首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dpb11/Cut5/TopBP1 is evolutionarily conserved and is essential for the initiation of DNA replication in eukaryotes. The Dpb11 of the budding yeast Saccharomyces cerevisiae has four BRCT domains (BRCT1 to -4). The N-terminal pair (BRCT1 and -2) and the C-terminal pair (BRCT3 and -4) bind to cyclin-dependent kinase (CDK)-phosphorylated Sld3 and Sld2, respectively. These phosphorylation-dependent interactions trigger the initiation of DNA replication. BRCT1 and -2 and BRCT3 and -4 of Dpb11 are separated by a short stretch of ∼100 amino acids. It is unknown whether this inter-BRCT region functions in DNA replication. Here, we showed that the inter-BRCT region is a GINS interaction domain that is essential for cell growth and that mutations in this domain cause replication defects in budding yeast. We found the corresponding region in the vertebrate ortholog, TopBP1, and showed that the corresponding region also interacts with GINS and is required for efficient DNA replication. We propose that the inter-BRCT region of Dpb11 is a functionally conserved GINS interaction domain that is important for the initiation of DNA replication in eukaryotes.  相似文献   

2.
Wang Z  Kim E  Leffak M  Xu YJ 《FEMS yeast research》2012,12(4):486-490
Initiation of DNA replication in eukaryotes is an evolutionarily conserved process that involves two distinct steps: the formation of prereplication complexes at replication origins in G1 and the assembly of preinitiation complexes (pre-ICs) in S phase, which leads to activation of the replication helicase. For the assembly of pre-ICs in yeast, formation of the Sld2-Dpb11-Sld3 complex is a critical event that requires phosphorylation of Sld2 and Sld3 by cyclin-dependent kinase. In mammals, RecQL4 and TopBP1 are excellent ortholog candidates for Sld2 and Dpb11, respectively. In this past year, three TopBP1-interacting proteins Treslin/Ticrr, GEMC1, and DUE-B have been identified in metazoans as possible functional orthologs of the yeast Sld3. To test this hypothesis, we carried out several complementation tests in fission yeast. The proteins were expressed at various levels in the temperature-sensitive sld3-10 mutant and in cells that lack endogenous Sld3. Our result showed that none of these metazoan proteins could rescue growth defect of the sld3 mutants. Although the result may have several interpretations, it is possible that the helicase activation in mammals has diverged in complexity during evolution from that in yeasts and may involve multiple players that interact with TopBP1.  相似文献   

3.
Replication stress impedes DNA polymerase progression causing activation of the ataxia telangiectasia and Rad3-related signaling pathway, which promotes the intra-S phase checkpoint activity through phosphorylation of checkpoint kinase 1 (Chk1). Chk1 suppresses replication origin firing, in part, by disrupting the interaction between the preinitiation complex components Treslin and TopBP1, an interaction that is mediated by TopBP1 BRCT domain-binding to two cyclin-dependent kinase (CDK) phosphorylation sites, T968 and S1000, in Treslin. Two nonexclusive models for how Chk1 regulates the Treslin–TopBP1 interaction have been proposed in the literature: in one model, these proteins dissociate due to a Chk1-induced decrease in CDK activity that reduces phosphorylation of the Treslin sites that bind TopBP1 and in the second model, Chk1 directly phosphorylates Treslin, resulting in dissociation of TopBP1. However, these models have not been formally examined. We show here that Treslin T968 phosphorylation was decreased in a Chk1-dependent manner, while Treslin S1000 phosphorylation was unchanged, demonstrating that T968 and S1000 are differentially regulated. However, CDK2-mediated phosphorylation alone did not fully account for Chk1 regulation of the Treslin–TopBP1 interaction. We also identified additional Chk1 phosphorylation sites on Treslin that contributed to disruption of the Treslin–TopBP1 interaction, including S1114. Finally, we showed that both of the proposed mechanisms regulate origin firing in cancer cell line models undergoing replication stress, with the relative roles of each mechanism varying among cell lines. This study demonstrates that Chk1 regulates Treslin through multiple mechanisms to promote efficient dissociation of Treslin and TopBP1 and furthers our understanding of Treslin regulation during the intra-S phase checkpoint.  相似文献   

4.
Cyclin-dependent kinase (CDK) plays essential roles in the initiation of DNA replication in eukaryotes. Although interactions of CDK-phosphorylated Sld2/Drc1 and Sld3 with Dpb11 have been shown to be essential in budding yeast, it is not known whether the mechanism is conserved. In this study, we investigated how CDK promotes the assembly of replication proteins onto replication origins in fission yeast. Phosphorylation of Sld3 was found to be dependent on CDK in S phase. Alanine substitutions at CDK sites decreased the interaction with Cut5/Dpb11 at the N-terminal BRCT motifs and decreased the loading of Cut5 onto replication origins. This defect was suppressed by overexpression of drc1(+). Phosphorylation of a conserved CDK site, Thr-111, in Drc1 was critical for interaction with Cut5 at the C-terminal BRCT motifs and was required for loading of Cut5. In a yeast three-hybrid assay, Sld3, Cut5, and Drc1 were found to form a ternary complex dependent on the CDK sites of Sld3 and Drc1, and Drc1-Cut5 binding enhanced the Sld3-Cut5 interaction. These results show that the mechanism of CDK-dependent loading of Cut5 is conserved in fission yeast in a manner similar to that elucidated in budding yeast.  相似文献   

5.
Phosphorylation often regulates protein-protein interactions to control biological reactions. The Sld2 and Dpb11 proteins of budding yeast form a phosphorylation-dependent complex that is essential for chromosomal DNA replication. The Sld2 protein has a cluster of 11 cyclin-dependent kinase (CDK) phosphorylation motifs (Ser/Thr-Pro), six of which match the canonical sequences Ser/Thr-Pro-X-Lys/Arg, Lys/Arg-Ser/Thr-Pro and Ser/Thr-Pro-Lys/Arg. Simultaneous alanine substitution for serine or threonine in all the canonical CDK-phosphorylation motifs severely reduces complex formation between Sld2 and Dpb11, and inhibits DNA replication. Here we show that phosphorylation of these canonical motifs does not play a direct role in complex formation, but rather regulates phosphorylation of another residue, Thr84. This constitutes a non-canonical CDK-phosphorylation motif within a 28-amino-acid sequence that is responsible, after phosphorylation, for binding of Sld2-Dpb11. We further suggest that CDK-catalysed phosphorylation of sites other than Thr84 renders Thr84 accessible to CDK. Finally, we argue that this novel mechanism sets a threshold of CDK activity for formation of the essential Sld2 to Dpb11 complex and therefore prevents premature DNA replication.  相似文献   

6.
DPB11/TopBP1 is an essential evolutionarily conserved gene involved in initiation of DNA replication and checkpoint signaling. Here, we show that Saccharomyces cerevisiae Dpb11 forms nuclear foci that localize to sites of DNA damage in G1, S and G2 phase, a recruitment that is conserved for its homologue TopBP1 in Gallus gallus. Damage-induced Dpb11 foci are distinct from Sld3 replication initiation foci. Further, Dpb11 foci are dependent on the checkpoint proteins Mec3 (9-1-1 complex) and Rad24, and require the C-terminal domain of Dpb11. Dpb11 foci are independent of the checkpoint kinases Mec1 and Tel1, and of the checkpoint mediator Rad9. In a site-directed mutagenesis screen, we identify a separation-of-function mutant, dpb11-PF, that is sensitive to DSB-inducing agents yet remains proficient for DNA replication and the S-phase checkpoint at the permissive temperature. The dpb11-PF mutant displays altered rates of heteroallelic and direct-repeat recombination, sensitivity to DSB-inducing drugs as well as delayed kinetics of mating-type switching with a defect in the DNA synthesis step thus implicating Dpb11 in homologous recombination. We conclude that Dpb11/TopBP1 plays distinct roles in replication, checkpoint response and recombination processes, thereby contributing to chromosomal stability.  相似文献   

7.
Cyclin-dependent kinases (CDKs) regulate the progression of the cell cycle in eukaryotes. At the onset of chromosomal DNA replication, CDKs phosphorylate two replication proteins, Sld2 and Sld3, in budding yeast. Phosphorylated Sld2 and Sld3 enhance the formation of complexes with the BRCT (BRCA1 C-terminal)-containing replication protein Dpb11. The formation of these complexes is essential and sufficient for the CDK-dependent activation of the initiation of chromosomal DNA replication. Multiple phosphorylation of Sld2 by CDKs fine-tunes the process of complex formation. Here, we discussed the regulation of the initiation step of chromosomal DNA replication via CDK-dependent phosphorylation.  相似文献   

8.
Topoisomerase IIbeta-binding protein (TopBP1), a human protein with eight BRCT domains, is similar to Saccharomyces cerevisiae Dpb11 and Schizosaccharomyces pombe Cut5 checkpoint proteins and closely related to Drosophila Mus101. We show that human TopBP1 is required for DNA replication and that it interacts with DNA polymerase epsilon. In S phase TopBP1 colocalizes with Brca1 to foci that do not represent sites of ongoing DNA replication. Inhibition of DNA synthesis leads to relocalization of TopBP1 together with Brca1 to replication forks, suggesting a role in rescue of stalled forks. DNA damage induces formation of distinct TopBP1 foci that colocalize with Brca1 in S phase, but not in G(1) phase. We also show that TopBP1 interacts with the checkpoint protein hRad9. Thus, these results implicate TopBP1 in replication and checkpoint functions.  相似文献   

9.
Dpb11 is required for the initiation of DNA replication in budding yeast. Dpb11 binds to S-phase cyclin-dependent kinase-phosphorylated Sld2 and Sld3 to form a ternary complex during S phase. The replication fork helicase in eukaryotes is composed of Cdc45, Mcm2-7, and GINS. We show here, using purified proteins from budding yeast, that Dpb11 alone binds to Mcm2-7 and that Dpb11 also competes with GINS for binding to Mcm2-7. Furthermore, Dpb11 binds directly to single-stranded DNA (ssDNA), and ssDNA inhibits the Dpb11 interaction with Mcm2-7. We also found that Dpb11 can recruit Cdc45 to Mcm2-7. We identified a mutant of the BRCT4 motif of Dpb11 that remains bound to Mcm2-7 in the presence of ssDNA (dpb11-m1,m2,m3,m5), and this mutant exhibits a DNA replication defect when expressed in budding yeast cells. Expression of this mutant results in increased interaction between Dpb11 and Mcm2-7 during S phase, impaired GINS interaction with Mcm2-7 during S phase, and decreased replication protein A (RPA) interaction with origin DNA during S phase. We propose a model in which Dpb11 first recruits Cdc45 to Mcm2-7. Dpb11, although bound to Cdc45·Mcm2-7, can block the interaction between GINS and Mcm2-7. Upon extrusion of ssDNA from the central channel of Mcm2-7, Dpb11 dissociates from Mcm2-7, and Dpb11 binds to ssDNA, thereby allowing GINS to bind to Cdc45·Mcm2-7. Finally, we propose that Dpb11 functions with Sld2 and Sld3 to help control the assembly of the replication fork helicase.  相似文献   

10.
TopBP1 (topoisomerase IIβ-binding protein 1) is a dual replication/checkpoint protein. Treslin/Ticrr, an essential replication protein, was discovered as a binding partner for TopBP1 and also in a genetic screen for checkpoint regulators in zebrafish. Treslin is phosphorylated by CDK2/cyclin E in a cell cycle-dependent manner, and its phosphorylation state dictates its interaction with TopBP1. The role of Treslin in the initiation of DNA replication has been partially elucidated; however, its role in the checkpoint response remained elusive. In this study, we show that Treslin stimulates ATR phosphorylation of Chk1 both in vitro and in vivo in a TopBP1-dependent manner. Moreover, we show that the phosphorylation state of Treslin at Ser-1000 is important for its checkpoint activity. Overall, our results indicate that, like TopBP1, Treslin is a dual replication/checkpoint protein that directly participates in ATR-mediated checkpoint signaling.  相似文献   

11.
The diverse roles of TopBP1 in DNA replication and checkpoint signaling are associated with the scaffolding ability of TopBP1 to initiate various protein-protein interactions. The recognition of the BACH1/FANCJ helicase by TopBP1 is critical for the activation of the DNA replication checkpoint at stalled replication forks and is facilitated by the C-terminal tandem BRCT7/8 domains of TopBP1 and a phosphorylated Thr(1133) binding motif in BACH1. Here we provide the structural basis for this interaction through analysis of the x-ray crystal structures of TopBP1 BRCT7/8 both free and in complex with a BACH1 phospho-peptide. In contrast to canonical BRCT-phospho-peptide recognition, TopBP1 BRCT7/8 undergoes a dramatic conformational change upon BACH1 binding such that the two BRCT repeats pivot about the central BRCT-BRCT interface to provide an extensive and deep peptide-binding cleft. Additionally, we provide the first structural mechanism for Thr(P) recognition among BRCT domains. Together with systematic mutagenesis studies, we highlight the role of key contacts in governing the unique specificity of the TopBP1-BACH1 interaction.  相似文献   

12.
The replication fork helicase in eukaryotic cells is comprised of Cdc45, Mcm2-7, and GINS (CMG complex). In budding yeast, Sld3, Sld2, and Dpb11 are required for the initiation of DNA replication, but Sld3 and Dpb11 do not travel with the replication fork. Sld3 and Cdc45 bind to early replication origins during the G(1) phase of the cell cycle, whereas Sld2, GINS, polymerase ε, and Dpb11 form a transient preloading complex that associates with origins during S phase. We show here that Sld3 binds tightly to origin single-stranded DNA (ssDNA). CDK-phosphorylated Sld3 binds to origin ssDNA with similar high affinity. Origin ssDNA does not disrupt the interaction between Sld3 and Dpb11, and origin ssDNA does not disrupt the interaction between Sld3 and Cdc45. However, origin ssDNA substantially disrupts the interaction between Sld3 and Mcm2-7. GINS and Sld3 compete with one another for binding to Mcm2-7. However, in a mixture of Sld3, GINS, and Mcm2-7, origin ssDNA inhibits the interaction between Sld3 and Mcm2-7, whereas origin ssDNA promotes the association between GINS and Mcm2-7. We also show that origin single-stranded DNA promotes the formation of the CMG complex. We conclude that origin single-stranded DNA releases Sld3 from Mcm2-7, allowing GINS to bind Mcm2-7.  相似文献   

13.
The DNA damage checkpoint controls cell cycle arrest in response to DNA damage, and activation of this checkpoint is in turn cell cycle-regulated. Rad9, the ortholog of mammalian 53BP1, is essential for this checkpoint response and is phosphorylated by the cyclin-dependent kinase (CDK) in the yeast Saccharomyces cerevisiae. Previous studies suggested that the CDK consensus sites of Rad9 are important for its checkpoint activity. However, the precise CDK sites of Rad9 involved have not been determined. Here we show that CDK consensus sites of Rad9 function in parallel to its BRCT domain toward checkpoint activation, analogous to its fission yeast ortholog Crb2. Unlike Crb2, however, mutation of multiple rather than any individual CDK site of Rad9 is required to completely eliminate its checkpoint activity in vivo. Although Dpb11 interacts with CDK-phosphorylated Rad9, we provide evidence showing that elimination of this interaction does not affect DNA damage checkpoint activation in vivo, suggesting that additional pathway(s) exist. Taken together, these findings suggest that the regulation of Rad9 by CDK and the role of Dpb11 in DNA damage checkpoint activation are more complex than previously suggested. We propose that multiple phosphorylation of Rad9 by CDK may provide a more robust system to allow Rad9 to control cell cycle-dependent DNA damage checkpoint activation.  相似文献   

14.
The DNA damage checkpoint controls cell cycle arrest in response to DNA damage, and activation of this checkpoint is in turn cell cycle-regulated. Rad9, the ortholog of mammalian 53BP1, is essential for this checkpoint response and is phosphorylated by the cyclin-dependent kinase (CDK) in the yeast Saccharomyces cerevisiae. Previous studies suggested that the CDK consensus sites of Rad9 are important for its checkpoint activity. However, the precise CDK sites of Rad9 involved have not been determined. Here we show that CDK consensus sites of Rad9 function in parallel to its BRCT domain toward checkpoint activation, analogous to its fission yeast ortholog Crb2. Unlike Crb2, however, mutation of multiple rather than any individual CDK site of Rad9 is required to completely eliminate its checkpoint activity in vivo. Although Dpb11 interacts with CDK-phosphorylated Rad9, we provide evidence showing that elimination of this interaction does not affect DNA damage checkpoint activation in vivo, suggesting that additional pathway(s) exist. Taken together, these findings suggest that the regulation of Rad9 by CDK and the role of Dpb11 in DNA damage checkpoint activation are more complex than previously suggested. We propose that multiple phosphorylation of Rad9 by CDK may provide a more robust system to allow Rad9 to control cell cycle-dependent DNA damage checkpoint activation.  相似文献   

15.
Pfander B  Diffley JF 《The EMBO journal》2011,30(24):4897-4907
Eukaryotic cells respond to DNA damage by activating checkpoint signalling pathways. Checkpoint signals are transduced by a protein kinase cascade that also requires non-kinase mediator proteins. One such mediator is the Saccharomyces cerevisiae Dpb11 protein, which binds to and activates the apical checkpoint kinase, Mec1. Here, we show that a ternary complex of Dpb11, Mec1 and another key mediator protein Rad9 is required for efficient Rad9 phosphorylation by Mec1 in vitro, and for checkpoint activation in vivo. Phosphorylation of Rad9 by cyclin-dependent kinase (CDK) on two key residues generates a binding site for tandem BRCT repeats of Dpb11, and is thereby required for Rad9 recruitment into the ternary complex. Checkpoint signalling via Dpb11, therefore, does not efficiently occur during G1 phase when CDK is inactive. Thus, Dpb11 coordinates checkpoint signal transduction both temporally and spatially, ensuring the initiator kinase is specifically activated in proximity of one of its critical substrates.  相似文献   

16.
MDC1 collaborates with TopBP1 in DNA replication checkpoint control   总被引:1,自引:0,他引:1  
Human TopBP1 is a major player in the control of the DNA replication checkpoint. In this study, we identified MDC1, a key checkpoint protein involved in the cellular response to DNA double-strand breaks, as a TopBP1-associated protein. The specific TopBP1-MDC1 interaction is mediated by the fifth BRCT domain of TopBP1 and the Ser-Asp-Thr (SDT) repeats of MDC1. In addition, we demonstrated that TopBP1 accumulation at stalled replication forks is promoted by the H2AX/MDC1 signaling cascade. Moreover, MDC1 is important for ATR-dependent Chk1 activation in response to replication stress. Collectively, our data suggest that MDC1 facilitates several important steps in both cellular DNA damage response and the DNA replication checkpoint.  相似文献   

17.
Rad4TopBP1, a BRCT domain protein, is required for both DNA replication and checkpoint responses. Little is known about how the multiple roles of Rad4TopBP1 are coordinated in maintaining genome integrity. We show here that Rad4TopBP1 of fission yeast physically interacts with the checkpoint sensor proteins, the replicative DNA polymerases, and a WD-repeat protein, Crb3. We identified four novel mutants to investigate how Rad4TopBP1 could have multiple roles in maintaining genomic integrity. A novel mutation in the third BRCT domain of rad4+TopBP1 abolishes DNA damage checkpoint response, but not DNA replication, replication checkpoint, and cell cycle progression. This mutant protein is able to associate with all three replicative polymerases and checkpoint proteins Rad3ATR-Rad26ATRIP, Hus1, Rad9, and Rad17 but has a compromised association with Crb3. Furthermore, the damaged-induced Rad9 phosphorylation is significantly reduced in this rad4TopBP1 mutant. Genetic and biochemical analyses suggest that Crb3 has a role in the maintenance of DNA damage checkpoint and influences the Rad4TopBP1 damage checkpoint function. Taken together, our data suggest that Rad4TopBP1 provides a scaffold to a large complex containing checkpoint and replication proteins thereby separately enforcing checkpoint responses to DNA damage and replication perturbations during the cell cycle.  相似文献   

18.
The Cdc45-Mcm2-7-GINS (CMG) complex is the replication fork helicase in eukaryotes. Synthetic lethal with Dpb11-1 (Sld2) is required for the initiation of DNA replication, and the S phase cyclin-dependent kinase (S-CDK) phosphorylates Sld2 in vivo. We purified components of the replication initiation machinery and studied their interactions in vitro. We found that unphosphorylated or CDK-phosphorylated Sld2 binds to the mini chromosome maintenance (Mcm)2-7 complex with similar efficiency. Sld2 interaction with Mcm2-7 blocks the interaction between GINS and Mcm2-7. The interaction between CDK-phosphorylated Sld2 and Mcm2-7 is substantially inhibited by origin single-stranded DNA (ssDNA). Furthermore, origin ssDNA allows GINS to bind to Mcm2-7 in the presence of CDK-phosphorylated Sld2. However, unphosphorylated Sld2 blocks the interaction between GINS and Mcm2-7 even in the presence of origin ssDNA. We identified a mutant of Sld2 that does not bind to DNA. When this mutant is expressed in yeast cells, cell growth is severely inhibited with very slow progression into S phase. We propose a model wherein Sld2 blocks the interaction between GINS and Mcm2-7 in vivo. Once origin ssDNA is extruded from the Mcm2-7 ring and CDK phosphorylates Sld2, the origin ssDNA binds to CDK-phosphorylated Sld2. This event may allow the interaction between GINS and Mcm2-7 in vivo. Thus, CDK phosphorylation of Sld2 may be important to release Sld2 from Mcm2-7, thereby allowing GINS to bind Mcm2-7. Furthermore, origin ssDNA may stimulate the formation of the CMG complex by alleviating inhibitory interactions between Sld2 with Mcm2-7.  相似文献   

19.
TopBP1 is a checkpoint protein that colocalizes with ATR at sites of DNA replication stress. In this study, we show that TopBP1 also colocalizes with 53BP1 at sites of DNA double‐strand breaks (DSBs), but only in the G1‐phase of the cell cycle. Recruitment of TopBP1 to sites of DNA replication stress was dependent on BRCT domains 1–2 and 7–8, whereas recruitment to sites of DNA DSBs was dependent on BRCT domains 1–2 and 4–5. The BRCT domains 4–5 interacted with 53BP1 and recruitment of TopBP1 to sites of DNA DSBs in G1 was dependent on 53BP1. As TopBP1 contains a domain important for ATR activation, we examined whether it contributes to the G1 cell cycle checkpoint. By monitoring the entry of irradiated G1 cells into S‐phase, we observed a checkpoint defect after siRNA‐mediated depletion of TopBP1, 53BP1 or ATM. Thus, TopBP1 may mediate the checkpoint function of 53BP1 in G1.  相似文献   

20.
The protein kinase Mec1 (ATR ortholog) and its partner Ddc2 (ATRIP ortholog) play a key role in DNA damage checkpoint responses in budding yeast. Previous studies have established the model in which Ddc1, a subunit of the checkpoint clamp, and Dpb11, related to TopBP1, activate Mec1 directly and control DNA damage checkpoint responses at G1 and G2/M. In this study, we show that Ddc2 contributes to Mec1 activation through a Ddc1- or Dpb11-independent mechanism. The catalytic activity of Mec1 increases after DNA damage in a Ddc2-dependent manner. In contrast, Mec1 activation occurs even in the absence of Ddc1 and Dpb11 function at G2/M. Ddc2 recruits Mec1 to sites of DNA damage. To dissect the role of Ddc2 in Mec1 activation, we isolated and characterized a separation-of-function mutation in DDC2, called ddc2-S4. The ddc2-S4 mutation does not affect Mec1 recruitment but diminishes Mec1 activation. Mec1 phosphorylates histone H2A in response to DNA damage. The ddc2-S4 mutation decreases phosphorylation of histone H2A more significantly than the absence of Ddc1 and Dpb11 function does. Our results suggest that Ddc2 plays a critical role in Mec1 activation as well as Mec1 localization at sites of DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号