mutants, the valve margin identity genes become ectopically expressed, and, as a result, the entire outer surface of the ovary takes on valve margin identity. We carried out a genetic screen in this sensitized genetic background and identified a suppressor mutation that restored replum development. Surprisingly, we found that the corresponding suppressor gene was AP2, a gene that is well known for its role in floral organ identity, but whose role in Arabidopsis fruit development had not been previously described. We found that AP2 acts to prevent replum overgrowth by negatively regulating BP and RPL, two genes that normally act to promote replum formation. We also determined that AP2 acts to prevent overgrowth of the valve margin by repressing valve margin identity gene expression. We have incorporated AP2 into the current genetic network controlling fruit development in Arabidopsis.  相似文献   

2.
Members of the Brassicaceae family, including Arabidopsis thaliana and oilseed rape (Brassica napus), produce dry fruits that open upon maturity along a specialised tissue called the valve margin. Proper development of the valve margin in Arabidopsis is dependent on the INDEHISCENT (IND) gene, the role of which in genetic and hormonal regulation has been thoroughly characterised. Here we perform phylogenetic comparison of IND genes in Arabidopsis and Brassica to identify conserved regulatory sequences that are responsible for specific expression at the valve margin. In addition we have taken a comparative development approach to demonstrate that the BraA.IND.a and BolC.IND.a genes from B. rapa and B. oleracea share identical function with Arabidopsis IND since ethyl methanesulphonate (EMS) mutant alleles and silenced transgenic lines have valve margin defects. Furthermore we show that the degree of these defects can be fine‐tuned for crop improvement. Wild‐type Arabidopsis produces an outer replum composed of about six cell files at the medial region of the fruits, whereas Brassica fruits lack this tissue. A strong loss‐of‐function braA.ind.a mutant gained outer replum tissue in addition to its defect in valve margin development. An enlargement of replum size was also observed in the Arabidopsis ind mutant suggesting a general role of Brassicaceae IND genes in preventing valve margin cells from adopting replum identity.  相似文献   

3.
4.
5.
The Arabidopsis fruit forms a seedpod that develops from the fertilized gynoecium. It is mainly comprised of an ovary in which three distinct tissues can be differentiated: the valves, the valve margins and the replum. Separation of cells at the valve margin allows for the valves to detach from the replum and thus dispersal of the seeds. Valves and valve margins are located in lateral positions whereas the replum is positioned medially and retains meristematic properties resembling the shoot apical meristem (SAM). Members of the WUSCHEL‐related homeobox family have been involved in stem cell maintenance in the SAM, and within this family, we found that WOX13 is expressed mainly in meristematic tissues including the replum. We also show that wox13 loss‐of‐function mutations reduce replum size and enhance the phenotypes of mutants affected in the replum identity gene RPL. Conversely, misexpression of WOX13 produces, independently from BP and RPL, an oversized replum and valve defects that closely resemble those of mutants in JAG/FIL activity genes. Our results suggest that WOX13 promotes replum development by likely preventing the activity of the JAG/FIL genes in medial tissues. This regulation seems to play a role in establishing the gradient of JAG/FIL activity along the medio‐lateral axis of the fruit critical for proper patterning. Our data have allowed us to incorporate the role of WOX13 into the regulatory network that orchestrates fruit patterning.  相似文献   

6.
The advent of fruits marked a key innovation in the evolution of flowering plants and helped generate a diverse array of mechanisms for seed dispersal. In the model plant, Arabidopsis thaliana, seed dispersal occurs through a process known as "pod-shatter" in which the fruit structure falls to pieces upon light mechanical pressures. This dispersal mechanism is dependent on the careful patterning of tissues in the fruit, which perform diverse functions that enable the fruit to open at maturation. Using the genetic power of Arabidopsis, many of the molecular components that help specify these tissues have been identified. Studies of the interactions among these genes have revealed a regulatory network that limits processes such as cell-cell separation and lignification to discreet regions of the fruit. Knowledge of these processes in a model fruit creates a foundation on which to build an understanding of the evolution of fruit form in other species and provides tools to engineer shatter-resistant seed pods to prevent crop loss in plants of agronomic importance such as canola.  相似文献   

7.
Arabidopsis has proven to be extremely useful as a reference organism for studies in plant biology, and huge efforts have been employed to unravel various mechanisms of Arabidopsis growth. A major challenge now is to demonstrate that this wealth of knowledge can be used for global agricultural and environmental improvement. Brassica species are closely related to Arabidopsis and represent ideal candidates for model-to-crop approaches as they include important crop plants, such as canola. Brassica plants normally disperse their seeds by a pod-shattering mechanism. Although this mechanism is an advantage in nature, unsynchronized pod shatter constitutes one of the biggest problems for canola farmers. Here, we show that ectopic expression of the Arabidopsis FRUITFULL gene in Brassica juncea is sufficient to produce pod shatter-resistant Brassica fruit and that the genetic pathway leading to valve margin specification is conserved between Arabidopsis and Brassica . These studies demonstrate a genetic strategy for the control of seed dispersal that should be generally applicable to diverse Brassica crop species to reduce seed loss.  相似文献   

8.

Premise of the Study

Nearly all seed plants rely on stored seed reserves before photosynthesis can commence. Natural selection for seed oil traits must have occurred over 319 million years of evolution since the first seed plant ancestor. Accounting for the biogeographic distribution of seed oil traits is fundamental to understanding the mechanisms of adaptive evolution in seed plants. However, the evolution of seed oils is poorly understood. We provide evidence of the adaptive nature of seed oil traits at the intraspecific and interspecific levels in Brassicaceae—an oilseed‐rich and economically important plant family.

Methods

Univariate statistics, Pearson's correlation, multiple regression, generalized linear mixed model analysis, and phylogenetic autocorrelation tests on seed oil traits of 360 accessions of Arabidopsis thaliana and 216 Brassicaceae species helped provide evidence of the adaptive nature of seed oil traits.

Key Results

At higher latitudes, both seed oil content and unsaturated fatty acids have selective advantages in Arabidopsis thaliana (intraspecific‐level), while only unsaturated fatty acids have selective advantages across 216 Brassicaceae species (interspecific‐level). The seed oil patterns fit within the theoretical framework of the gradient model. Seed oil content increases significantly from temperate to subtropical to tropical regions in Brassicaceae herbs. Absence of phylogenetic signals for seed oil traits and high seed oil content in four tribes of Brassicaceae were observed.

Conclusions

Multiple seed oil traits are adaptive in nature and follow a gradient model. Consistent evolutionary patterns of seed oil traits were observed at the intraspecific and interspecific levels in Brassicaceae. Seed oil traits change with latitude and across biomes, suggesting selection. The absence of a phylogenetic signal for seed oil traits and the occurrence of high seed oil content in four Brassicaceae tribes provides evidence of the adaptive nature of seed oil traits in Brassicaceae.  相似文献   

9.
In flowering plants, fruit dehiscence enables seed dispersal. Here we report that ntt-3D, an activation tagged allele of NO TRANSMITTING TRACT (NTT), caused a failure of fruit dehiscence in Arabidopsis. We identified ntt-3D, in which the 35S enhancer was inserted adjacent to AT3G-57670, from our activation tagged mutant library. ntt-3D mutants showed serrated leaves, short siliques, and indehiscence phenotypes. NTT-overexpressing plants largely phenocopied the ntt-3D plants. As the proximate cause of the indehiscence, ntt-3D plants exhibited a near absence of valve margin and lignified endocarp b layer in the carpel. In addition, the replum was enlarged in ntt-3D mutants. NTT expression reached a peak in flowers at stage 11 and gradually decreased thereafter and pNTT::GUS expression was mainly observed in the replum, indicating a potential role in fruit patterning. NTT:GFP localized in the nucleus and cytoplasm. FRUITFULL (FUL) expression was downregulated in ntt-3D mutants and ntt-3D suppressed upregulation of FUL in replumless mutants. These results indicate that NTT suppresses FUL, indicating a potential role in patterning of the silique. In seed crops, a reduction in pod dehiscence can increase yield by decreasing seed dispersal; therefore, our results may prove useful as a basis to improve crop yield.  相似文献   

10.
Short interspersed elements (SINEs) are a class of dispersed mobile sequences that use RNA as an intermediate in an amplification process called retroposition. The presence-absence of a SINE at a given locus has been used as a meaningful classification criterion to evaluate phylogenetic relations among species. We review here recent developments in the characterisation of plant SINEs and their use as molecular makers to retrace phylogenetic relations among wild and cultivated Oryza and Brassica species. In Brassicaceae, further use of SINE markers is limited by our partial knowledge of endogenous SINE families (their origin and evolution histories) and by the absence of a clear classification. To solve this problem, phylogenetic relations among all known Brassicaceae SINEs were analyzed and a new classification, grouping SINEs in 15 different families, is proposed. The relative age and size of each Brassicaceae SINE family was evaluated and new phylogenetically supported subfamilies were described. We also present evidence suggesting that new potentially active SINEs recently emerged in Brassica oleracea from the shuffling of preexisting SINE portions. Finally, the comparative evolution history of SINE families present in Arabidopsis thaliana and Brassica oleracea revealed that SINEs were in general more active in the Brassica lineage. The importance of these new data for the use of Brassicaceae SINEs as molecular markers in future applications is discussed.  相似文献   

11.
12.
Control of fruit patterning in Arabidopsis by INDEHISCENT   总被引:11,自引:0,他引:11  
  相似文献   

13.
Carpels and leaves are evolutionarily related organs, as the former are thought to be modified leaves. Therefore, developmental pathways that play crucial roles in patterning both organs are presumably conserved. In leaf primordia of Arabidopsis thaliana, the ASYMMETRIC LEAVES1 (AS1) gene interacts with AS2 to repress the class I KNOTTED1-like homeobox (KNOX) genes BREVIPEDICELLUS (BP), KNAT2 and KNAT6, restricting the expression of these genes to the meristem. In this report, we describe how AS1, presumably in collaboration with AS2, patterns the Arabidopsis gynoecium by repressing BP, which is expressed in the replum and valve margin, interacts in the replum with REPLUMLESS (RPL), an essential gene for replum development, and positively regulates the expression of this gene. Misexpression of BP in the gynoecium causes an increase in replum size, while the valve width is slightly reduced, and enhances the effect of mutations in FRUITFULL (FUL), a gene with an important function in valve development. Altogether, these findings strongly suggest that BP plays a crucial role in replum development. We propose a model for pattern formation along the mediolateral axis of the ovary, whereby three domains (replum, valve margin and valve) are specified by the opposing gradients of two antagonistic factors, valve factors and replum factors, the class I KNOX genes working as the latter.  相似文献   

14.
Cruciferin (12S globulin) is the major seed protein in Brassica napus (oil seed rape). It is synthesized during seed development and consists of six subunit pairs. Each of these pairs is synthesized as a precursor containing one alpha and one beta chain. At least three different precursors exist (P1-3), giving rise to four different mature subunits (cru1-4). Several cruciferin clones were isolated from a seed mRNA cDNA library. Comparison of the deduced amino acid sequences of these clones to amino acid sequences of purified cruciferin chains and peptides identified them as coding for cru2/3 and cru4 subunits. From the amino acid sequences deduced from two overlapping cDNA clones, the precursor of the cru4 subunit was shown to consist of 465 amino acid residues. Comparison of cruciferin and cruciferin-related sequences from B. napus and Arabidopsis thaliana, respectively, suggested that early during evolution the Brassicaceae family only possessed two types of 11-12S globulin genes, like the present-day Fabaceae.  相似文献   

15.
Self-incompatibility (SI) has been well studied in the genera Brassica and Arabidopsis, which have become models for investigation into the SI system. To understand the evolution of the SI system in the Brassicaceae, comparative analyses of the S-locus in genera other than Brassica and Arabidopsis are necessary. We report the identification of six putative S-locus receptor kinase genes (SRK) in natural populations of Capsella grandiflora, an SI species from a genus which is closely related to Arabidopsis. These S-alleles display striking similarities to the Arabidopsis lyrata SRK alleles in sequence and structure. Our phylogenetic analysis supports the scenario of differing SI evolution along the two lineages (The Brassica lineage and Arabidopsis/Capsella lineage). Our results also argue that the ancestral S-locus lacked the SLG gene (S-locus glycoprotein) and that the diversification of S-alleles predates the separation of Arabidopsis and Capsella.  相似文献   

16.
Active aspartic proteinase is isolated from Brassica napus seeds and the peptide sequence is used to generate primers for PCR. We present here cDNA and genomic clones for aspartic proteinases from the closely related Brassicaceae Arabidopsis thaliana and Brassica napus. The Arabidopsis cDNA represents a single gene, while Brassica has at least 4 genes. Like other plant aspartic proteases, the two Brassicaceae enzymes contain an extra protein domain of about 100 amino acids relative to the mammalian forms. The intron/exon arrangement in the Brassica genomic clone is significantly different from that in mammalian genes. As the proteinase is isolated from seeds, the same tissue where 2S albumins are processed, this implies expression of one of the aspartic proteinase genes there.  相似文献   

17.
18.
The evolution of plant morphologies during domestication events provides clues to the origin of crop species and the evolutionary genetics of structural diversification. The CAULIFLOWER gene, a floral regulatory locus, has been implicated in the cauliflower phenotype in both Arabidopsis thaliana and Brassica oleracea. Molecular population genetic analysis indicates that alleles carrying a nonsense mutation in exon 5 of the B. oleracea CAULIFLOWER (BoCAL) gene are segregating in both wild and domesticated B. oleracea subspecies. Alleles carrying this nonsense mutation are nearly fixed in B. oleracea ssp. botrytis (domestic cauliflower) and B. oleracea ssp. italica (broccoli), both of which show evolutionary modifications of inflorescence structures. Tests for selection indicate that the pattern of variation at this locus is consistent with positive selection at BoCAL in these two subspecies. This nonsense polymorphism, however, is also present in both B. oleracea ssp. acephala (kale) and B. oleracea ssp. oleracea (wild cabbage). These results indicate that specific alleles of BoCAL were selected by early farmers during the domestication of modified inflorescence structures in B. oleracea.  相似文献   

19.
Evolution of genome size in Brassicaceae   总被引:25,自引:0,他引:25  
BACKGROUND AND AIMS: Brassicaceae, with nearly 340 genera and more than 3350 species, anchors the low range of angiosperm genome sizes. The relatively narrow range of DNA content (0.16 pg < 1C < 1.95 pg) was maintained in spite of extensive chromosomal change. The aim of this study was to erect a cytological and molecular phylogenetic framework for a selected subset of the Brassicacae, and use this as a template to examine genome size evolution in Brassicaceae. METHODS: DNA contents were determined by flow cytometry and chromosomes were counted for 34 species of the family Brassicaceae and for ten Arabidopsis thaliana ecotypes. The amplified and sequenced ITS region for 23 taxa (plus six other taxa with known ITS sequences) were aligned and used to infer evolutionary relationship by parsimony analysis. KEY RESULTS: DNA content in the species studied ranged over 8-fold (1C = 0.16-1.31 pg), and 4.4-fold (1C = 0.16-0.71 pg) excluding allotetraploid Brassica species. The 1C DNA contents of ten Arabidopsis thaliana ecotypes showed little variation, ranging from 0.16 pg to 0.17 pg. CONCLUSIONS: The tree roots at an ancestral genome size of approximately 1x = 0.2 pg. Arabidopsis thaliana (1C = 0.16 pg; approximately 157 Mbp) has the smallest genome size in Brassicaceae studied here and apparently represents an evolutionary decrease in genome size. Two other branches that represent probable evolutionary decreases in genome size terminate in Lepidium virginicum and Brassica rapa. Branches in the phylogenetic tree that represent probable evolutionary increases in genome size terminate in Arabidopsis halleri, A. lyrata, Arabis hirsuta, Capsella rubella, Caulanthus heterophyllus, Crucihimalaya, Lepidium sativum, Sisymbrium and Thlaspi arvense. Branches within one clade containing Brassica were identified that represent two ancient ploidy events (2x to 4x and 4x to 6x) that were predicted from published comparative mapping studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号