首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urbanization is one of the most extreme forms of environmental alteration, posing a major threat to biodiversity. We studied the effects of urbanization on avian communities via a systematic review using hierarchical and categorical meta‐analyses. Altogether, we found 42 observations from 37 case studies for species richness and 23 observations from 20 case studies for abundance. Urbanization had an overall strong negative effect on bird species richness, whereas abundance increased marginally with urbanization. There was no evidence that city size played a role in influencing the relationship between urbanization and either species richness or abundance. Studies that examined long gradients (i.e. from urban to rural) were more likely to detect negative urbanization effects on species richness than studies that considered short gradients (i.e. urban vs. suburban or urban vs. rural areas). In contrast, we found little evidence that the effect of urbanization on abundance was influenced by gradient length. Effects of urbanization on species richness were more negative for studies including public green spaces (parks and other amenity areas) in the sampled landscapes. In contrast, studies performed solely in the urban matrix (i.e. no green spaces) revealed a strong positive effect on bird abundance. When performing subset analyses on urban–suburban, suburban–rural and suburban–natural comparisons, species richness decreased from natural to urban areas, but with a stronger decrease at the urban–suburban interface, whereas bird abundance showed a clear intermediate peak along the urban–rural gradient although abundance in natural areas was comparable to that in suburban areas. This suggests that species loss happens especially at the urban–suburban interface, and that the highest abundances occur in suburban areas compared to urban or rural areas. Thus, our study shows the importance of suburban areas, where the majority of birds occur with fairly high species richness.  相似文献   

2.
As human population size increases and cities become denser, several urban‐related selection pressures increasingly affect species composition in both terrestrial and aquatic habitats. Yet, it is not well known whether and how urbanization influences other facets of biodiversity, such as the functional and evolutionary composition of communities, and at what spatial scale urbanization acts. Here we used a hierarchical sampling design in which urbanization levels were quantified at seven spatial scales (ranging from 50 to 3200 m radii). We found that urbanization gradients are associated with a strong shift in cladoceran zooplankton species traits, which in turn affected phylogenetic composition of the entire metacommunity, but only when considering urbanization at the smallest spatial scale (50 m radius). Specifically, small cladoceran species dominated in more urbanized ponds whereas large‐bodied, strong competitors prevailed in less urbanized systems. We also show that trait and phylogenetic metrics strongly increase the amount of variation in β‐diversity that can be explained by degree of urbanization, environmental and spatial factors. This suggests that the mechanisms shaping β‐diversity in our study system are mediated by traits and phylogenetic relatedness rather than species identities. Our study indicates that accounting for traits and phylogeny in metacommunity analyses helps to explain seemingly idiosyncratic patterns of variation in zooplankton species composition along urbanization gradients. The fact that urbanization acts only at the smallest spatial scale suggests that correctly managing environmental conditions locally has the power to counteract the effects of urbanization on biodiversity patterns. The multidimensional approach we applied here can be applied to other systems and organism groups and seems to be key in understanding how overall biodiversity changes in response to anthropogenic pressures and how this scales up to affect ecosystem functioning.  相似文献   

3.
Much effort has been devoted to identify ecological and life‐history traits which facilitate urban colonization by wild avian species, but surprisingly little is known about the population‐level mechanisms of urbanization processes. In general, two different patterns of urban colonization have been proposed: 1) the model of independent colonization predicts that birds colonize cities independently in different geographical regions; 2) the model of leapfrog colonization assumes a single colonization event, while additional urban populations are established from the initial urban populations. The aim of this paper was to determine the pattern of urban colonization in a common waterbird, the Eurasian coot Fulica atra. For this purpose, we analysed microsatellite variation in three pairs of urban and rural coot populations from central Poland. We found that a newly‐established urban population was genetically more similar to neighbouring rural populations than to long‐established urban populations, as indicated by the analysis of fixation index, genetic distance and Bayesian assignment of individuals to genetic clusters. These results are consistent with the model of independent colonization, where neighbouring rural populations are a source of individuals that colonize new urban areas. However, our analysis also showed significant differentiation between long‐established urban populations and adjacent rural populations, suggesting that genetic connectivity between two types of habitat decreases with increasing time since urbanization. Our study shows high complexity of urbanization processes in wild animal populations, as well as it underpins utility of molecular tools in studying population‐level mechanisms of urbanization.  相似文献   

4.
Under different environmental conditions, hybridization between the same species might result in different patterns of genetic admixture. Particularly, species pairs with large distribution ranges and long evolutionary history may have experienced several independent hybridization events over time in different zones of overlap. In birds, the diverse hybrid populations of the house sparrow (Passer domesticus) and the Spanish sparrow (Passer hispaniolensis) provide a striking example. Throughout their range of sympatry, these two species do not regularly interbreed; however, a stabilized hybrid form (Passer italiae) exists on the Italian Peninsula and on several Mediterranean islands. The spatial distribution pattern on the Eurasian continent strongly contrasts the situation in North Africa, where house sparrows and Spanish sparrows occur in close vicinity of phenotypically intermediate populations across a broad mosaic hybrid zone. In this study, we investigate patterns of divergence and admixture among the two parental species, stabilized and nonstabilized hybrid populations in Italy and Algeria based on a mitochondrial marker, a sex chromosomal marker, and 12 microsatellite loci. In Algeria, despite strong spatial and temporal separation of urban early‐breeding house sparrows and hybrids and rural late‐breeding Spanish sparrows, we found strong genetic admixture of mitochondrial and nuclear markers across all study populations and phenotypes. That pattern of admixture in the North African hybrid zone is strikingly different from i) the Iberian area of sympatry where we observed only weak asymmetrical introgression of Spanish sparrow nuclear alleles into local house sparrow populations and ii) the very homogenous Italian sparrow population where the mitogenome of one parent (P. domesticus) and the Z‐chromosomal marker of the other parent (P. hispaniolensis) are fixed. The North African sparrow hybrids provide a further example of enhanced hybridization along with recent urbanization and anthropogenic land‐use changes in a mosaic landscape.  相似文献   

5.
We tested the genetic and ecological differences between neighbouring urban and rural populations of common kestrels (Falco tinnuculus) in southern Bohemia. The aims were to (1) assess the genetic variability of the studied kestrel populations using microsatellite markers, (2) check the genetic relatedness of individuals within the urbanization gradient, and (3) compare possible gradients of body characteristics and reproductive parameters on the urbanization gradient. The mean expected allelic polymorphism did not differ among the studied populations, which were not genetically separated (F ST  = 0.0003, P = 0.781). Also, an individual assignment test did not show a separation of these populations. Urban kestrels that bred in the city centre were indicatively more related than others, and no relationship was found in the rural kestrel population. Kestrel females were heavier towards the city centre, but males did not show this relationship. Nest distance from the city centre had no significant effect on any of the tested reproductive parameters. Our results do not support the notion of genetic differentiation between rural and urban kestrels, but revealed trends in body characteristics and genetic relatedness along the urbanization gradient.  相似文献   

6.
Urban areas are expanding rapidly, but a few native species have successfully colonized them. The processes underlying such colonization events are poorly understood. Using the blackbird Turdus merula, a former forest specialist that is now one of the most common urban birds in its range, we provide the first assessment of two contrasting urban colonization models. First, that urbanization occurred independently. Second, that following initial urbanization, urban-adapted individuals colonized other urban areas in a leapfrog manner. Previous analyses of spatial patterns in the timing of blackbird urbanization, and experimental introductions of urban and rural blackbirds to uncolonized cities, suggest that the leapfrog model is likely to apply. We found that, across the western Palaearctic, urban blackbird populations contain less genetic diversity than rural ones, urban populations are more strongly differentiated from each other than from rural populations and assignment tests support a rural source population for most urban individuals. In combination, these results provide much stronger support for the independent urbanization model than the leapfrog one. If the former model predominates, colonization of multiple urban centres will be particularly difficult when urbanization requires genetic adaptations, having implications for urban species diversity.  相似文献   

7.
Evidence is growing that human modification of landscapes has dramatically altered evolutionary processes. In urban population genetic studies, urbanization is typically predicted to act as a barrier that isolates populations of species, leading to increased genetic drift within populations and reduced gene flow between populations. However, urbanization may also facilitate dispersal among populations, leading to higher genetic diversity within, and lower differentiation between, urban populations. We reviewed the literature on nonadaptive urban evolution to evaluate the support for each of these urban fragmentation and facilitation models. In a review of the literature with supporting quantitative analyses of 167 published urban population genetics studies, we found a weak signature of reduced within‐population genetic diversity and no evidence of consistently increased between‐population genetic differentiation associated with urbanization. In addition, we found that urban landscape features act as barriers or conduits to gene flow, depending on the species and city in question. Thus, we speculate that dispersal ability of species and environmental heterogeneity between cities contributes to the variation exhibited in our results. However, >90% of published studies reviewed here showed an association of urbanization with genetic drift or gene flow, highlighting the strong impact of urbanization on nonadaptive evolution. It is clear that species biology and city heterogeneity obscure patterns of genetic drift and gene flow in a quantitative analysis. Thus, we suggest that future research makes comparisons of multiple cities and nonurban habitats, and takes into consideration species' natural history, environmental variation, spatial modelling and marker selection.  相似文献   

8.
Current urban policies are associated with deep changes in urban structures, which may impoverish urban biodiversity. A major concern is the disappearance of nesting sites for wild vertebrate species living in urban areas. New urban structures without any cracks or cavities may especially preclude cavity nesters from breeding in cities and they may cause population declines. In that context, we experimentally investigated this question in an urban exploiter bird species (the house sparrow Passer domesticus), which is dramatically declining in most European cities. To test if the lack of cavities is limiting house sparrow populations in urban areas, we equipped 11 sites along an urbanization gradient with nest boxes and we then evaluated the rate of occupancy of these nest‐boxes. This urbanization gradient was characterized by very rural places (isolated farms) and moderately urbanized areas (town of medium size, i.e. 60 000 inhabitants). Surprisingly, rural nest boxes were more occupied than urban ones, suggesting that cavity availability is probably more constraining in rural areas relative to urban ones. Therefore, our study suggests that urban house sparrow populations are probably not constrained by a lack of nesting sites in medium size cities with urban designs similar to our city of interest (Niort, western France). This hypothesis definitely needs now to be tested in further urban landscapes (e.g. large cities and urban landscapes with other architecture and management policies).  相似文献   

9.
麻雀是城市和乡村均有分布的鸟类物种.快速的城市化正在使城市麻雀的栖息地和食物资源大量减少.以北京市为例,研究了麻雀的体质水平沿城市化梯度的变化,以期为我国城市化过程中的鸟类保护提供参考.研究结果表明城市高层楼房居民区、低层楼房居民区以及大学校园中麻雀的体质指数显著低于郊区环境,而城市公园和平房居民区麻雀的体质水平则与郊区环境的差异较小.随采样点城市化水平的增加,麻雀的体质水平呈下降趋势,高度城市化的环境导致麻雀的体质水平下降.在城市化过程中,增加城市公园的数量及居民区的植被覆盖量可为麻雀等鸟类提供必要的生活资源,从而实现城市化过程中的生物多样性保护.  相似文献   

10.

Background and Aims

In mountain plant populations, local adaptation has been described as one of the main responses to climate warming, allowing plants to persist under stressful conditions. This is especially the case for marginal populations at their lowest elevation, as they are highly vulnerable. Adequate levels of genetic diversity are required for selection to take place, while high levels of altitudinal gene flow are seen as a major limiting factor potentially precluding local adaptation processes. Thus, a compromise between genetic diversity and gene flow seems necessary to guarantee persistence under oncoming conditions. It is therefore critical to determine if gene flow occurs preferentially between mountains at similar altitudinal belts, promoting local adaptation at the lowest populations, or conversely along altitude within each mountain.

Methods

Microsatellite markers were used to unravel genetic diversity and population structure, inbreeding and gene flow of populations at two nearby altitudinal gradients of Silene ciliata, a Mediterranean high-mountain cushion plant.

Key Results

Genetic diversity and inbreeding coefficients were similar in all populations. Substantial gene flow was found both along altitudinal gradients and horizontally within each elevation belt, although greater values were obtained along altitudinal gradients. Gene flow may be responsible for the homogeneous levels of genetic diversity found among populations. Bayesian cluster analyses also suggested that shifts along altitudinal gradients are the most plausible scenario.

Conclusions

Past population shifts associated with glaciations and interglacial periods in temperate mountains may partially explain current distributions of genetic diversity and population structure. In spite of the predominance of gene flow along the altitudinal gradients, local genetic differentiation of one of the lower populations together with the detection of one outlier locus might support the existence of different selection forces at low altitudes.  相似文献   

11.
Nothotsuga longibracteata, a relic and endangered conifer species endemic to subtropical China, was studied for examining the spatial-temporal population genetic variation and structure to understand the historical biogeographical processes underlying the present geographical distribution. Ten populations were sampled over the entire natural range of the species for spatial analysis, while three key populations with large population sizes and varied age structure were selected for temporal analyses using both nuclear microsatellites (nSSR) and chloroplast microsatellites (cpSSR). A recent bottleneck was detected in the natural populations of N. longibracteata. The spatial genetic analysis showed significant population genetic differentiation across its total geographical range. Notwithstanding, the temporal genetic analysis revealed that the level of genetic diversity between different age class subpopulations remained constant over time. Eleven refugia of the Last Glacial Maximum were identified, which deserve particular attention for conservation management.  相似文献   

12.
Kathmandu Valley, Nepal is undergoing rapid urbanization but its effects on the bird communities have not been reported till date. Kathmandu Valley was categorized into urban, sub-urban and rural to study the impact of urbanization in bird communities. By mobilizing volunteers, we monitored 24 transects each with one km long in summer and winter seasons of 2016. A total of 13,749 individuals of birds belonging to 102 species were recorded. Species richness and diversity of all birds declined from rural to urban areas and showed significant variation along urban–rural gradients. Insectivore was the most species-rich guild while nectarivore the least. The richness of insectivore, frugivore and carnivore guilds showed significant variations along the urban–rural gradients and higher preference towards the rural areas. Similarly, species richness of all birds and richness of insectivore and carnivore guilds showed significant seasonal variation and were higher in the winter season. Our results indicate that richness, diversity and feeding guilds of birds show different response towards the urbanization gradients and seasons. Sub-urban areas can function as bird refugia, however, habitat enrichments (like increasing green spaces, setting up new parks and gardens, plantation of native fruiting trees etc.) are utmost necessary to support the bird communities in urban areas of Kathmandu Valley.  相似文献   

13.
A detailed understanding of the genetic structure of populations and an accurate interpretation of processes driving contemporary patterns of gene flow are fundamental to successful spatial conservation management. The field of seascape genetics seeks to incorporate environmental variables and processes into analyses of population genetic data to improve our understanding of forces driving genetic divergence in the marine environment. Information about barriers to gene flow (such as ocean currents) is used to define a resistance surface to predict the spatial genetic structure of populations and explain deviations from the widely applied isolation-by-distance model. The majority of seascape approaches to date have been applied to linear coastal systems or at large spatial scales (more than 250 km), with very few applied to complex systems at regional spatial scales (less than 100 km). Here, we apply a seascape genetics approach to a peripheral population of the broadcast-spawning coral Acropora spicifera across the Houtman Abrolhos Islands, a high-latitude complex coral reef system off the central coast of Western Australia. We coupled population genetic data from a panel of microsatellite DNA markers with a biophysical dispersal model to test whether oceanographic processes could explain patterns of genetic divergence. We identified significant variation in allele frequencies over distances of less than 10 km, with significant differentiation occurring between adjacent sites but not between the most geographically distant ones. Recruitment probabilities between sites based on simulated larval dispersal were projected into a measure of resistance to connectivity that was significantly correlated with patterns of genetic divergence, demonstrating that patterns of spatial genetic structure are a function of restrictions to gene flow imposed by oceanographic currents. This study advances our understanding of the role of larval dispersal on the fine-scale genetic structure of coral populations across a complex island system and applies a methodological framework that can be tailored to suit a variety of marine organisms with a range of life-history characteristics.  相似文献   

14.
The lark sparrow (Chondestes grammacus) is a ground-nesting passerine that breeds across much of the central North American steppe and sand barrens. Through genotyping and sequencing of avian malaria parasites we examined levels of malaria prevalence and determined the distribution of Haemoproteus and Plasmodium lineages across the breeding range of the lark sparrow. Analysis of 365 birds collected from five breeding locations revealed relatively high levels of malaria prevalence in adults (80 %) and juveniles (46 %), with infections being primarily of Haemoproteus (91 % of sequenced samples). Levels of genetic diversity and genetic structure of malaria parasites with respect to the avian host populations revealed distinct patterns for Haemoproteus and Plasmodium, most likely as a result of their distinct life histories, host specificity, and transmission vectors. With the exception of one common Haemoproteus haplotype detected in all populations, all other haplotypes were either population-specific or shared by two to three populations. A hierarchical analysis of molecular variance of Haemoproteus sequences revealed that 15–18 % of the genetic variation can be explained by differences among host populations/locations (p < 0.001). In contrast to the regional patterns of genetic differentiation detected for the lark sparrow populations, Haemoproteus parasites showed high levels of population-specific variation and no significant differences among regions, which suggests that the population dynamics of the parasites may be driven by evolutionary processes operating at small spatial scales (e.g., at the level of host populations). These results highlight the potential effects of host population structure on the demographic and evolutionary dynamics of parasites.  相似文献   

15.
Background and Aims The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability.Methods Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits.Key Results In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion.Conclusions The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats.  相似文献   

16.
Urbanization is a major factor driving habitat fragmentation and connectivity loss in wildlife. However, the impacts of urbanization on connectivity can vary among species and even populations due to differences in local landscape characteristics, and our ability to detect these relationships may depend on the spatial scale at which they are measured. Bobcats (Lynx rufus) are relatively sensitive to urbanization and the status of bobcat populations is an important indicator of connectivity in urban coastal southern California. We genotyped 271 bobcats at 13,520 SNP loci to conduct a replicated landscape resistance analysis in five genetically distinct populations. We tested urban and natural factors potentially influencing individual connectivity in each population separately, as well as study–wide. Overall, landscape genomic effects were most frequently detected at the study–wide spatial scale, with urban land cover (measured as impervious surface) having negative effects and topographic roughness having positive effects on gene flow. The negative effect of urban land cover on connectivity was also evident when populations were analyzed separately despite varying substantially in spatial area and the proportion of urban development, confirming a pervasive impact of urbanization largely independent of spatial scale. The effect of urban development was strongest in one population where stream habitat had been lost to development, suggesting that riparian corridors may help mitigate reduced connectivity in urbanizing areas. Our results demonstrate the importance of replicating landscape genetic analyses across populations and considering how landscape genetic effects may vary with spatial scale and local landscape structure.  相似文献   

17.
In human‐dominated landscapes (semi)natural habitats are typically embedded in tracts of unsuitable habitat. Under such conditions, habitat characteristics and grain size of the surrounding landscape may affect how much food, and at what cost, is available for sedentary species with low home‐range plasticity. Here we combine behavioural radio‐tracking, feather ptilochronology, and landscape analysis to test how nutritional condition varies with home range size in 13 house sparrow [Passer domesticus (Linnaeus, 1758)] populations along an urban gradient. Urban individuals occupied smaller home ranges than conspecifics from rural areas, most distinctly if key cover was highly scattered. In urban plots, patch connectivity, home range sizes, and activity areas were positively correlated, indicating that individual ranging behaviour was related to the spatial distribution of suitable habitat. Urban House sparrows also showed the smallest feather growth bars, which were positively related to home range size at plot level. In contrast, growth bar widths and home range sizes were negatively related in rural populations, whereas in suburban populations, both variables varied independently. We conclude that individuals from progressively more built‐up areas show a restricted ability to adjust their daily ranging behaviour to the scattered distribution of critical resources. This may complement other putative causes of the widespread population decline of urban house sparrows. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 41–50.  相似文献   

18.
We explored single nucleotide polymorphism (SNP) variation in candidate genes for bud burst from Quercus petraea populations sampled along gradients of latitude and altitude in Western Europe. SNP diversity was monitored for 106 candidate genes, in 758 individuals from 32 natural populations. We investigated whether SNP variation reflected the clinal pattern of bud burst observed in common garden experiments. We used different methods to detect imprints of natural selection (FST outlier, clinal variation at allelic frequencies, association tests) and compared the results obtained for the two gradients. FST outlier SNPs were found in 15 genes, 5 of which were common to both gradients. The type of selection differed between the two gradients (directional or balancing) for 3 of these 5. Clinal variations were observed for six SNPs, and one cline was conserved across both gradients. Association tests between the phenotypic or breeding values of trees and SNP genotypes identified 14 significant associations, involving 12 genes. The results of outlier detection on the basis of population differentiation or clinal variation were not very consistent with the results of association tests. The discrepancies between these approaches may reflect the different hierarchical levels of selection considered (inter- and intrapopulation selection). Finally, we obtained evidence for convergent selection (similar for gradients) and clinal variation for a few genes, suggesting that comparisons between parallel gradients could be used to screen for major candidate genes responding to natural selection in trees.  相似文献   

19.
Ecological conditions are likely to change with increasing urbanization, influencing the demography and size of animal populations. Although one of the most tightly linked species to humans, the house sparrow has been suffering a significant decline worldwide, especially in European cities. Several factors have been proposed to explain this conspicuous loss of urban sparrows, but studies evaluating these factors are usually restricted to Britain where the decline was very drastic, and it is unclear whether similar or different processes are affecting urban populations of the species elsewhere. In this study we investigated the reproductive success of urban and rural sparrows in a central European country, Hungary where our census data indicate a moderate decline during the last decade. We found that rural pairs produced more and larger fledglings than suburban pairs, and the difference remained consistent in two years with very contrasting meteorological conditions during breeding. This difference is likely explained by habitat differences in nestling diet, because we found that 1) rural parents provided large prey items more often than suburban parents, 2) birds from differently urbanized habitats produced fledglings of similar number and size in captivity under identical rearing conditions with ample food for nestlings, and 3) in a cross‐fostering experiment, nestlings tended to grow larger in rural than in suburban nests irrespective of their hatching environment. These results agree with those found in a recent British study, indicating that poor nestling development and survival due to inadequate diet may be widespread phenomena in urbanized habitats.  相似文献   

20.
Antagonistic coevolution between hosts and parasites has been proposed as a mechanism maintaining genetic diversity in both host and parasite populations. In particular, the high level of genetic diversity usually observed at the major histocompatibility complex (MHC) is generally thought to be maintained by parasite-driven selection. Among the possible ways through which parasites can maintain MHC diversity, diversifying selection has received relatively less attention. This hypothesis is based on the idea that parasites exert spatially variable selection pressures because of heterogeneity in parasite genetic structure, abundance or virulence. Variable selection pressures should select for different host allelic lineages resulting in population-specific associations between MHC alleles and risk of infection. In this study, we took advantage of a large survey of avian malaria in 13 populations of the house sparrow (Passer domesticus) to test this hypothesis. We found that (i) several MHC alleles were either associated with increased or decreased risk to be infected with Plasmodium relictum, (ii) the effects were population specific, and (iii) some alleles had antagonistic effects across populations. Overall, these results support the hypothesis that diversifying selection in space can maintain MHC variation and suggest a pattern of local adaptation where MHC alleles are selected at the local host population level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号