首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The purpose of this research was to demonstrate the ability of reflectance near-infrared (NIR) spectroscopy for quantitative analysis of an active ingredient in different production steps of a solid formulation. The drug is quantified at two different steps of a pharmaceutical process: after granulation and after tablet coating. Calibration samples were prepared by mixing pure drug, excipients, and batch samples (75–120 mg/g active ingredient) using a simple methodology that can be easily carried out in a laboratory. Partial least squares calibration models were calculated in second-derivative mode using the wavelength range 1,134–1,798 nm. The error of prediction for granulated samples was 1.01% and 1.63% for tablets. The results prove that NIR spectroscopy is a good alternative to other, more time-consuming means of analysis for pharmaceutical process monitoring.  相似文献   

3.
Blending of powders is a crucial step in the production of pharmaceutical solid dosage forms. The active pharmaceutical ingredient (API) is often a powder that is blended with other powders (excipients) in order to produce tablets. The blending efficiency is influenced by several external factors, such as the desired degree of homogeneity and the required blending time, which mainly depend on the properties of the blended materials and on the geometry of the blender. This experimental study investigates the mixing behavior of acetyl salicylic acid as an API and α-lactose monohydrate as an excipient for different filling orders and filling levels in a blender. A multiple near-infrared probe setup on a laboratory-scale blender is used to observe the powder composition quasi-simultaneously and in-line in up to six different positions of the blender. Partial least squares regression modeling was used for a quantitative analysis of the powder compositions in the different measurement positions. The end point for the investigated mixtures and measurement positions was determined via moving block standard deviation. Observing blending in different positions helped to detect good and poor mixing positions inside the blender that are affected by convective and diffusive mixing.  相似文献   

4.
5.
The reliable in-line monitoring of pharmaceutical processes has been regarded as a key tool toward the full implementation of process analytical technology. In this study, near-infrared (NIR) spectroscopy was examined for use as an in-line monitoring method of the paracetamol cooling crystallization process. The drug powder was dissolved in ethanol-based cosolvent at 60°C and was cooled by 1°C/min for crystallization. NIR spectra acquired by in-line measurement were interpreted by principal component analysis combined with off-line characterizations via X-ray diffraction, optical microscopy, and transmission electron microscopy. The whole crystallization process appeared to take place in three steps. A metastable form II polymorph of paracetamol was formed and transformed into the stable form I polymorph on the way to the growth of pure form I by cooling crystallization. These observations are consistent with a previous focused beam reflectance method-based study (Barthe et al., Cryst Growth Des 8:3316–3322, 2008).  相似文献   

6.
For adeno-associated virus (AAV)-based human gene therapy, challenges for the translation of promising research results to successful clinical development include optimization of vector design and manufacturing processes to ensure that vectors prepared for administration to human subjects have attributes consistent with safe and durable expression. This article briefly reviews quality control methods for routine testing and supplemental characterization of AAV vectors for investigational product development. The relationship of vector and manufacturing process design with product critical quality attributes is discussed.  相似文献   

7.
This study assessed the utility of near-infrared (NIR) spectroscopy for the real-time monitoring of content uniformity and critical quality attributes (tensile strength, Young’s modulus, and relative density) of ribbed roller compacted flakes made by axially corrugated or ribbed rolls. A custom-built setup was used to capture off-line NIR spectra from the flakes containing micronized chlorpheniramine maleate, microcrystalline cellulose, lactose, and magnesium stearate. The partial least square regression method was employed to build calibration models from these off-line NIR spectra using experimental design and validated using test set validation. During calibration model development, various factors, such as spectral acquisition mode, probe positioning, spectral preprocessing method, and beam size, were investigated to improve the prediction ability of the models. The statistical results obtained for calibration models and their validation revealed that dynamic spectral acquisition and proper probe positioning were very crucial to minimize the incorporation of variability in NIR spectra resulting from the flake’s undulation. Calibration and validation statistics also suggested the importance of selecting appropriate spectral preprocessing method and beam size. In this study, best calibration models resulted from standard normal variate followed by first derivative preprocessed dynamic spectra captured using beam size ~1.2 mm. Best calibration models constructed from off-line NIR spectra were used in real-time analysis of flake attributes. Finally, adequacy of best calibration models was established from real-time prediction results. Overall, with the proposed setup, it was possible to monitor the roller compaction process in real time for various properties associated with the ribbed flakes in a rapid, efficient, and nondestructive manner.  相似文献   

8.
For a dissolution method to be considered relevant to in vivo performance, the dissolution data profiles should show discrimination or meaningful change when there is a change in critical material attributes (CMAs) and critical product properties (CPPs). The dissolution test has been shown repeatedly to have the power to distinguish between significant changes in active pharmaceutical ingredient (API), formulation, and process that relate to the release mechanism of the in vivo performance. Examples will be discussed in the literature where the effects of formulation, drug substance, and manufacturing variables have been measured by dissolution testing. There will be a suggested plan on how to develop and challenge a discriminating method that may be utilized for regulatory purposes. A brief review of other challenges and considerations regarding discriminatory dissolution testing is presented.  相似文献   

9.
Current endeavor was aimed towards monitoring percent weight build-up during functional coating process on drug-layered pellets. Near-infrared (NIR) spectroscopy is an emerging process analytical technology (PAT) tool which was employed here within quality by design (QbD) framework. Samples were withdrawn after spraying every 15-Kg cellulosic coating material during Wurster coating process of drug-loaded pellets. NIR spectra of these samples were acquired using cup spinner assembly of Thermoscientific Antaris II, followed by multivariate analysis using partial least squares (PLS) calibration model. PLS model was built by selecting various absorption regions of NIR spectra for Ethyl cellulose, drug and correlating the absorption values with actual percent weight build up determined by HPLC. The spectral regions of 8971.04 to 8250.77 cm?1, 7515.24 to 7108.33 cm?1, and 5257.00 to 5098.87 cm?1 were found to be specific to cellulose, where as the spectral region of 6004.45 to 5844.14 cm?1was found to be specific to drug. The final model gave superb correlation co-efficient value of 0.9994 for calibration and 0.9984 for validation with low root mean square of error (RMSE) values of 0.147 for calibration and 0.371 for validation using 6 factors. The developed correlation between the NIR spectra and cellulose content is useful in precise at-line prediction of functional coat value and can be used for monitoring the Wurster coating process.  相似文献   

10.
The goal of this study was to utilize risk assessment techniques and statistical design of experiments (DoE) to gain process understanding and to identify critical process parameters for the manufacture of controlled release multiparticulate beads using a novel disk-jet fluid bed technology. The material attributes and process parameters were systematically assessed using the Ishikawa fish bone diagram and failure mode and effect analysis (FMEA) risk assessment methods. The high risk attributes identified by the FMEA analysis were further explored using resolution V fractional factorial design. To gain an understanding of the processing parameters, a resolution V fractional factorial study was conducted. Using knowledge gained from the resolution V study, a resolution IV fractional factorial study was conducted; the purpose of this IV study was to identify the critical process parameters (CPP) that impact the critical quality attributes and understand the influence of these parameters on film formation. For both studies, the microclimate, atomization pressure, inlet air volume, product temperature (during spraying and curing), curing time, and percent solids in the coating solutions were studied. The responses evaluated were percent agglomeration, percent fines, percent yield, bead aspect ratio, median particle size diameter (d50), assay, and drug release rate. Pyrobuttons® were used to record real-time temperature and humidity changes in the fluid bed. The risk assessment methods and process analytical tools helped to understand the novel disk-jet technology and to systematically develop models of the coating process parameters like process efficiency and the extent of curing during the coating process.  相似文献   

11.
The purpose of this research was to investigate the variability of the roller compaction process while monitoring in-line with near-infrared (NIR) spectroscopy. In this paper, a pragmatic method in determining this variability of in-line NIR monitoring roller compaction process was developed and the variability limits were established. Fast Fourier Transform (FFT) analysis was used to study the source of the systematic fluctuations of the NIR spectra. An off-line variability analysis method was developed as well to simulate the in-line monitoring process in order to determine the variability limits of the roller compaction process. For this study, a binary formulation was prepared composed of acetaminophen and microcrystalline cellulose. Different roller compaction parameters such as roll speed and feeding rates were investigated to understand the variability of the process. The best-fit line slope of NIR spectra exhibited frequency dependence only on the roll speed regardless of the feeding rates. The eccentricity of the rolling motion of rollers was identified as the major source of variability and correlated with the fluctuations of the slopes of NIR spectra. The off-line static and dynamic analyses of the compacts defined two different variability of the roller compaction; the variability limits were established. These findings were proved critical in the optimization of the experimental setup of the roller compaction process by minimizing the variability of NIR in-line monitoring.  相似文献   

12.
The purpose of this study was to utilize near-infrared spectroscopy and chemical imaging to characterize extrusion-spheronized drug beads, lipid-based placebo beads, and modified release tablets prepared from blends of these beads. The tablet drug load (10.5–19.5 mg) of theophylline (2.25 mg increments) and cimetidine (3 mg increments) could easily be differentiated using univariate analyses. To evaluate other tablet attributes (i.e., compression force, crushing force, content uniformity), multivariate analyses were used. Partial least squares (PLS) models were used for prediction and principal component analysis (PCA) was used for classification. The PLS prediction models (R 2 > 0.98) for content uniformity of uncoated compacted theophylline and cimetidine beads produced the most robust models. Content uniformity data for tablets with drug content ranging between 10.5 and 19.5 mg showed standard error of calibration (SEC), standard error of cross-validation, and standard error of prediction (SEP) values as 0.31, 0.43, and 0.37 mg, and 0.47, 0.59, and 0.49 mg, for theophylline and cimetidine, respectively, with SEP/SEC ratios less than 1.3. PCA could detect blend segregation during tableting for preparations using different ratios of uncoated cimetidine beads to placebo beads (20:80, 50:50, and 80:20). Using NIR chemical imaging, the 80:20 formulations showed the most pronounced blend segregation during the tableting process. Furthermore, imaging was capable of quantitating the cimetidine bead content among the different blend ratios. Segregation testing (ASTM D6940-04 method) indicated that blends of coated cimetidine beads and placebo beads (50:50 ratio) also tended to segregate.  相似文献   

13.
Dehydration is a commonly used method to stabilise protein formulations. Upon dehydration, there is a significant risk the composition of the formulation will change especially if the protein formulation contains volatile compounds. Phenol is often used as excipient in insulin formulations, stabilising the insulin hexamer by changing the secondary structure. We have previously shown that it is possible to maintain this structural change after drying. The aim of this study was to evaluate the residual phenol content in spray-dried and freeze-dried insulin formulations by Fourier transform infrared (FTIR) spectroscopy and near infrared (NIR) spectroscopy using multivariate data analysis. A principal component analysis (PCA) and partial least squares (PLS) projections were used to analyse spectral data. After drying, there was a difference between the two drying methods in the phenol/insulin ratio and the water content of the dried samples. The spray-dried samples contained more water and less phenol compared with the freeze-dried samples. For the FTIR spectra, the best model used one PLS component to describe the phenol/insulin ratio in the powders, and was based on the second derivative pre-treated spectra in the 850–650 cm−1 region. The best PLS model based on the NIR spectra utilised three PLS components to describe the phenol/insulin ratio and was based on the standard normal variate transformed spectra in the 6,200–5,800 cm−1 region. The root mean square error of cross validation was 0.69% and 0.60% (w/w) for the models based on the FTIR and NIR spectra, respectively. In general, both methods were suitable for phenol quantification in dried phenol/insulin samples.  相似文献   

14.
Complete dissolution of the active pharmaceutical ingredient (API) is critical in the manufacturing of liquid-filled soft-gelatin capsules (SGC). Attenuated total reflectance UV spectroscopy (ATR-UV) and Raman spectroscopy have been investigated for in-line monitoring of API dissolution during manufacturing of an SGC product. Calibration models have been developed with both techniques for in-line determination of API potency. Performance of both techniques was evaluated and compared. The ATR-UV methodology was found to be able to monitor the dissolution process and determine the endpoint, but was sensitive to temperature variations. The Raman technique was also capable of effectively monitoring the process and was more robust to the temperature variation and process perturbations by using an excipient peak for internal correction. Different data preprocessing methodologies were explored in an attempt to improve method performance.  相似文献   

15.
The development of online monitoring techniques is of great relevance for understanding the structural changes of proteins under different conditions in order to maximize their catalytic activity. This study aimed to evaluate the potential of the NIR (near-infrared spectroscopy) technique for the monitoring of alterations of secondary and tertiary structures of Horseradish peroxidase (HRP), an oxidoreductase that has several applications in the industrial environment, food industry and bioremediation. The NIR associated to the multivariate calibration, through the PLS (partial least square) method allowed the construction of a robust model for the prediction of the analysis. The values of the correlation coefficient (R²), root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP) and root mean square error of cross validation (RMSECV) for secondary structure analysis using circular dichroism (CD) data as reference (actual values) were 0.9681, 0.647 (mdeg), 0.945 (mdeg), and 1.12 (mdeg), respectively. For tertiary structure analysis, fluorescence spectroscopy (FL) data were used as reference. R2, RMSEC, RMSEP and RMSECV were, respectively 0.9999, 1.95 (a.u.), 2.09 (a.u.); and 2.19 (a.u.). NIR combined multivariate calibration showed promising results for sctructural changes monitoring of HRP.  相似文献   

16.

传统的医疗质量管理主要方法是终末病历检查,数据来自人工提取或二次录入,缺乏准确性和时效性。分析了医疗质量管理的现状与存在的问题,阐述了医疗过程质量实时监控的内容与方法,对实时监控系统的架构和功能进行了设计,并指出了实现医疗质量实时监控需解决的一些关键问题。

  相似文献   

17.
18.
A non-toxic, nine residue peptide, NIVNVSLVK is shown to interfere with insulin fibrillation by various biophysical methods. Insulin undergoes conformational changes under certain stress conditions leading to amyloid fibrils. Fibrillation of insulin poses a problem in its long-term storage, reducing its efficacy in treating type II diabetes. The dissociation of insulin oligomer to monomer is the key step for the onset of fibrillation. The time course of insulin fibrillation at 62°C using Thioflavin T fluorescence shows an increase in the lag time from 120 min without peptide to 236 min with peptide. Transmission electron micrographs show branched insulin fibrils in its absence and less inter-fibril association in its presence. Upon incubation at 62°C and pH 2.6, insulin lost some α-helical structure as seen by Fourier transformed infra-red spectroscopy (FT-IR), but if the peptide is added, secondary structure is almost fully maintained for 3 h, though lost partially at 4 h. FT-IR spectroscopy also shows that insulin forms the cross beta structure indicative of fibrils beyond 2 h, but in the presence of the peptide, α-helix retention is seen till 4 h. Both size exclusion chromatography and dynamic light scattering show that insulin primarily exists as trimer, whose conversion to a monomer is resisted by the peptide. Saturation transfer difference nuclear magnetic resonance confirms that the hydrophobic residues in the peptide are in close contact with an insulin hydrophobic groove. Molecular dynamics simulations in conjunction with principal component analyses reveal how the peptide interrupts insulin fibrillation. In vitro hemolytic activity of the peptide showed insignificant cytotoxicity against HT1080 cells. The insulin aggregation is probed due to the inter play of two key residues, PheB24 and TyrB26 monitored from molecular dynamics simulations studies. Further new peptide based leads may be developed from this nine residue peptide.  相似文献   

19.
The objective of this study is to use near-infrared spectroscopy (NIRS) coupled with multivariate chemometric models to monitor granule and tablet quality attributes in the formulation development and manufacturing of ciprofloxacin hydrochloride (CIP) immediate release tablets. Critical roller compaction process parameters, compression force (CFt), and formulation variables identified from our earlier studies were evaluated in more detail. Multivariate principal component analysis (PCA) and partial least square (PLS) models were developed during the development stage and used as a control tool to predict the quality of granules and tablets. Validated models were used to monitor and control batches manufactured at different sites to assess their robustness to change. The results showed that roll pressure (RP) and CFt played a critical role in the quality of the granules and the finished product within the range tested. Replacing binder source did not statistically influence the quality attributes of the granules and tablets. However, lubricant type has significantly impacted the granule size. Blend uniformity, crushing force, disintegration time during the manufacturing was predicted using validated PLS regression models with acceptable standard error of prediction (SEP) values, whereas the models resulted in higher SEP for batches obtained from different manufacturing site. From this study, we were able to identify critical factors which could impact the quality attributes of the CIP IR tablets. In summary, we demonstrated the ability of near-infrared spectroscopy coupled with chemometrics as a powerful tool to monitor critical quality attributes (CQA) identified during formulation development.KEY WORDS: chemometrics, crushing force, disintegration, near-infrared spectroscopy, partial least square, principal component analysis, quality by design, roller compaction  相似文献   

20.
AKT/PKB kinases transmit insulin and growth factor signals downstream of phosphatidylinositol 3-kinase (PI3K). AKT activation involves phosphorylation at two residues, Thr308 and Ser473, mediated by PDK1 and the mammalian target of rapamycin complex 2 (mTORC2), respectively. Impaired AKT activation is a key factor in metabolic disorders involving insulin resistance, whereas hyperactivation of AKT is linked to cancer pathogenesis. Here, we identify the cytoplasmic NAD+-dependent deacetylase, Sirt2, as a novel AKT interactor, required for optimal AKT activation. Pharmacological inhibition or genetic down-regulation of Sirt2 diminished AKT activation in insulin and growth factor-responsive cells, whereas Sirt2 overexpression enhanced the activation of AKT and its downstream targets. AKT was prebound with Sirt2 in serum or glucose-deprived cells, and the complex dissociated following insulin treatment. The binding was mediated by the pleckstrin homology and the kinase domains of AKT and was dependent on AMP-activated kinase. This regulation involved a novel AMP-activated kinase-dependent Sirt2 phosphorylation at Thr101. In cells with constitutive PI3K activation, we found that AKT also associated with a nuclear sirtuin, Sirt1; however, inhibition of PI3K resulted in dissociation from Sirt1 and increased association with Sirt2. Sirt1 and Sirt2 inhibitors additively inhibited the constitutive AKT activity in these cells. Our results suggest potential usefulness of Sirt1 and Sirt2 inhibitors in the treatment of cancer cells with up-regulated PI3K activity and of Sirt2 activators in the treatment of insulin-resistant metabolic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号