首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro directed evolution through DNA shuffling is a powerful molecular tool for creation of new biological phenotypes. E. coli beta-galactosidase and beta-glucuronidase are widely used, and their biological function, catalytic mechanism, and molecular structures are well characterized. We applied an in vitro directed evolution strategy through DNA shuffling and obtained five mutants named YG6764, YG6768, YG6769, YG6770 and YG6771 after two rounds of DNA shuffling and screening, which exhibited more beta-glucuronidase activity than wild-type beta-galactosidase. These variants had mutations at fourteen nucleic acid sites, resulting in changes in ten amino acids: S193N, T266A, Q267R, V411A, D448G, G466A, L527I, M543I, Q626R and Q951R. We expressed and purified those mutant proteins. Compared to the wild-type protein, five mutant proteins exhibited high beta-glucuronidase activity. The comparison of molecular models of the mutated and wildtype enzymes revealed the relationship between protein function and structural modification.  相似文献   

2.
Pyrolysin-like proteases from hyperthermophiles are characterized by large insertions and long C-terminal extensions (CTEs). However, little is known about the roles of these extra structural elements or the maturation of these enzymes. Here, the recombinant proform of Pyrococcus furiosus pyrolysin (Pls) and several N- and C-terminal deletion mutants were successfully expressed in Escherichia coli. Pls was converted to mature enzyme (mPls) at high temperatures via autoprocessing of both the N-terminal propeptide and the C-terminal portion of the long CTE, indicating that the long CTE actually consists of the C-terminal propeptide and the C-terminal extension (CTEm), which remains attached to the catalytic domain in the mature enzyme. Although the N-terminal propeptide deletion mutant PlsΔN displayed weak activity, this mutant was highly susceptible to autoproteolysis and/or thermogenic hydrolysis. The N-terminal propeptide acts as an intramolecular chaperone to assist the folding of pyrolysin into its thermostable conformation. In contrast, the C-terminal propeptide deletion mutant PlsΔC199 was converted to a mature form (mPlsΔC199), which is the same size as but less stable than mPls, suggesting that the C-terminal propeptide is not essential for folding but is important for pyrolysin hyperthermostability. Characterization of the full-length (mPls) and CTEm deletion (mPlsΔC740) mature forms demonstrated that CTEm not only confers additional stability to the enzyme but also improves its catalytic efficiency for both proteineous and small synthetic peptide substrates. Our results may provide important clues about the roles of propeptides and CTEs in the adaptation of hyperthermophilic proteases to hyperthermal environments.  相似文献   

3.
Nagayama M  Maeda H  Kuroda K  Ueda M 《Biochemistry》2012,51(17):3547-3553
The propeptide of carboxypeptidase Y precursor (proCPY) acts as an intramolecular chaperone that ensures the correct folding of the mature CPY (mCPY). Here, to further characterize the folding mechanism mediated by the propeptide, folding analysis was performed using a yeast molecular display system. CPYs with mutated propeptides were successfully displayed on yeast cell surface, and the mature enzymes were purified by the selective cleavage of mutated propeptides. Measurement of the activity and kinetics of the displayed CPYs indicated that the propeptide mutation altered the catalytic efficiency of mCPY. Although the mature region of the wild-type and mutant CPYs had identical amino acid sequences, the mCPYs from the mutant proCPYs had higher catalytic efficiency than the wild-type. These results indicate that proteins with identical amino acid sequence can fold into isomeric proteins with conformational microchanges through mutated intramolecular chaperones.  相似文献   

4.
Escherichia coli RNase P derivatives were evolved in vitro for DNA cleavage activity. Ribonucleoproteins sampled after ten generations of selection show a >400-fold increase in the first-order rate constant (k(cat)) on a DNA substrate, reflecting a significant improvement in the chemical cleavage step. This increase is offset by a reduction in substrate binding, as measured by K(M). We trace the catalytic enhancement to two ubiquitous A-->U sequence changes at positions 136 and 333 in the M1 RNA component, positions that are phylogenetically conserved in the Eubacteria. Furthermore, although the mutations are located in different folding domains of the catalytic RNA, the first in the substrate binding domain, the second near the catalytic core, their effect on catalytic activity is significantly influenced by the presence of the C5 protein. The activity of the evolved ribonucleoproteins on both pre-4.5 S RNA and on an RNA oligo substrate remain at wild-type levels. In contrast, improved DNA cleavage activity is accompanied by a 500-fold decrease in pre-tRNA cleavage efficiency (k(cat)/K(M)). The presence of the C5 component does not buffer this tradeoff in catalytic activities, despite the in vivo role played by the C5 protein in enhancing the substrate versatility of RNase P. The change at position 136, located in the J11/12 single-stranded region, likely alters the geometry of the pre-tRNA-binding cleft and may provide a functional explanation for the observed tradeoff. These results thus shed light both on structure/function relations in E. coli RNase P and on the crucial role of proteins in enhancing the catalytic repertoire of RNA.  相似文献   

5.
Recent developments have been made in the application of directed evolution to achieve the efficient heterologous expression of proteins in Escherichia coli and yeast by increasing the stability and solubility of the protein in the host environment. One interesting conclusion that emerges is that the evolutionary process often improves the stability and solubility of an intermediate (apoprotein, proprotein or folding intermediate) that otherwise constitutes a bottleneck to functional expression, rather than altering the protein's final state.  相似文献   

6.
Folding enzymes often use distinct domains for the binding of substrate proteins ("chaperone domains") and for the catalysis of slow folding reactions such as disulfide formation or prolyl isomerization. The human prolyl isomerase FKBP12 is a small single-domain protein without a chaperone domain. Its very low folding activity could previously be increased by inserting the chaperone domain from the homolog SlyD (sensitive-to-lysis protein D) of Escherichia coli. We now inserted three unrelated chaperone domains into human FKBP12: the apical domain of the chaperonin GroEL from E. coli, the chaperone domain of protein disulfide isomerase from yeast, or the chaperone domain of SurA from the periplasm of E. coli. All three conveyed FKBP12 with a high affinity for unfolded proteins and increased its folding activity. Substrate binding and release of the chimeric folding enzymes were found to be very fast. This allows rapid substrate transfer from the chaperone domain to the catalytic domain and ensures efficient rebinding of protein chains that were unable to complete folding. The advantage of having separate sites, first for generic protein binding and then for specific catalysis, explains why our construction of the artificial folding enzymes with foreign chaperone domains was successful.  相似文献   

7.
The prohormone convertases (PCs) are synthesized as zymogens whose propeptides contain several multibasic sites. In this study, we investigated the processing of the PC2 propeptide and its function in the regulation of PC2 activity. By using purified pro-PC2 and directed mutagenesis, we found that the propeptide is first cleaved at the multibasic site separating it from the catalytic domain (primary cleavage site); the intact propeptide thus generated is then sequentially processed at two internal sites. Unlike the mechanism described for furin, our mutagenesis studies show that internal cleavage of the propeptide is not required for activation of pro-PC2. In addition, we identified a point mutation in the primary cleavage site that does not prevent the folding nor the processing of the zymogen but nevertheless results in the generation of an inactive PC2 species. These data suggest that the propeptide cleavage site is directly involved in the folding of the catalytic site. By using synthetic peptides, we found that a PC2 propeptide fragment inhibits PC2 activity, and we identified the inhibitory site as the peptide sequence containing basic residues at the extreme carboxyl terminus of the primary cleavage site. Finally, our study supplies information concerning the intracellular fate of a convertase propeptide by providing evidence that the PC2 propeptide is generated and is internally processed within the secretory granules. In agreement with this localization, an internally cleaved propeptide fragment could be released by stimulated secretion.  相似文献   

8.
In an effort to develop a bacterial expression system for horseradish peroxidase (HRP), we inserted the gene encoding HRP into the pET-22b(+) vector (Novagen) as a fusion to the signal peptide PelB. A similar construct for cytochrome c peroxidase (CcP) leads to high CcP activity in the supernatant. Expression of the wild-type HRP gene in the presence of isopropyl-beta-D-thiogalactopyranoside (IPTG) yielded no detectable activity against ABTS (azinobis(ethylbenzthiazoline sulfonate)). However, weak peroxidase activity was detected in the supernatant in the absence of IPTG. The HRP gene was subjected to directed evolution: random mutagenesis and gene recombination followed by screening in a 96-well microplate format. From 12 000 clones screened in the first generation, one was found that showed 14-fold higher HRP activity than wild-type, amounting to approximately 110 microg of HRP/L, which is similar to that reported from laborious in vitro refolding. No further improvement was obtained in subsequent generations of directed evolution. This level of expression has nonetheless enabled us to carry out further directed evolution to render the enzyme more thermostable and more resistant toward inactivation by H2O2. These results show that directed evolution can identify mutations that assist proteins to fold more efficiently in Escherichia coli. This approach will greatly facilitate efforts to "fine-tune" those many enzymes that are promising industrial biocatalysts, but for which suitable bacterial or yeast expression systems are currently lacking.  相似文献   

9.
Abstract

The hydrolysates of soy protein and milk protein are nutritional and functional food ingredients. Aspergillus pseudoglaucus aspergillopepsin I (App) is an acidic protease, including signal peptide, propeptide, and catalytic domain. Here, we cloned the catalytic domain App with or without propeptide in Escherichia coli. The results showed that the App without propeptide was not expressed or did not exhibit activity and App with propeptide (proApp) was highly expressed with a specific activity of 903?U/mg. Moreover, the denaturation temperature of proApp was 4.1?°C higher than App’s. The proApp showed 104?U/mg and 252?U/mg hydrolysis activities towards soy protein and milk protein under acidic conditions. By RP-HPLC analysis, the peptides obtained from the hydrolysates of soy protein and milk protein were hydrophilic peptides. This work first demonstrates efficient proteolysis of soy protein and milk protein through the functional expression of full-length proApp, which will likely have valuable industrial applications.  相似文献   

10.
Triosephosphate isomerase from Saccharomyces cerevisiae (wt-TIM) is an obligated homodimer. The interface of wt-TIM is formed by 34 residues. In the native dimer, each monomer buries nearly 2600 A(2) of accessible surface area (ASA), and 58.4% of the interface ASA is hydrophobic. We determined the thermodynamic and functional consequences of increasing the hydrophobic character of the wt-TIM interface. Mutations were restricted to a cluster of five nonconserved residues located far from the active site. Two different approaches, in silico design and directed evolution, were employed. In both methodologies, the obtained proteins were soluble, dimeric, and compact. In silico-designed proteins are very stable dimers that bind substrate with a wild-type-like K(m); albeit, they exhibited a very low k cat. Proteins obtained from directed evolution experiments show wild-type-like catalytic activity, while their stability is decreased. Hydrophobic replacements at the interface produced a remarkable shift in the dissociation step. For wt-TIM and for TIMs obtained by directed evolution, dissociation was observed in the first transition, with C(1/2) values ranging from 0.58 to 0.024 M GdnHCl, whereas for TIMs generated by in silico design, dissociation occurred in the last transition, with C(1/2) values ranging form 3.01 to 3.65 M GdnHCl. For the latter mutants, the stabilization of the interface changed the equilibrium transitions to a novel four-state process with two dimeric intermediates. The change in the intermediate nature suggests that the relative stabilities of different folding units are similar so that subtle alterations in their stability produce a total transformation of the folding pathway.  相似文献   

11.
Abstract: cDNAs encoding the full-length sequence for tryptophan hydroxylase, and deletion mutants consisting of the regulatory (amino acids 1–98) or catalytic (amino acids 99–444) domains of the enzyme, were cloned and expressed as glutathione S -transferase fusion proteins in E. coli . The recombinant fusion proteins could be purified to near homogeneity within minutes by affinity chromatography on glutathione-agarose. The full-length enzyme and the catalytic core expressed very high levels of tryptophan hydroxylase activity. The regulatory domain was devoid of activity. The full-length enzyme and the catalytic core, while adsorbed to glutathione-agarose beads, obeyed Michaelis-Menten kinetics, and the kinetic properties of each recombinant enzyme for cofactor and substrate compared very closely to native, brain tryptophan hydroxylase. Both active forms of the glutathione S -transferase-tryptophan hydroxylase fusion proteins had strict requirements for ferrous iron in catalysis and expressed much higher levels of activity ( V max) than the brain enzyme. Analysis of full-length tryptophan hydroxylase and the catalytic core by molecular sieve chromatography under nondenaturing conditions revealed that each fusion protein behaved as a tetrameric species. These results indicate that a truncated tryptophan hydroxylase, consisting of amino acids 99–444 of the full-length enzyme, contains the sequence motifs needed for subunit assembly. Both wild-type tryptophan hydroxylase and the catalytic core are expressed as apoenzymes which are converted to holoenzymes by exogenous iron. The tryptophan hydroxylase catalytic core is also as active as the full-length enzyme, suggesting the possibility that the regulatory domain exerts a suppressive effect on the catalytic core of tryptophan hydroxylase.  相似文献   

12.
Elastase of Pseudomonas aeruginosa is synthesized as a pre-proprotein. The propeptide has been shown to inhibit the enzymatic activity of elastase. In this study, we investigated a possible additional role of the propeptide in the folding and secretion of the enzyme. When elastase was expressed in Escherichia coli without its propeptide, no active elastase was produced. The enzyme was poorly released from the cytoplasmic membrane and, depending on the expression level, it was either degraded or it accumulated in an inactive form in the cell envelopes, probably as aggregates. Since proper folding is required for the release of translocated proteins from the cytoplasmic membrane and for the acquirement of a stable and active conformation, these results suggest that the propeptide is involved in the proper folding of the elastase and that it functions as an intramolecular chaperone. When mature elastase was expressed without its propeptide in P. aeruginosa , the enzyme was not secreted, and it was degraded. Therefore, proper folding of mature elastase appears to be required for secretion of the enzyme. Expression of the propeptide, as a separate polypeptide, in trans with mature elastase resulted in the formation of active elastase. This active enzyme was secreted in P. aeruginosa . Apparently, the propeptide can also function as an intermolecular chaperone.  相似文献   

13.
In order to determine the functional role of the procathepsin L propeptide region for the preparation of active recombinant rat cathepsin L (CL), cDNAs encoding two short-length propeptides (C-terminal 2 and 27 residues) and the full-length (96 residues) one plus the entire CL were expressed as two soluble fusion proteins with a fragment of maltose-binding protein and an insoluble fusion protein with glutathione-S-transferase in Escherichia coli, respectively. After refolding of the insoluble fusion protein, each gene product was purified to homogeneity by amylose or glutathione-Sepharose-4B affinity column, and digestion with factor Xa and alpha-thrombin under alkaline conditions (pH approximately 8.0) led to the elution of two pure short-length procathepsin Ls (PCLs) and a full-length one, respectively. The enzymatic activity, estimated by hydrolytic assaying of benzoxycarbonyl-Phe-Arg-7-(4-methyl)coumarylamide under acidic conditions (pH 5.5), indicated that the two short-length PCLs exhibited in a great loss of the activity, as compared with the full-length PCL. The CD spectra of the short-length PCLs were different from that of the full-length one. The present results clearly show that the full-length propeptide is essential for construction of the active tertiary structure of CL at the stage of recombinant protein expression, although the expression of CL itself in E. coli does not require the propeptide. Based on the tertiary structure of PCL, the propeptide region necessary for the construction of the CL active structure has been discussed.  相似文献   

14.
The VPs (versatile peroxidases) secreted by white-rot fungi are involved in the natural decay of lignin. In the present study, a fusion gene containing the VP from Pleurotus eryngii was subjected to six rounds of directed evolution, achieving a level of secretion in Saccharomyces cerevisiae (21?mg/l) as yet unseen for any ligninolytic peroxidase. The evolved variant for expression harboured four mutations and increased its total VP activity 129-fold. The signal leader processing by the STE13 protease at the Golgi compartment changed as a consequence of overexpression, retaining the additional N-terminal sequence Glu-Ala-Glu-Ala that enhanced secretion. The engineered N-terminally truncated variant displayed similar biochemical properties to those of the non-truncated counterpart in terms of kinetics, stability and spectroscopic features. Additional cycles of evolution raised the T50 8°C and significantly increased the enzyme's stability at alkaline pHs. In addition, the Km for H2O2 was enhanced up to 15-fold while the catalytic efficiency was maintained, and there was an improvement in peroxide stability (with half-lives for H2O2 of 43?min at a H2O2/enzyme molar ratio of 4000:1). Overall, the directed evolution approach described provides a set of strategies for selecting VPs with improvements in secretion, activity and stability.  相似文献   

15.
The catalytic subunit of cAMP-dependent protein kinase (PKA) can easily be expressed in Escherichia coli and is catalytically active. Four phosphorylation sites are known in PKA (S10, S139, T197 and S338), and the isolated recombinant protein is a mixture of different phosphorylated forms. Obtaining uniformly phosphorylated protein requires separation of the protein preparation leading to significant loss in protein yield. It is found that the mutant S10A/S139D/S338D has similar properties as the wild-type protein, whereas additional replacement of T197 with either E or D reduces protein expression yield as well as folding propensity of the protein. Due to its high sequence homology to Akt/PKB, which cannot easily be expressed in E. coli, PKA has been used as a surrogate kinase for drug design. Several mutations within the ATP binding site have been described to make PKA even more similar to Akt/PKB. Two proteins with Akt/PKB-like mutations in the ATP binding site were made (PKAB6 and PKAB8), and in addition S10, S139 and S338 phosphorylation sites have been removed. These proteins can be expressed in high yields but have reduced activity compared to the wild-type. Proper folding of all proteins was analyzed by 2D 1H, 15N-TROSY NMR experiments.  相似文献   

16.
Human LAR is a transmembrane receptor-like protein whose cytoplasmic region contains two tandemly duplicated domains homologous to protein tyrosine phosphatases (PTPases). Whereas the membrane-proximal domain I has enzymatic activity, the membrane-distal domain II has no apparent catalytic activity but seems to have a regulatory function. In order to study structure-function relationships of the LAR PTPase, LAR domain I was expressed in Escherichia coli, and mutants that have reduced catalytic activity or reduced thermostability were isolated and characterized. We isolated 18 unique hydroxylamine-induced missense mutations in the LAR domain I segment, of which three were temperature-sensitive. Five additional temperature-sensitive mutations were isolated using N-methyl-N'-nitro-N-nitrosoguanidine. All eight temperature-sensitive mutations are confined within a short segment of the LAR domain I sequence between amino acid positions 1329 and 1407. To examine whether this region is particularly prone to temperature-sensitive mutations, tyrosine at amino acid position 1379 was changed to a phenylalanine by oligonucleotide-directed mutagenesis. This mutant, Y1379-F, was indeed temperature-sensitive. We also isolated a revertant of a temperature-sensitive mutant. The revertant contained a second-site mutation (C1446-Y) that suppresses several temperature-sensitive mutations and also enhances the folding of LAR protein produced in E. coli.  相似文献   

17.
Directed evolution is an exceptionally powerful tool that uses random mutant library generation and screening techniques to engineer or optimize functions of proteins. One class of proteins for which this process is particularly effective is antibodies, where properties such as antigen specificity and affinity can be selected to yield molecules with improved efficacy as molecular labels or in potential therapeutics. Typical antibody structure includes disulfide bonds that are required for stability and proper folding of the domains. However, these bonds are unable to form in the reducing environment of the cytoplasm, stymieing the effectiveness of optimized antibodies in many research applications. We have removed disulfide-forming cysteine residues in a single chain antibody fluorogen-activating protein (FAP), HL4, and employed directed evolution to select a derivative that is capable of activity in the cytoplasm. A subsequent round of directed evolution was targeted at increasing the overall brightness of the fluoromodule (FAP–fluorogen complex). Ultimately, this approach produced a novel FAP that exhibits strong activation of its cognate fluorogen in the reducing environment of the cytoplasm, significantly expanding the range of applications for which fluoromodule technology can be utilized.  相似文献   

18.
Domain-domain interactions may be very important to the structure and functions of many multidomain proteins. However, little is known about the role of the linker in the folding, stability and function of multidomain proteins. In this research, muscle creatine kinase (CK), a dimeric two-domain protein, was used as a model protein to investigate the role of the linker in CK activity, stability and folding by mutational analysis. Two of the three mutations, L115D and L121D, resulted in a gradual decrease in CK activity and secondary structures, but did not affect CK inactivation induced by heat or guanidine hydrochloride (GdnHCl). The mutations also caused much more serious aggregation during heat- and GdnHCl-induced denaturation and refolding from the GdnHCl-denatured state. More importantly, none of the three mutants could successfully recover their activities by dilution-initiated refolding, and the rate constant of CK refolding was gradually decreased by the mutations. These results suggested that mutations of the hydrophobic residues in the linker might affect the correct positioning of the domains and thus disrupt the efficient recognition and interactions between the two domains. The results herein indicated that in addition to its role in the in vivo functions, the linker also played a crucial role in the stability and folding of CK.  相似文献   

19.
aaRSs (aminoacyl-tRNA synthetases) are multi-domain proteins that have evolved by domain acquisition. The anti-codon binding domain was added to the more ancient catalytic domain during aaRS evolution. Unlike in eukaryotes, the anti-codon binding domains of GluRS (glutamyl-tRNA synthetase) and GlnRS (glutaminyl-tRNA synthetase) in bacteria are structurally distinct. This originates from the unique evolutionary history of GlnRSs. Starting from the catalytic domain, eukaryotic GluRS evolved by acquiring the archaea/eukaryote-specific anti-codon binding domain after branching away from the eubacteria family. Subsequently, eukaryotic GlnRS evolved from GluRS by gene duplication and horizontally transferred to bacteria. In order to study the properties of the putative ancestral GluRS in eukaryotes, formed immediately after acquiring the anti-codon binding domain, we have designed and constructed a chimaeric protein, cGluGlnRS, consisting of the catalytic domain, Ec GluRS (Escherichia coli GluRS), and the anti-codon binding domain of EcGlnRS (E. coli GlnRS). In contrast to the isolated EcN-GluRS, cGluGlnRS showed detectable activity of glutamylation of E. coli tRNA(glu) and was capable of complementing an E. coli ts (temperature-sensitive)-GluRS strain at non-permissive temperatures. Both cGluGlnRS and EcN-GluRS were found to bind E. coli tRNA(glu) with native EcGluRS-like affinity, suggesting that the anticodon-binding domain in cGluGlnRS enhances k(cat) for glutamylation. This was further confirmed from similar experiments with a chimaera between EcN-GluRS and the substrate-binding domain of EcDnaK (E. coli DnaK). We also show that an extended loop, present in the anticodon-binding domains of GlnRSs, is absent in archaeal GluRS, suggesting that the loop was a later addition, generating additional anti-codon discrimination capability in GlnRS as it evolved from GluRS in eukaryotes.  相似文献   

20.
A shortened, recombinant protein comprising residues 109-666 of the tailspike endorhamnosidase of Salmonella phage P22 was purified from Escherichia coli and crystallized. Like the full-length tailspike, the protein lacking the amino-terminal head-binding domain is an SDS-resistant, thermostable trimer. Its fluorescence and circular dichroism spectra indicate native structure. Oligosaccharide binding and endoglycosidase activities of both proteins are identical. A number of tailspike folding mutants have been obtained previously in a genetic approach to protein folding. Two temperature-sensitive-folding (tsf) mutations and the four known global second-site suppressor (su) mutations were introduced into the shortened protein and found to reduce or increase folding yields at high temperature. The mutational effects on folding yields and subunit folding kinetics parallel those observed with the full-length protein. They mirror the in vivo phenotypes and are consistent with the substitutions altering the stability of thermolabile folding intermediates. Because full-length and shortened tailspikes aggregate upon thermal denaturation, and their denaturant-induced unfolding displays hysteresis, kinetics of thermal unfolding were measured to assess the stability of the native proteins. Unfolding of the shortened wild-type protein in the presence of 2% SDS at 71 degrees C occurs at a rate of 9.2 x 10(-4) s(-1). It reflects the second kinetic phase of unfolding of the full-length protein. All six mutations were found to affect the thermal stability of the native protein. Both tsf mutations accelerate thermal unfolding about 10-fold. Two of the su mutations retard thermal unfolding up to 5-fold, while the remaining two mutations accelerate unfolding up to 5-fold. The mutational effects can be rationalized on the background of the recently determined crystal structure of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号