首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sanyal S  Frank CG  Menon AK 《Biochemistry》2008,47(30):7937-7946
Transbilayer movement, or flip-flop, of lipids across the endoplasmic reticulum (ER) is required for membrane biogenesis, protein glycosylation, and GPI anchoring. Specific ER membrane proteins, flippases, are proposed to facilitate lipid flip-flop, but no ER flippase has been biochemically identified. The glycolipid Glc 3Man 9GlcNAc 2-PP-dolichol is the oligosaccharide donor for protein N-glycosylation reactions in the ER lumen. Synthesis of Glc 3Man 9GlcNAc 2-PP-dolichol is initiated on the cytoplasmic side of the ER and completed on the lumenal side, requiring flipping of the intermediate Man 5GlcNAc 2-PP-dolichol (M5-DLO) across the ER. Here we report the reconstitution of M5-DLO flipping in proteoliposomes generated from Triton X-100-extracted Saccharomyces cerevisiae microsomal proteins. Flipping was assayed by using the lectin Concanavalin A to capture M5-DLOs that had been translocated from the inner to the outer leaflet of the vesicles. M5-DLO flipping in the reconstituted system was ATP-independent and trypsin-sensitive and required a membrane protein(s) that sedimented at approximately 4 S. Man 7GlcNAc 2-PP-dolichol, a higher-order lipid intermediate, was flipped >10-fold more slowly than M5-DLO at 25 degrees C. Chromatography on Cibacron Blue dye resin enriched M5-DLO flippase activity approximately 5-fold and resolved it from both the ER glycerophospholipid flippase activity and the genetically identified flippase candidate Rft1 [Helenius, J., et al. (2002) Nature 415, 447-450]. The latter result indicates that Rft1 is not the M5-DLO flippase. Our data (i) demonstrate that the ER has at least two distinct flippase proteins, each specifically capable of translocating a class of phospholipid, and (ii) provide, for the first time, a biochemical means of identifying the M5-DLO flippase.  相似文献   

2.
A phospholipid flippase activity from the endoplasmic reticulum (ER) of the model organism Saccharomyces cerevisiae has been characterized and functionally reconstituted into proteoliposomes. Analysis of the transbilayer movement of acyl-7-nitrobenz-2-oxa-1,3-diazol-4-yl (acyl-NBD)-labeled phosphatidylcholine in yeast microsomes using a fluorescence stopped-flow back exchange assay revealed a rapid, ATP-independent flip-flop (half-time, <2 min). Proteoliposomes prepared from a Triton X-100 extract of yeast microsomal membranes were also capable of flipping NBD-labeled phospholipid analogues rapidly in an ATP-independent fashion. Flippase activity was sensitive to the protein modification reagents N-ethylmaleimide and diethylpyrocarbonate. Resolution of the Triton X-100 extract by velocity gradient centrifugation resulted in the identification of a approximately 4S protein fraction enriched in flippase activity as well as of other fractions where flippase activity was depleted or undetectable. We estimate that flippase activity is due to a protein(s) representing approximately 2% (wt/wt) of proteins in the Triton X-100 extract. These results indicate that specific proteins are required to facilitate ATP-independent phospholipid flip-flop in the ER and that their identification is feasible. The architecture of the ER protein translocon suggests that it could account for the flippase activity in the ER. We tested this hypothesis using microsomes prepared from a temperature-sensitive yeast mutant in which the major translocon component, Sec61p, was quantitatively depleted. We found that the protein translocon is not required for transbilayer movement of phospholipids across the ER. Our work defines yeast as a promising model system for future attempts to identify the ER phospholipid flippase and to test and purify candidate flippases.  相似文献   

3.
Sahu SK  Gummadi SN 《Biochemistry》2008,47(39):10481-10490
Phospholipid translocation (flip-flop) in biogenic (self-synthesizing) membranes such as the endoplasmic reticulum of eukaryotic cells (rat liver) and bacterial cytoplasmic membranes is a fundamental step in membrane biogenesis. It is known that flip-flop in these membranes occurs without a metabolic energy requirement, bidirectionally with no specificity for phospholipid headgroup. In this study, we demonstrate for the first time ATP-independent flippase activity in endoplasmic reticulum membranes of plants using spinach as a model system. For this, we generated proteoliposomes from a Triton X-100 extract of endoplasmic reticulum membranes of spinach and assayed them for flippase activity using fluorescently labeled phospholipids. The half-time for flipping was found to be 0.7-1.0 min. We also show that (a) proteoliposomes can flip fluorescently labeled analogues of phosphatidylcholine and phosphatidylethanolamine, (b) flipping activity is protein-mediated, (c) more than one class of lipid translocator (flippase) is present in spinach membranes, based on the sensitivity to protease and protein-modifying reagents, and (d) translocation of PC and PE is affected differently upon treatment with protease and protein-modifying reagents. Ca (2+)-dependent scrambling activity was not observed in the vesicles reconstituted from plant ER membranes, ruling out the possibility of the involvement of scramblase in translocation of phospholipids. These results suggest the existence of biogenic membrane flippases in plants and that the mechanism of membrane biogenesis is similar to that found in animals.  相似文献   

4.
Most glycosphingolipids are synthesized by the sequential addition of monosaccharides to glucosylceramide (GlcCer) in the lumen of the Golgi apparatus. Because GlcCer is synthesized on the cytoplasmic face of Golgi membranes, it must be flipped to the non-cytoplasmic face by a lipid flippase in order to nucleate glycosphingolipid synthesis. Halter et al. (Halter, D., Neumann, S., van Dijk, S. M., Wolthoorn, J., de Mazière, A. M., Vieira, O. V., Mattjus, P., Klumperman, J., van Meer, G., and Sprong, H. (2007) Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J. Cell Biol. 179, 101–115) proposed that this essential flipping step is accomplished via a complex trafficking itinerary; GlcCer is moved from the cytoplasmic face of the Golgi to the endoplasmic reticulum (ER) by FAPP2, a cytoplasmic lipid transfer protein, flipped across the ER membrane, then delivered to the lumen of the Golgi complex by vesicular transport. We now report biochemical reconstitution studies to analyze GlcCer flipping at the ER. Using proteoliposomes reconstituted from Triton X-100-solubilized rat liver ER membrane proteins, we demonstrate rapid (t½ < 20 s), ATP-independent flip-flop of N-(6-((7-nitro-2–1,3-benzoxadiazol-4-yl)amino)hexanoyl)-d-glucosyl-β1–1′-sphingosine, a fluorescent GlcCer analog. Further studies involving protein modification, biochemical fractionation, and analyses of flip-flop in proteoliposomes reconstituted with ER membrane proteins from yeast indicate that GlcCer translocation is facilitated by well characterized ER phospholipid flippases that remain to be identified at the molecular level. By reason of their abundance and membrane bending activity, we considered that the ER reticulons and the related Yop1 protein could function as phospholipid-GlcCer flippases. Direct tests showed that these proteins have no flippase activity.  相似文献   

5.
BACKGROUND: A long-standing problem in understanding the mechanism by which the phospholipid bilayer of biological membranes is assembled concerns how phospholipids flip back and forth between the two leaflets of the bilayer. This question is important because phospholipid biosynthetic enzymes typically face the cytosol and deposit newly synthesized phospholipids in the cytosolic leaflet of biogenic membranes such as the endoplasmic reticulum (ER). These lipids must be transported across the bilayer to populate the exoplasmic leaflet for membrane growth. Transport does not occur spontaneously and it is presumed that specific membrane proteins, flippases, are responsible for phospholipid flip-flop. No biogenic membrane flippases have been identified and there is controversy as to whether proteins are involved at all, whether any membrane protein is sufficient, or whether non-bilayer arrangements of lipids support flip-flop. RESULTS: To test the hypothesis that specific proteins facilitate phospholipid flip-flop in the ER, we reconstituted transport-active proteoliposomes from detergent-solubilized ER vesicles under conditions in which protein-free liposomes containing ER lipids were inactive. Transport was measured using a synthetic, water-soluble phosphatidylcholine and was found to be sensitive to proteolysis and associated with proteins or protein-containing complexes that sedimented operationally at 3.8S. Chromatographic analyses indicated the feasibility of identifying the transporter(s) by protein purification approaches, and raised the possibility that at least two different proteins are able to facilitate transport. Calculations based on a simple reconstitution scenario suggested that the transporters represent approximately 0.2% of ER membrane proteins. CONCLUSIONS: Our results clearly show that specific proteins are required to translocate a phosphatidylcholine analogue across the ER membrane. These proteins are likely to be the flippases, which are required to translocate natural phosphatidylcholine and other phospholipids across the ER membrane. The methodology that we describe paves the way for identification of a flippase.  相似文献   

6.
Phospholipid flipping in biogenic membranes is a key feature of membrane bilayer assembly. Flipping is facilitated by proteinaceous transporters (flippases) that do not need metabolic energy to function. No flippase has yet been identified. The architecture of the E. coli protein translocon suggests that it could account for the flippase activity in the bacterial inner membrane. To test this possibility, we used E. coli cells depleted of SecYE or YidC to assay flipping in proteoliposomes reconstituted from detergent extracts of their inner membranes. We conclude that the protein translocon contributes minimally, if at all, to phospholipid flippase activity in the inner membrane.  相似文献   

7.
Chang QL  Gummadi SN  Menon AK 《Biochemistry》2004,43(33):10710-10718
Transbilayer flipping of glycerophospholipids in the endoplasmic reticulum (ER) is a key feature of membrane biogenesis. Flipping appears to be an ATP-independent, bidirectional process facilitated by specific proteins or flippases. Although a phospholipid flippase has yet to be identified, evidence supporting the existence of dedicated flippases was recently obtained through biochemical reconstitution studies showing that certain chromatographically resolved fractions of detergent-solubilized ER proteins were enriched in flippase activity, whereas others were inactive. We now extend these studies by describing two convenient assays of flippase activity utilizing fluorescent phospholipid analogues as transport reporters. We use these assays to show that (i) proteoliposomes generated from a flippase-enriched Triton X-100 extract of ER can flip analogues of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine; (ii) flipping of all three phospholipids is likely due to the same flippase(s) rather than distinct, phospholipid-specific transport proteins; (iii) functional flippases represent approximately 1% (w/w) of ER membrane proteins in the Triton extract; and (iv) glycerophospholipid flippase activity in the ER can be attributed to two functionally distinct proteins (or classes of proteins) defined by their sensitivity to the cysteine and histidine modification reagents N-ethylmaleimide and diethylpyrocarbonate, respectively. Analyses of the N-ethylmaleimide-sensitive class of flippase activity revealed that the functionally critical sulfhydryl group in the flippase protein is buried in a hydrophobic environment in the membrane but becomes reactive on extraction of the protein into Triton X-100. This observation holds considerable promise for future attempts to isolate the flippase via an affinity approach.  相似文献   

8.
P4‐ATPases are phospholipid flippases that translocate phospholipids from the exoplasmic/luminal to the cytoplasmic leaflet of biological membranes. All P4‐ATPases in yeast and some in other organisms are required for membrane trafficking; therefore, changes in the transbilayer lipid composition induced by flippases are thought to be crucial for membrane deformation. However, it is poorly understood whether the phospholipid‐flipping activity of P4‐ATPases can promote membrane deformation. In this study, we assessed membrane deformation induced by flippase activity via monitoring the extent of membrane tubulation using a system that allows inducible recruitment of Bin/amphiphysin/Rvs (BAR) domains to the plasma membrane (PM). Enhanced phosphatidylcholine‐flippase activity at the PM due to expression of ATP10A, a member of the P4‐ATPase family, promoted membrane tubulation upon recruitment of BAR domains to the PM. This is the important evidence that changes in the transbilayer lipid composition induced by P4‐ATPases can deform biological membranes.  相似文献   

9.
Phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of cell membranes to generate and maintain phospholipid asymmetry. The genome of budding yeast encodes four heteromeric flippases (Drs2p, Dnf1p, Dnf2p, and Dnf3p), which associate with the Cdc50 family noncatalytic subunit, and one monomeric flippase Neo1p. Flippases have been implicated in the formation of transport vesicles, but the underlying mechanisms are largely unknown. We show here that overexpression of the phosphatidylserine synthase gene CHO1 suppresses defects in the endocytic recycling pathway in flippase mutants. This suppression seems to be mediated by increased cellular phosphatidylserine. Two models can be envisioned for the suppression mechanism: (i) phosphatidylserine in the cytoplasmic leaflet recruits proteins for vesicle formation with its negative charge, and (ii) phosphatidylserine flipping to the cytoplasmic leaflet induces membrane curvature that supports vesicle formation. In a mutant depleted for flippases, a phosphatidylserine probe GFP-Lact-C2 was still localized to endosomal membranes, suggesting that the mere presence of phosphatidylserine in the cytoplasmic leaflet is not enough for vesicle formation. The CHO1 overexpression did not suppress the growth defect in a mutant depleted or mutated for all flippases, suggesting that the suppression was dependent on flippase-mediated phospholipid flipping. Endocytic recycling was not blocked in a mutant lacking phosphatidylserine or depleted in phosphatidylethanolamine, suggesting that a specific phospholipid is not required for vesicle formation. These results suggest that flippase-dependent vesicle formation is mediated by phospholipid flipping, not by flipped phospholipids.  相似文献   

10.
Transbilayer movement of phospholipids in biological membranes is mediated by energy-dependent and energy-independent flippases. Available methods for detection of flippase mediated transversal flip-flop are essentially based on spin-labeled or fluorescent lipid analogues. Here we demonstrate that shape change of giant unilamellar vesicles (GUVs) can be used as a new tool to study the occurrence and time scale of flippase-mediated transbilayer movement of unlabeled phospholipids. Insertion of lipids into the external leaflet created an area difference between the two leaflets that caused the formation of a bud-like structure. Under conditions of negligible flip-flop, the bud was stable. Upon reconstitution of the energy-independent flippase activity of the yeast endoplasmic reticulum into GUVs, the initial bud formation was reversible, and the shapes were recovered. This can be ascribed to a rapid flip-flop leading to relaxation of the monolayer area difference. Theoretical analysis of kinetics of shape changes provides self-consistent determination of the flip-flop rate and further kinetic parameters. Based on that analysis, the half-time of phospholipid flip-flop in the presence of endoplasmic reticulum proteins was found to be on the order of few minutes. In contrast, GUVs reconstituted with influenza virus protein formed stable buds. The results argue for the presence of specific membrane proteins mediating rapid flip-flop.  相似文献   

11.
Eukaryotic cells are compartmentalized into distinct sub-cellular organelles by lipid bilayers, which are known to be involved in numerous cellular processes. The wide repertoire of lipids, synthesized in the biogenic membranes like the endoplasmic reticulum and bacterial cytoplasmic membranes are initially localized in the cytosolic leaflet and some of these lipids have to be translocated to the exoplasmic leaflet for membrane biogenesis and uniform growth. It is known that phospholipid (PL) translocation in biogenic membranes is mediated by specific membrane proteins which occur in a rapid, bi-directional fashion without metabolic energy requirement and with no specificity to PL head group. A recent study reported the existence of biogenic membrane flippases in plants and that the mechanism of plant membrane biogenesis was similar to that found in animals. In this study, we demonstrate for the first time ATP independent and ATP dependent flippase activity in chloroplast membranes of plants. For this, we generated proteoliposomes from Triton X-100 extract of intact chloroplast, envelope membrane and thylakoid isolated from spinach leaves and assayed for flippase activity using fluorescent labeled phospholipids. Half-life time of flipping was found to be 6 ± 1 min. We also show that: (a) intact chloroplast and envelope membrane reconstituted proteoliposomes can flip fluorescent labeled analogs of phosphatidylcholine in ATP independent manner, (b) envelope membrane and thylakoid reconstituted proteoliposomes can flip phosphatidylglycerol in ATP dependent manner, (c) Biogenic membrane ATP independent PC flipping activity is protein mediated and (d) the kinetics of PC translocation gets affected differently upon treatment with protease and protein modifying reagents.  相似文献   

12.
Sharom FJ 《IUBMB life》2011,63(9):736-746
The rapid movement of polar lipids from one membrane leaflet to the other is facilitated by lipid flippases or translocases. Although their activity was first observed over 30 years ago, the structures, physiological roles, and molecular mechanisms of this group of proteins remain enigmatic. Lipid flippases maintain membrane lipid asymmetry, and in eukaryotes they are also intimately involved in membrane budding and vesicle trafficking. The ATP-dependent flippases are members of well-characterized protein families, whose other members transport nonlipid substrates across cell membranes. The P(4)-type ATPases carry out the inward translocation of phospholipids, and various ABC transporters are involved in outward lipid movement. The ATP-independent flippases move lipid substrates in both directions between membrane leaflets. With only a few exceptions, the molecular identity of these proteins is still unknown, despite their involvement in key biosynthetic pathways in both bacteria and eukaryotes. This review provides an overview of the different classes of flippases, and summarizes recent progress in their identification and functional characterization. The possible mechanisms of action of lipid flippases are discussed, and future directions explored.  相似文献   

13.
Identification and purification of aminophospholipid flippases   总被引:8,自引:0,他引:8  
Transbilayer phospholipid asymmetry is a common structural feature of most biological membranes. This organization of lipids is generated and maintained by a number of phospholipid transporters that vary in lipid specificity, energy requirements and direction of transport. These transporters can be divided into three classes: (1) bidirectional, non-energy dependent 'scramblases', and energy-dependent transporters that move lipids (2) toward ('flippases') or (3) away from ('floppases') the cytofacial surface of the membrane. One of the more elusive members of this family is the plasma membrane aminophospholipid flippase, which selectively transports phosphatidylserine from the external to the cytofacial monolayer of the plasma membrane. This review summarizes the characteristics of aminophospholipid flippase activity in intact cells and describes current strategies to identify and isolate this protein. The biochemical characteristics of candidate flippases are critically compared and their potential role in flippase activity is evaluated.  相似文献   

14.
Phospholipid translocation (flip-flop) across membrane bilayers is typically assessed via assays utilizing partially water-soluble phospholipid analogs as transport reporters. These assays have been used in previous work to show that phospholipid translocation in biogenic (self-synthesizing) membranes such as the endoplasmic reticulum is facilitated by specific membrane proteins (flippases). To extend these studies to natural phospholipids while providing a framework to guide the purification of a flippase, we now describe an assay to measure the transbilayer translocation of dipalmitoylphosphatidylcholine, a membrane-embedded phospholipid, in proteoliposomes generated from detergent-solubilized rat liver endoplasmic reticulum. Translocation was assayed using phospholipase A(2) under conditions where the vesicles were determined to be intact. Phospholipase A(2) rapidly hydrolyzed phospholipids in the outer leaflet of liposomes and proteoliposomes with a half-time of approximately 0.1 min. However, for flippase-containing proteoliposomes, the initial rapid hydrolysis phase was followed by a slower phase reflecting flippase-mediated translocation of phospholipids from the inner to the outer leaflet. The amplitude of the slow phase was decreased in trypsin-treated proteoliposomes. The kinetic characteristics of the slow phase were used to assess the rate of transbilayer equilibration of phospholipids. For 250-nm diameter vesicles containing a single flippase, the half-time was 3.3 min. Proportionate reductions in equilibration half-time were observed for preparations with a higher average number of flippases/vesicle. Preliminary purification steps indicated that flippase activity could be enriched approximately 15-fold by sequential adsorption of the detergent extract onto anion and cation exchange resins.  相似文献   

15.
The mystery of phospholipid flip-flop in biogenic membranes   总被引:4,自引:0,他引:4  
Phospholipid flip-flop is required for bilayer assembly and the maintenance of biogenic (self-synthesizing) membranes such as the eukaryotic endoplasmic reticulum and the bacterial cytoplasmic membrane. Due to the membrane topology of phospholipid biosynthesis, newly synthesized phospholipids are initially located in the cytoplasmic leaflet of biogenic membranes and must be translocated to the exoplasmic leaflet to give uniform bilayer growth. It is clear from many studies that phospholipid flip-flop in biogenic membranes occurs very rapidly, within a period of a few minutes. These studies also reveal that phospholipid translocation in biogenic membranes occurs bi-directionally, independently of the phospholipid head group, via a facilitated diffusion process in the absence of metabolic energy input, and that this type of transport requires specific membrane proteins. These translocators have been termed biogenic membrane flippases, and they differ from metabolic energy-dependent transporters (ABC transporters and MDR proteins). No biogenic membrane flippases have been characterized. This review briefly discusses the importance of biogenic membrane flippases, the various assay methods used for measuring the rate of phospholipid flip-flop, and the progress that has been made towards identifying these proteins.  相似文献   

16.
Regulation of transbilayer plasma membrane phospholipid asymmetry   总被引:10,自引:0,他引:10  
Lipids in biological membranes are asymmetrically distributed across the bilayer; the amine-containing phospholipids are enriched on the cytoplasmic surface of the plasma membrane, while the choline-containing and sphingolipids are enriched on the outer surface. The maintenance of transbilayer lipid asymmetry is essential for normal membrane function, and disruption of this asymmetry is associated with cell activation or pathologic conditions. Lipid asymmetry is generated primarily by selective synthesis of lipids on one side of the membrane. Because passive lipid transbilayer diffusion is slow, a number of proteins have evolved to either dissipate or maintain this lipid gradient. These proteins fall into three classes: 1) cytofacially-directed, ATP-dependent transporters ("flippases"); 2) exofacially-directed, ATP-dependent transporters ("floppases"); and 3) bidirectional, ATP-independent transporters ("scramblases"). The flippase is highly selective for phosphatidylserine and functions to keep this lipid sequestered from the cell surface. Floppase activity has been associated with the ABC class of transmembrane transporters. Although they are primarily nonspecific, at least two members of this class display selectivity for their substrate lipid. Scramblases are inherently nonspecific and function to randomize the distribution of newly synthesized lipids in the endoplasmic reticulum or plasma membrane lipids in activated cells. It is the combined action of these proteins and the physical properties of the membrane bilayer that generate and maintain transbilayer lipid asymmetry.  相似文献   

17.
Biogenic membranes or self-synthesizing membranes are the site of synthesis of new lipids such as the endoplasmic reticulum (ER) in eukaryotes. Newly synthesized phospholipids (PLs) at the cytosolic leaflet of ER need to be translocated to the lumen side for membrane biogenesis and this is facilitated by a special class of lipid translocators called biogenic membrane flippase. Even though ER is the major site of cholesterol synthesis, it contains very low amounts of cholesterol, since newly synthesized cholesterol in ER is rapidly transported to other organelles and is highly enriched in plasma membrane. Thus, only low levels of cholesterol are present at the biosynthetic compartment (ER), which results in loose packing of ER lipids. We hypothesize that the prevalence of cholesterol in biogenic membranes might affect the rapid flip-flop. To validate our hypothesis, detergent solubilized ER membranes from both bovine liver and spinach leaves were reconstituted into proteoliposomes with varying mol% of cholesterol. Our results show that (i) with increase in the cholesterol/PL ratio, the half-life time of PL translocation increased, suggesting that cholesterol affects the kinetics of flipping, (ii) flipping activity was completely inhibited in proteoliposomes reconstituted with 1 mol% cholesterol, and (iii) FRAP and DSC experiments revealed that 1 mol% cholesterol did not alter the bilayer properties significantly and that flippase activity inhibition is probably mediated by interaction of cholesterol with the protein.  相似文献   

18.
Membrane lipids diffuse rapidly in the plane of the membrane but their ability to flip spontaneously across a membrane bilayer is hampered by a significant energy barrier. Thus spontaneous flip-flop of polar lipids across membranes is very slow, even though it must occur rapidly to support diverse aspects of cellular life. Here we discuss the mechanisms by which rapid flip-flop occurs, and what role lipid flipping plays in membrane homeostasis and cell growth. We focus on conceptual aspects, highlighting mechanistic insights from biochemical and in silico experiments, and the recent, ground-breaking identification of a number of lipid scramblases.  相似文献   

19.
Phospholipids are synthesized in biogenic membranes, but only on one leaflet of the bilayer. To support balanced growth of the membrane, phospholipid translocation, or flip-flop, has to occur. Though consensus has been reached that flip-flop is most likely mediated by (a) membrane-associated protein(s), a dedicated flippase has not been identified yet in any biogenic membrane. The characteristics of the flip-flop process are summarized, and possible mechanisms, including the need for a dedicated flippase, are discussed.  相似文献   

20.
The mechanism by which phospholipids are transported across biogenic membranes, such as the bacterial cytoplasmic membrane, is unknown. We hypothesized that this process is mediated by the presence of the membrane-spanning segments of inner membrane proteins, rather than by dedicated flippases. In support of the hypothesis, it was demonstrated that transmembrane alpha-helical peptides, mimicking the membrane-spanning segments, mediate flop of 2-6-(7-nitro-2,1,3-benzoxadiazol-4-yl) aminocaproyl (C6-NBD)-phospholipids (Kol, M. A., de Kroon, A. I., Rijkers, D. T., Killian, J. A., and de Kruijff, B. (2001) Biochemistry 40, 10500-10506). Here the dithionite reduction assay was used to measure transbilayer equilibration of C6-NBD-phospholipids in proteoliposomes, composed of Escherichia coli phospholipids and a subset of bacterial membrane proteins. It is shown that two well characterized integral proteins of the bacterial cytoplasmic membrane, leader peptidase and the potassium channel KcsA, induce phospholipid translocation, most likely by their transmembrane domains. In contrast, the ATP-binding cassette transporter from the E. coli inner membrane MsbA, a putative lipid flippase, did not mediate phospholipid translocation, irrespective of the presence of ATP. OmpT, an outer membrane protein from E. coli, did not facilitate flop either, demonstrating specificity of protein-mediated phospholipid translocation. The results are discussed in the light of phospholipid transport across the E. coli inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号