首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the seminal work of Prentice and Pyke, the prospective logistic likelihood has become the standard method of analysis for retrospectively collected case‐control data, in particular for testing the association between a single genetic marker and a disease outcome in genetic case‐control studies. In the study of multiple genetic markers with relatively small effects, especially those with rare variants, various aggregated approaches based on the same prospective likelihood have been developed to integrate subtle association evidence among all the markers considered. Many of the commonly used tests are derived from the prospective likelihood under a common‐random‐effect assumption, which assumes a common random effect for all subjects. We develop the locally most powerful aggregation test based on the retrospective likelihood under an independent‐random‐effect assumption, which allows the genetic effect to vary among subjects. In contrast to the fact that disease prevalence information cannot be used to improve efficiency for the estimation of odds ratio parameters in logistic regression models, we show that it can be utilized to enhance the testing power in genetic association studies. Extensive simulations demonstrate the advantages of the proposed method over the existing ones. A real genome‐wide association study is analyzed for illustration.  相似文献   

2.
Good genes models of mate choice assume heritability of fitness-related traits. However, maternal effects can inflate estimates of trait heritability, and genotype-environment interactions can have significant effects on good genes processes of evolution. Thus, partitioning genetic and maternal/environmental sources of variation in studies of good genes mate choice represents an empirical challenge. In this study, we used the dung beetle Onthophagus sagittarius to examine additive genetic and maternal effects on egg-to-adult offspring viability. We used a half-sib full-sib breeding design and manipulated the maternally provided environment by reducing or increasing the mass of the brood ball within which each offspring developed. We found evidence of differential allocation of investment by females in the brood balls they produced. However, experimental manipulations of maternal allocation to brood balls had only a weak and non-significant influence on the sire effects on offspring viability. Significant additive genetic effects on offspring viability were pervasive across our manipulations of the maternally provided larval environment. This finding indicates that although females do show differential allocation to offspring based on sire phenotype, ‘good genes’ benefits of mate choice are not dependent upon differential maternal allocation.  相似文献   

3.
Herein we describe a general multivariate quantitative genetic model that incorporates two potentially important developmental phenomena, maternal effects and epigenetic effects. Maternal and epigenetic effects are defined as partial regression coefficients and phenotypic variances are derived in terms of age-specific genetic and environmental variances. As a starting point, the traditional quantitative genetic model of additive gene effects and random environmental effects is cast in a developmental time framework. From this framework, we first extend a maternal effects model to include multiple developmental ages for the occurrence of maternal effects. An example of maternal effects occurring at multiple developmental ages is prenatal and postnatal maternal effects in mammals. Subsequently, a model of intrinsic and epigenetic effects in the absence of maternal effects is described. It is shown that genetic correlations can arise through epigenetic effects, and in the absence of other developmental effects, epigenetic effects are in general confounded with age-specific intrinsic genetic effects. Finally, the two effects are incorporated into the basic quantitative genetic model. For this more biologically realistic model combining maternal and epigenetic effects, it is shown that the phenotypic regressions of offspring on mother and offspring on father can be used in some cases to estimate simultaneously maternal effects and epigenetic effects.  相似文献   

4.
To predict the possible evolutionary response of a plant species to a new environment, it is necessary to separate genetic from environmental sources of phenotypic variation. In a case study of the invader Solidago altissima, the influences of several kinds of parental effects and of direct inheritance and environment on offspring phenotype were separated. Fifteen genotypes were crossed in three 5 × 5 diallels excluding selfs. Clonal replicates of the parental genotypes were grown in two environments such that each diallel could be made with maternal/paternal plants from sand/sand, sand/soil, soil/sand, and soil/soil. In a first experiment (1989) offspring were raised in the experimental garden and in a second experiment (1990) in the glasshouse. Parent plants growing in sand invested less biomass in inflorescences but produced larger seeds than parent plants growing in soil. In the garden experiment, phenotypic variation among offspring was greatly influenced by environmental heterogeneity. Direct genetic variation (within diallels) was found only for leaf characters and total leaf mass. Germination probability and early seedling mass were significantly affected by phenotypic differences among maternal plants because of genotype ( genetic maternal effects ) and soil environment ( general environmental maternal effects ). Seeds from maternal plants in sand germinated better and produced bigger seedlings than seeds from maternal plants in soil. They also grew taller with time, probably because competition accentuated the initial differences. Height growth and stem mass at harvest (an integrated account of individual growth history) of offspring varied significantly among crosses within parental combinations ( specific environmental maternal effects ). In the glasshouse experiment, the influence of environmental heterogeneity and competition could be kept low. Except for early characters, the influence of direct genetic variation was large but again leaf characters (= basic module morphology) seemed to be under stricter genetic control than did size characters. Genetic maternal effects, general environmental maternal effects, and specific environmental maternal effects dominated in early characters. The maternal effects were exerted both via seed mass and directly on characters of young offspring. Persistent effects of the general paternal environment ( general environmental paternal effects ) were found for leaf length and stem and leaf mass at harvest. They were opposite in direction to the general environmental maternal effects, that is the same genotypes produced “better mothers” in sand but “better fathers” in soil. The general environmental paternal effects must have been due to differences in pollen quality, resulting from pollen selection within the male parent or leading to pre- or postzygotic selection within the female parent. The ranking of crosses according to mean offspring phenotypes was different in the two experiments, suggesting strong interaction of the observed effects with the environment. The correlation structure among characters changed less between experiments than did the pattern of variation of single characters, but under the competitive conditions in the garden plant height seemed to be more directly related to fitness than in the glasshouse. Reduced competition could also explain why maternal effects were less persistent in the glasshouse than in the garden experiment. Evolution via selection of maternal effects would be possible in the study population because these effects are in part due to genetic differences among parents.  相似文献   

5.
Recently, doubt has been cast on studies supporting good genes sexual selection by the suggestion that observed genetic benefits for offspring may be confounded by differential maternal allocation. In traditional analyses, observed genetic sire effects on offspring phenotype may result from females allocating more resources to the offspring of attractive males. However, maternal effects such as differential allocation may represent a mechanism promoting genetic sire effects, rather than an alternative to them. Here we report results from an experiment on the horned dung beetle Onthophagus taurus, in which we directly compare genetic sire effects with maternal effects that are dependent on sire phenotype. We found strong evidence that mothers provide more resources to offspring when mated with large-horned males. There were significant heritabilities for both horn length and body size, but when differential maternal effects were controlled, the observed estimates of genetic variance were greatly reduced. Our experiment provides evidence that differential maternal effects may amplify genetic effects on offspring traits that are closely related to fitness. Thus, our results may partly explain the relatively high coefficients of additive genetic variation observed in fitness-related traits and provide empirical support for the theoretical argument that maternal effects can play an important role in evolution.  相似文献   

6.
Wolf J  Cheverud JM 《Genetics》2012,191(1):261-277
Great progress has been made in understanding the genetic architecture of phenotypic variation, but it is almost entirely focused on how the genotype of an individual affects the phenotype of that same individual. However, in many species the genotype of the mother is a major determinant of the phenotype of her offspring. Therefore, a complete picture of genetic architecture must include these maternal genetic effects, but they can be difficult to identify because maternal and offspring genotypes are correlated and therefore, partially confounded. We present a conceptual framework that overcomes this challenge to separate direct and maternal effects in intact families through an analysis that we call "statistical cross-fostering." Our approach combines genotype data from mothers and their offspring to remove the confounding effects of the offspring's own genotype on measures of maternal genetic effects. We formalize our approach in an orthogonal model and apply this model to an experimental population of mice. We identify a set of six maternal genetic effect loci that explain a substantial portion of variation in body size at all ages. This variation would be missed in an approach focused solely on direct genetic effects, but is clearly a major component of genetic architecture. Our approach can easily be adapted to examine maternal effects in different systems, and because it does not require experimental manipulation, it provides a framework that can be used to understand the contribution of maternal genetic effects in both natural and experimental populations.  相似文献   

7.
It is widely believed that risks of many complex diseases are determined by genetic susceptibilities, environmental exposures, and their interaction. Chatterjee and Carroll (2005, Biometrika 92, 399-418) developed an efficient retrospective maximum-likelihood method for analysis of case-control studies that exploits an assumption of gene-environment independence and leaves the distribution of the environmental covariates to be completely nonparametric. Spinka, Carroll, and Chatterjee (2005, Genetic Epidemiology 29, 108-127) extended this approach to studies where certain types of genetic information, such as haplotype phases, may be missing on some subjects. We further extend this approach to situations when some of the environmental exposures are measured with error. Using a polychotomous logistic regression model, we allow disease status to have K+ 1 levels. We propose use of a pseudolikelihood and a related EM algorithm for parameter estimation. We prove consistency and derive the resulting asymptotic covariance matrix of parameter estimates when the variance of the measurement error is known and when it is estimated using replications. Inferences with measurement error corrections are complicated by the fact that the Wald test often behaves poorly in the presence of large amounts of measurement error. The likelihood-ratio (LR) techniques are known to be a good alternative. However, the LR tests are not technically correct in this setting because the likelihood function is based on an incorrect model, i.e., a prospective model in a retrospective sampling scheme. We corrected standard asymptotic results to account for the fact that the LR test is based on a likelihood-type function. The performance of the proposed method is illustrated using simulation studies emphasizing the case when genetic information is in the form of haplotypes and missing data arises from haplotype-phase ambiguity. An application of our method is illustrated using a population-based case-control study of the association between calcium intake and the risk of colorectal adenoma.  相似文献   

8.
Cui Y  Casella G  Wu R 《Genetics》2004,167(2):1017-1026
The expression of most developmental or behavioral traits involves complex interactions between quantitative trait loci (QTL) from the maternal and offspring genomes. The maternal-offspring interactions play a pivotal role in shaping the direction and rate of evolution in terms of their substantial contribution to quantitative genetic (co)variation. To study the genetics and evolution of maternal-offspring interactions, a unifying statistical framework that embraces both the direct and indirect genetic effects of maternal and offspring QTL on any complex trait is developed. This model is derived for a simple backcross design within the maximum-likelihood context, implemented with the EM algorithm. Results from extensive simulations suggest that this model can provide reasonable estimation of additive and dominant effects of the QTL at different generations and their interaction effects derived from the maternal and offspring genomes. Although our model is framed to characterize the actions and interactions of maternal and offspring QTL affecting offspring traits, the idea can be readily extended to decipher the genetic machinery of maternal traits, such as maternal care. Our model provides a powerful means for studying the evolutionary significance of indirect genetic effects in any sexually reproductive organisms.  相似文献   

9.
The seeds of flowering plants develop from double fertilization and play a vital role in reproduction and supplying human and animal food. The genetic variation of seed traits is influenced by multiple genetic systems, e.g., maternal, embryo, and/or endosperm genomes. Understanding the genetic architecture of seed traits is a major challenge because of this complex mechanism of multiple genetic systems, especially the epistasis within or between different genomes and their interactions with the environment. In this study, a statistical model was proposed for mapping QTL with epistasis and QTL-by-environment (QE) interactions underlying endosperm and embryo traits. Our model integrates the maternal and the offspring genomes into one mapping framework and can accurately analyze maternal additive and dominant effects, endosperm/embryo additive and dominant effects, and epistatic effects of two loci in the same or two different genomes, as well as interaction effects of each genetic component of QTL with environment. Intensive simulations under different sampling strategies, heritabilities, and model parameters were performed to investigate the statistical properties of the model. A set of real cottonseed data was analyzed to demonstrate our methods. A software package, QTLNetwork-Seed-1.0.exe, was developed for QTL analysis of seed traits.  相似文献   

10.
Parents often have important influences on their offspring's traits and/or fitness (i.e., maternal or paternal effects). When offspring fitness is determined by the joint influences of offspring and parental traits, selection may favor particular combinations that generate high offspring fitness. We show that this epistasis for fitness between the parental and offspring genotypes can result in the evolution of their joint distribution, generating genetic correlations between the parental and offspring characters. This phenomenon can be viewed as a coadaptive process in which offspring genotypes evolve to function with the parentally provided environment and, in turn, the genes for this environment become associated with specific offspring genes adapted to it. To illustrate this point, we present two scenarios in which selection on offspring alone alters the correlation between a maternal and an offspring character. We use a quantitative genetic maternal effect model combined with a simple quadratic model of fitness to examine changes in the linkage disequilibrium between the maternal and offspring genotypes. In the first scenario, stabilizing selection on a maternally affected offspring character results in a genetic correlation that is opposite in sign to the maternal effect. In the second scenario, directional selection on an offspring trait that shows a nonadditive maternal effect can result in selection for positive covariances between the traits. This form of selection also results in increased genetic variation in maternal and offspring characters, and may, in the extreme case, promote host-race formation or speciation. This model provides a possible evolutionary explanation for the ubiquity of large genetic correlations between maternal and offspring traits, and suggests that this pattern of coinheritance may reflect functional relationships between these characters (i.e., functional integration).  相似文献   

11.
Understanding the genetic architecture of phenotypic plasticity is required to assess how populations might respond to heterogeneous or changing environments. Although several studies have examined population‐level patterns in environmental heterogeneity and plasticity, few studies have examined individual‐level variation in plasticity. Here, we use the North Carolina II breeding design and translocation experiments between two populations of Chinook salmon to detail the genetic architecture and plasticity of offspring survival and growth. We followed the survival of 50 800 offspring through the larval stage and used parentage analysis to examine survival and growth through freshwater rearing. In one population, we found that additive genetic, nonadditive genetic and maternal effects explained 25%, 34% and 55% of the variance in larvae survival, respectively. In the second population, these effects explained 0%, 24% and 61% of the variance in larvae survival. In contrast, fry survival was regulated primarily by additive genetic effects, which indicates a shift from maternal to genetic effects as development proceeds. Fry growth also showed strong additive genetic effects. Translocations between populations revealed that offspring survival and growth varied between environments, the degree of which differed among families. These results indicate genetic differences among individuals in their degree of plasticity and consequently their ability to respond to environmental variation.  相似文献   

12.
Despite a growing interest in the evolutionary aspects of maternal effects, few studies have examined the genetic consequences of maternal effects associated with parental care. To begin to provide data on nonlaboratory or nondomestic animals, we compared the effect of presence and absence of parental care on phenotype expression of larval mass and development time at different life-history stages in the burying beetle Nicrophorus pustulatus. This beetle has facultative care; parents can feed their larvae through regurgitation of digested carrion or offspring can feed by themselves from previously prepared carrion. To investigate larval responses to these two levels of care, including estimates of additive genetic effects, maternal effects, and genotype-by-environment interactions, we used a half-sibling split-family breeding experiment-raising half of the offspring of a family in the presence of their mother and the other half without their mother present. Larvae reared with their mother present were on average heavier and developed faster, although some of the differences in development decreased or were eliminated by the adult stage. These results suggest that presence or absence of post-hatching maternal care plays an important role in phenotype expression early in life, whereas later the phenotype of the offspring is determined mainly by the genotype and/or unshared environmental effects. Our study also permitted us to examine the differences in genetic effects between the two care environments. Heritabilities, maternal/common environment effect, and most genetic correlations did not differ between the care treatments. Genetic analyses revealed substantial additive genetic effects for development time but small effects for measures of body mass. Maternal plus common environment effects were high for measures of mass but low for development time, suggesting that indirect genetic effects of maternal and/or common environment are less important for the evolution of development time than for mass. Estimates of genetic correlations revealed a trade-off between the duration of the two development stages after the offspring left the carrion. There was also a negative genetic correlation between the time spent on carrion and the mass at 72 h, when mothers usually stop feeding. The analysis of genotype-by-environment interactions indicates substantial variation among maternal families in response to care. Presence or absence of parental care may therefore contribute to the additive genetic variance through its interaction with the maternal component of the additive genetic variance. The presence of this interaction further suggests that parents may vary in care strategies, with some parents dispersing after preparation of the carrion and some parents staying with the larvae. This interaction may help maintain genetic variation in growth, development time, and parental care behavior. Additional work is needed, however, to quantify indirect genetic effects and genetic variation in parental care behavior itself.  相似文献   

13.
Quality differences between offspring sired by the social and by an extra-pair partner are usually assumed to have a genetic basis, reflecting genetic benefits of female extra-pair mate choice. In the zebra finch (Taeniopygia guttata), we identified a colour ornament that is under sexual selection and appears to have a heritable basis. Hence, by engaging in extra-pair copulations with highly ornamented males, females could, in theory, obtain genes for increased offspring attractiveness. Indeed, sons sired by extra-pair partners had larger ornaments, seemingly supporting the genetic benefit hypothesis. Yet, when comparing ornament size of the social and extra-pair partners, there was no difference. Hence, the observed differences most likely had an environmental basis, mediated, for example, via differential maternal investment of resources into the eggs fertilized by extra-pair and social partners. Such maternal effects may (at least partly) be mediated by egg size, which we found to be associated with mean ornament expression in sons. Our results are consistent with the idea that maternal effects can shape sexual selection by altering the genotype-phenotype relationship for ornamentation. They also caution against automatically attributing greater offspring attractiveness or viability to an extra-pair mate's superior genetic quality, as without controlling for differential maternal investment we may significantly overestimate the role of genetic benefits in the evolution of extra-pair mating behaviour.  相似文献   

14.
Simulations were used to study the influence of model adequacy and data structure on the estimation of genetic parameters for traits governed by direct and maternal effects. To test model adequacy, several data sets were simulated according to different underlying genetic assumptions and analysed by comparing the correct and incorrect models. Results showed that omission of one of the random effects leads to an incorrect decomposition of the other components. If maternal genetic effects exist but are neglected, direct heritability is overestimated, and sometimes more than double. The bias depends on the value of the genetic correlation between direct and maternal effects. To study the influence of data structure on the estimation of genetic parameters, several populations were simulated, with different degrees of known paternity and different levels of genetic connectedness between flocks. Results showed that the lack of connectedness affects estimates when flocks have different genetic means because no distinction can be made between genetic and environmental differences between flocks. In this case, direct and maternal heritabilities are under-estimated, whereas maternal environmental effects are overestimated. The insufficiency of pedigree leads to biased estimates of genetic parameters.  相似文献   

15.
Maternal environmental factors can impact on the phenotype of the offspring via the induction of epigenetic adaptive mechanisms. The advanced fetal programming hypothesis proposes that maternal genetic variants may influence the offspring's phenotype indirectly via epigenetic modification, despite the absence of a primary genetic defect. To test this hypothesis, heterozygous female eNOS knockout mice and wild type mice were bred with male wild type mice. We then assessed the impact of maternal eNOS deficiency on the liver phenotype of wild type offspring. Birth weight of male wild type offspring born to female heterozygous eNOS knockout mice was reduced compared to offspring of wild type mice. Moreover, the offspring displayed a sex specific liver phenotype, with an increased liver weight, due to steatosis. This was accompanied by sex specific differences in expression and DNA methylation of distinct genes. Liver global DNA methylation was significantly enhanced in both male and female offspring. Also, hepatic parameters of carbohydrate metabolism were reduced in male and female offspring. In addition, male mice displayed reductions in various amino acids in the liver. Maternal genetic alterations, such as partial deletion of the eNOS gene, can affect liver metabolism of wild type offspring without transmission of the intrinsic defect. This occurs in a sex specific way, with more detrimental effects in females. This finding demonstrates that a maternal genetic defect can epigenetically alter the phenotype of the offspring, without inheritance of the defect itself. Importantly, these acquired epigenetic phenotypic changes can persist into adulthood.  相似文献   

16.
Summary Combining data collected from different sources can potentially enhance statistical efficiency in estimating effects of environmental or genetic factors or gene–environment interactions. However, combining data across studies becomes complicated when data are collected under different study designs, such as family‐based and unrelated individual‐based case–control design. In this article, we describe likelihood‐based approaches that permit the joint estimation of covariate effects on disease risk under study designs that include cases, relatives of cases, and unrelated individuals. Our methods accommodate familial residual correlation and a variety of ascertainment schemes. Extensive simulation experiments demonstrate that the proposed methods for estimation and inference perform well in realistic settings. Efficiencies of different designs are contrasted in the simulation. We applied the methods to data from the Colorectal Cancer Family Registry.  相似文献   

17.
The amount of intraindividual genetic variation has often been found to have profound effects on life history traits. However, studies concerning the relationship between behaviour and genetic diversity are scarce. Aggressiveness is an important component of competitive ability in juvenile salmonids affecting their later performance and survival. In this study, we used an experimental approach to test the prediction that juveniles with low estimated genetic diversity should be less aggressive than juveniles with high estimated genetic diversity in fry from a highly endangered population of land-locked salmon (Salmo salar). This was achieved by using a method enabling the accurate estimation of offspring genetic diversity based on parental microsatellite genotype data. This allowed us to create two groups of offspring expected to have high or low genetic diversity in which aggressive behaviour could be compared. Salmon fry with low estimated genetic diversity were significantly less aggressive than fry with high estimated genetic diversity. Closer analysis of the data suggested that this difference was due to differences in more costly acts of aggression. Our result may reflect a direct effect of genetic variation on a fitness-related trait; however, we cannot rule out an alternative explanation of allele-specific phenotype matching, where lowered aggression is expressed towards genetically more similar individuals.  相似文献   

18.
Maternal effects on offspring phenotypes occur because mothers in many species provide an environment for their developing young. Although these factors are correctly "environmental" with respect to the offspring genome, their variance may have both a genetic and an environmental basis in the maternal generation. Here, reciprocal crosses between C57BL/6J and 10 LGXSM recombinant inbred (RI) strains were performed, and litters were divided at weaning into high-fat and low-fat dietary treatments. Differences between reciprocal litters were used to measure genetic maternal effects on offspring phenotypes. Nearly all traits, including weekly body weights and adult blood serum traits, show effects indicative of genetic variation in maternal effects across RI strains, allowing the quantitative trait loci involved to be mapped. Although much of the literature on maternal effects relates to early life traits, we detect strong and significant maternal effects on traits measured at adulthood (as much as 10% of the trait variance at 17 or more weeks after weaning). We also found an interaction affecting adult phenotype between the effects of maternal care between RI strain mothers and C57BL/6J mothers and a later environmental factor (dietary fat intake) for some age-specific weights.  相似文献   

19.
The evolution of maternal effects on offspring phenotype should depend on the extent of parent-offspring conflict and costs and constraints associated with maternal and offspring strategies. Here, we develop a model of maternal effects on offspring dispersal phenotype under parent-offspring conflict to evaluate such dependence. In the absence of evolutionary constraints and costs, offspring evolve dispersal rates from different patch types that reflect their own, rather than the maternal, optima. This result also holds true when offspring are unable to assess their own environment because the maternal phenotype provides an additional source of information. Consequently, maternal effects on offspring diapause, dispersal, and other traits that do not necessarily represent costly resource investment are more likely to maximize offspring than maternal fitness. However, when trait expression was costly, the evolutionarily stable dispersal rates tended to deviate from those under both maternal and offspring control. We use our results to (re)interpret some recent work on maternal effects and their adaptive value and provide suggestions for future work.  相似文献   

20.
Maternal inputs to offspring early in development are initially high but the process of development suggests that ontogenetic shifts in the importance of maternal genetic variation relative to other sources should occur. We investigated additive genetic variance and covariance for direct (animal), sire, and maternal effects on embryonic length (EL), yolk sac volume (YSV), and alevin (after yolk sac resorption) length (AL) for 460 embryonic and 460 alevin brook charr (Salvelinus fontinalis) in 23 half-sib families (12 sires, 23 dams). There were no additive genetic effects of sires or individual animals on their own phenotype using sire-dam and maternal-animal models for YSV or EL (h(a)2 < 0.05). However, at the alevin stage we detected low but significant heritability for AL (h(a)2 = 0.14 +/- 0.11). Conversely, maternal genetic effects were high for both embryonic traits (h(EL)2 = 0.61 +/- 0.05; h(YSU)2 = 0.57 +/- 0.06) but faded rapidly for postresorption length (h(AL)2 = 0.18 +/- 0.04). Maternal effects in the sire-dam model corresponded highly with those in the animal-dam model. We did not detect significant genetic covariance between progeny and dams for preresorption traits or between sires and dams for any trait. However, following resorption of the yolk sac, the genetic value of dams for AL was negatively correlated with that of individual progeny (r(m,a) = -0.38 +/- 0.13), suggesting trade-offs and/or stabilizing selection between maternal and animal genetic trait value. This finding was supported by models of dam fecundity on offspring length and dam weight in phenotypic space. Heritability estimates using simple regression of embryo phenotype on adult parental phenotype produced upwardly biased estimates of genetic variance (h2 > 1.0). We propose that development through the embryo-alevin boundary may be a major point in salmonids for ontogenetic changes in the genetic architecture of embryo size from maternal genetic effects to those of the individual organism, and that maternal-offspring conflicts in resource allocation related to size may be partially indicated by negative genetic covariance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号