首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 115 毫秒
1.
《生态学杂志》2012,23(2):328-334
大气CO2浓度升高可能对森林土壤的甲烷(CH4)氧化速率产生影响.本文采用开顶箱技术,对连续6年高浓度CO2(500 μmol·mol-1)处理的长白山森林典型树种蒙古栎树下土壤CH4氧化速率进行研究,并利用CH4氧化菌的16S rRNA特异性引物以及CH4单加氧酶功能基因引物分析了土壤中CH4氧化菌的群落结构与数量.结果表明: CO2浓度增高后,生长季土壤甲烷氧化量与对照和裸地相比分别降低了4%和22%;基于16S rRNA特异性引物的DGGE分析表明,CO2浓度增高导致两类甲烷氧化菌的多样性指数降低;CO2浓度增高对土壤中Ⅰ类甲烷氧化菌数量无显著影响,而使土壤中Ⅱ类甲烷氧化菌数量显著减少,功能基因pmoA拷贝数与对照和裸地相比分别降低了15%和46%.CO2浓度增高导致森林土壤甲烷氧化菌数量与活性降低,土壤含水量的增加可能是导致这一现象的主要原因.  相似文献   

2.
硝酸盐型甲烷厌氧氧化(AOM)是控制稻田甲烷排放的一种新途径,大气CO2浓度升高会对稻田甲烷排放产生重要影响,但有关其对硝酸盐型AOM过程的影响知之甚少。本研究依托开顶式气室组成的CO2浓度自动调控平台,采用13CH4稳定性同位素示踪技术,从甲烷氧化活性、相关功能微生物Candidatus Methanoperedens nitroreducens (M. nitroreducens)-like古菌丰度与群落组成等方面,系统研究了稻田土壤中硝酸盐型AOM过程对大气CO2浓度缓增的响应。试验设置背景CO2浓度和CO2浓度缓增处理(背景CO2浓度基础上每年增加40 μL·L-1,直至增幅达160 μL·L-1)。结果表明: 稻田土壤硝酸盐型AOM速率为0.7~11.3 nmol CO2·g-1·d-1;定量PCR结果显示,M. nitroreducens-like古菌mcrA基因丰度为2.2×106~8.5×106 copies·g-1。与对照相比,CO2浓度缓增处理使土壤中硝酸盐型AOM速率和M. nitroreducens-like古菌mcrA基因丰度均有一定幅度提高,特别是在5~10 cm深度下两者均显著提高。CO2浓度缓增处理未显著改变M. nitroreducens-like古菌群落结构,但使其多样性显著降低。相关性分析表明,土壤有机碳含量可能是影响硝酸盐型AOM过程的重要因子。综上,大气CO2浓度缓增在一定程度上促进了硝酸盐型AOM反应,暗示在未来气候变化背景下其在控制稻田甲烷排放中具有积极作用。  相似文献   

3.
大气中不断升高的CO2浓度以及人类饮食的营养质量是目前我们面临的两个重大问题.目前,大气中CO2浓度已达到380 μmol·mo1-1,预测到2050年大气CO2浓度将达到550 μmol·mol-1.农产品的品质不仅取决于遗传基因,而且受生长环境条件的影响.大量研究表明,农作物的生长发育和产量形成都对CO2浓度升高做出了响应,而且这种变化对农产品的品质也产生了重要影响.本文对目前国内外模拟CO2浓度升高对农产品品质影响研究中采用的常见方法进行了比较,并综述了近年来在CO2浓度升高对水稻、小麦、大豆和其他一些蔬菜类农产品品质影响方面的研究进展.大量试验结果表明,CO2浓度升高条件下,大宗作物籽粒中蛋白质含量下降,微量元素总体上有下降趋势,而蔬菜类农产品的品质有一定程度改善.最后,本文根据目前研究现状对一些问题进行了讨论并提出了今后的研究方向.  相似文献   

4.
大气CO2浓度升高对稻田根际土壤甲烷氧化细菌丰度的影响   总被引:1,自引:0,他引:1  
甲烷氧化细菌是目前已知的稻田甲烷氧化唯一生物,在减少稻田甲烷排放、降低大气甲烷浓度方面发挥着重要作用.利用中国稻/麦轮作FACE(Free Air Carbon-dioxide Enrichment)试验平台,采用实时荧光定量PCR技术,研究了大气CO2浓度升高下,典型水稻生长期根际土壤甲烷氧化细菌数量的变化规律,及其对不同施肥处理(高氮HN和常氮LN)的响应.2009和2010连续2a的观测结果表明,大气CO2浓度升高促进了2009年秧苗期和分蘖期,2010年秧苗期、拔节期和灌浆期甲烷氧化细菌的生长;并可能对2010年常氮条件下成熟期甲烷氧化细菌产生了较显著(P<0.1)抑制;进一步针对甲烷氧化细菌主要类群的分析表明,高氮条件下大气CO2浓度升高提高了稻田根际土壤中Ⅰ型甲烷氧化细菌的丰度.  相似文献   

5.
大气CO2浓度升高对植物根系的影响   总被引:3,自引:0,他引:3  
植物长期生长在CO2浓度不断升高的环境中,其结构和功能都将受到影响,这种影响不仅表现在植物的地上部分,同时也表现在植物的地下部分(根系),尤其是细根的长度、直径、产量、周转以及根与枝的分配模式等方面。植物根系结构和功能的改变影响植物地上部分和生态系统物质循环中的碳动态及土壤中碳库的变化。目前有关大气CO2浓度升高对根系动态影响的研究报道主要包括大气CO2浓度升高对根系结构(直径、分枝、长度、数量等)和根系生理(周转率、产量、碳分配模式等)的影响2个方面。目前,该领域研究还存在一些不足,例如在CO2浓度升高条件下,对植物根系内部的调控机制,以及由其引起的物质循环和能量流动的动态变化的了解较少;至今没有令人信服的证据说明大气CO2浓度升高使根系周转升高还是降低。今后应加强研究在CO2浓度升高条件下根系的周转变化和光合产物分配模式变化,CO2浓度升高和外界环境因素的共同作用对根系的影响,以及采用不同研究方法和研究对象在不同立地条件下开展升高CO2浓度对根系影响的对比研究等。  相似文献   

6.
利用开顶箱模拟大气O3与CO2浓度升高,对油松进行了连续4个月的熏蒸实验,探讨了油松针叶抗氧化系统化系统的响应.结果表明:1)高浓度O3显著增加了油松针叶过氧化氢的积累,到处理后期过量的过氧化氢显著地抑制了抗氧化酶活性,如SOD和APX,并且抗坏血酸被耗竭,加剧了膜质过氧化,最终导致了严重氧化伤害;2)高浓度CO2处理中油松针叶抗氧化酶活性普遍低于对照,ASA含量显著高于对照,可能是高CO2浓度促进ASA合成,或者是ASA的消耗减少,到处理后期使H2O2含量比对照降低了15.5%,从而减轻了膜质过氧化产物丙二醛含量,减轻了氧化伤害;3)与O3单因素相比,在协同处理中油松针叶具有较高的抗氧化酶活性和ASA含量,说明高CO2浓度减轻了高O3对抗氧化酶活性的抑制作用,并且提高了针叶内ASA含量,增强了针叶的抗氧化能力,有效地控制了ROS的产生与清除平衡,缓解了高O3带来的氧化伤害.  相似文献   

7.
大气CO2浓度和温度升高对作物生理生态的影响   总被引:22,自引:9,他引:22  
论述了大气CO2浓度和温度升高下的植物生长,光合作用,产量以及水分养分利用效率等方面的研究进展,未来高CO2浓度下,光合作用速率有不同程度的提高,生物量和产量增加;气孔导度降低,水分利用效率(WUE)提高,一般地上部分和根系尤其是细根生物量增加,凋落物量随之增加,C/N比率提高,植物残体的腐解速率降低,CO2浓度升高后,会给根际微生物带来更多的底物,从而提高了微生物活性,加速养分的矿化过程,改善植物的养分状况。  相似文献   

8.
大气CO2浓度升高、降水格局改变、全球氮沉降增加和土地覆盖变化等全球变化不仅改变了森林土壤理化性质,而且影响了植物的生长和微生物活性,导致森林土壤碳、氮循环发生改变,进而影响土壤CH4的吸收.本研究综述了森林土壤CH4吸收的重要性,森林土壤CH4吸收对大气CO2浓度升高、降水格局改变、全球氮沉降增加和土地覆盖变化等全球变化的响应差异及驱动机制.大气CO2浓度升高抑制土壤CH4吸收;降水减少倾向于促进土壤CH4吸收;外源氮输入抑制富氮森林土壤CH4吸收,而对贫氮森林土壤CH4吸收则表现为促进或不影响;森林转化为草地、农田或人工林会减少土壤CH4的吸收量,而植树造林则会增加土壤CH4的吸收量.今后的研究重点是探讨全球变化对森林土壤CH4吸收产生长期影响和综合效应,并借助分子生物学方法进一步探究土壤CH4吸收的微生物学机制.  相似文献   

9.
关于[CO2]升高和降水变化等多因子共同作用对植物的影响报道较少, 制约着人们对植物对全球气候变化响应的认识和预测。玉米(Zea mays)作为重要的C4植物, 受[CO2]和降水影响显著, 但鲜有[CO2]升高和降水增加协同作用对其产量及生长发育影响的报道。该研究利用开顶式生长箱模拟[CO2]升高(390 (环境)、450和550 μmol·mol-1), 降水增加量设置为增加自然降水量的15% (以试验地锦州1981-2010年6至8月月平均降水量为基准), 从而形成6个处理: C550W+15%、C550W0、C450W+15%、C450W0、C390W+15%和C390W0。试验材料选用玉米品种‘丹玉39’。结果表明: [CO2]升高和降水增加的协同作用在玉米的籽粒产量和生物产量上均达到了显著水平(p< 0.05), 二因子均起正作用, 使籽粒产量和生物产量均升高。籽粒产量在[CO2] 390、450和550 μmol·mol-1水平下的降水增加处理较自然降水处理分别增加15.94%、9.95%和9.45%, 而生物产量分别增加13.06%、8.13%和6.49%。因为籽粒产量的增幅略大于生物产量的增幅, 所以促进了经济系数的升高。穗部性状变化显著, 其中, 穗粒数、穗粒重、穗长和穗粗等性状值均随[CO2]升高而升高, 且各[CO2]水平下均表现为降水增加处理>自然降水处理, 而瘪粒数相反。但是, [CO2]升高和降水增加的协同作用也促进了轴粗的升高, 对玉米产量的增加起着限制作用。二因子协同作用在净光合速率(Pn)和叶面积上达到了极显著水平(p< 0.01), 而在株高和干物质积累量上达到了显著水平(p< 0.05)。二因子协同作用使玉米叶片的Pn升高, 植株高度升高, 穗位高升高, 茎粗增加, 叶面积变大, 从而促进了干物质积累量的升高, 为玉米增产打下了良好的基础。这表明: 在未来[CO2]升高条件下, 一定程度的降水增加对玉米的产量具有正向促进作用。  相似文献   

10.
大气CO2浓度升高对稻田土壤氮素的影响   总被引:1,自引:0,他引:1  
利用中国稻/麦轮作FACE(Free-Air Carbon-Dioxide Enrichment)试验平台,研究大气CO2浓度升高200μmol·mol-1(周围大气中CO2浓度约370 μmol·mol-1)对稻季各生育期不同深度土壤溶液NH+4-N和NO-3-N浓度的影响.结果表明:高CO2浓度条件下耕层土壤溶液NH+4-N浓度在水稻生育前期有所增加,但在生育后期明显下降;大气CO2浓度升高增加了稻季5、15、30、60和90 cm处土壤溶液NO-3-N浓度,分别比对照平均提高了46.5%、36.8%、23.3%、103.7%和42.7%,在60和90 cm处差异分别达到统计上的极显著和显著水平.  相似文献   

11.
冯瑞芳  杨万勤  张健  邓仁菊  简毅  林静 《生态学报》2007,27(10):4019-4026
采用控制环境生长室研究了川西亚高山森林生态系统中与C、N、P循环有关的土壤转化酶、脲酶、硝酸还原酶和酸性磷酸酶活性的月动态及其对模拟大气CO2浓度增加、温度升高以及交互作用的动态响应。在一个生长季节内,土壤有机层和矿质土壤层的转化酶、脲酶、硝酸还原酶和酸性磷酸酶的活性高峰均出现在温度较高的夏季。其中,土壤有机层的转化酶活性高峰出现在6月份,但土壤矿质层的转化酶活性高峰出现在7月份,土壤有机层和矿质土壤层的脲酶和酸性磷酸酶的活性高峰均出现在7月份,而硝酸还原酶的活性高峰均出现在8月份。升高大气CO2浓度处理(EC)对土壤有机层和矿质土壤层的转化酶、脲酶、硝酸还原酶和酸性磷酸酶活性没有显著影响。升高温度处理(ET)显著增加了土壤有机层和矿质土壤层的酶活性,并且土壤有机层的转化酶、硝酸还原酶和脲酶活性增加更显著。大气CO2浓度增加和温度升高之间的交互作用(ECT)对土壤有机层和矿质土壤层酶活性的影响主要是温度升高引起的。  相似文献   

12.
大气CO2浓度升高和氮(N)添加对土壤碳库的影响是当前国际生态学界关注的一个热点。为阐述土壤不同形态有机碳的抗干扰能力, 运用大型开顶箱, 研究了4种处理((1)高CO2浓度(700 µmol·mol-1)和高氮添加(100 kg N·hm-2·a-1) (CN); (2)高CO2浓度和背景氮添加(CC); (3)高氮添加和背景CO2浓度(NN); (4)背景CO2和背景氮添加(CK))对南亚热带模拟森林生态系统土壤有机碳库稳定性的影响。近5年的试验研究表明: (1) CN处理能明显地促进各土层中土壤总有机碳含量的增加, 其中, 下层土壤(5-60 cm土层)中的响应达到统计学水平。(2)活性有机碳库各组分对处理的响应有所差异: 不同土层中微生物生物量碳(MBC)的含量对各处理的响应趋势基本一致, 各土层中的MBC含量均为CN > CC > NN > CK, 其中0-5 cm、5-10 cm、10-20 cm 3个土层的处理间差异都达到了显著水平; 10-20 cm与20-40 cm两个土层中的易氧化有机碳处理间有显著差异; 而对于各土层中水溶性有机碳, 处理间差异均不明显。(3)各团聚体组分中的有机碳含量的响应也有所差异: 20-40 cm与40-60 cm土层中250-2000 μm组分的有机碳含量存在处理间差异; 40-60 cm土层中53-250 μm组分的有机碳对各处理响应敏感, CC处理和NN处理都有利于该组分碳的深层积累, 尤其CN处理下的效果最为明显; 在各处理10-20 cm、20-40 cm及40-60 cm土壤中, < 53 μm组分中的碳含量间差异显著。大气CO2浓度上升和N添加促进了森林生态系统中土壤有机碳的增加, 尤其有利于深层土壤中微团聚体与粉粒、黏粒团聚体等较稳定组分中有机碳的积累, 增加了土壤有机碳库的稳定性。  相似文献   

13.
Rates of atmospheric CH4 consumption of soils in temperate forest were compared in plots continuously enriched with CO2 at 200 µL L?1 above ambient and in control plots exposed to the ambient atmosphere of 360 µL CO2 L?1. The purpose was to determine if ecosystem atmospheric CO2 enrichment would alter soil microbial CH4 consumption at the forest floor and if the effect of CO2 would change with time or with environmental conditions. Reduced CH4 consumption was observed in CO2‐enriched plots relative to control plots on 46 out of 48 sampling dates, such that CO2‐enriched plots showed annual reductions in CH4 consumption of 16% in 1998 and 30% in 1999. No significant differences were observed in soil moisture, temperature, pH, inorganic‐N or rates of N‐mineralization between CO2‐enriched and control plots, indicating that differences in CH4 consumption between treatments were likely the result of changes in the composition or size of the CH4‐oxidizing microbial community. A repeated measures analysis of variance that included soil moisture, soil temperature (from 0 to 30 cm), and time as covariates indicated that the reduction of CH4 consumption under elevated CO2 was enhanced at higher soil temperatures. Additionally, the effect of elevated CO2 on CH4 consumption increased with time during the two‐year study. Overall, these data suggest that rising atmospheric CO2 will reduce atmospheric CH4 consumption in temperate forests and that the effect will be greater in warmer climates. A 30% reduction in atmospheric CH4 consumption by temperate forest soils in response to rising atmospheric CO2 will result in a 10% reduction in the sink strength of temperate forest soils in the atmospheric CH4 budget and a positive feedback to the greenhouse effect.  相似文献   

14.
全球大气CO2浓度升高对土壤微生物生态系统的影响已引起广泛关注。本文从土壤微生物群落结构、微生物区系、土壤呼吸、微生物生物量以及土壤酶活性方面对大气高浓度CO2的响应进行了综述。由于提供高浓度CO2的实验系统、所选植物材料以及土壤特性等的不同,大气CO2浓度升高对土壤微生物群落结构、微生物区系、土壤呼吸、微生物生物量以及土壤酶活性的影响并未得出一致结论。但高浓度CO2对土壤微生物生态系统的影响是存在的。  相似文献   

15.
研究农田土壤酶活性对CO2浓度升高和增温的响应,可为气候变化背景下农田生态系统养分管理提供科学依据。本研究在人工模拟气候室进行盆栽控制试验,设置了4种气候情景,分别为对照(CK,CO2浓度400 μmol·mol-1+正常环境温度)、CO2浓度升高(ECO2,CO2浓度800 μmol·mol-1+正常环境温度)、增温(ET,CO2浓度400 μmol·mol-1+增温4 ℃)及CO2浓度和温度均升高(ECO2+T,CO2浓度800 μmol·mol-1+增温4 ℃),研究有、无冬小麦生长下β--葡萄糖苷酶(βG)、β-N-乙酰葡糖苷酶(NAG)、碱性磷酸单脂酶(ALP)和多酚氧化酶(PPO)4种土壤酶活性在冬小麦拔节期(JS)、开花期(AS)、灌浆期(FS)和成熟期(MS)对CO2浓度升高和增温的响应。结果表明:无冬小麦生长下,ECO2与CK间4种土壤酶活性差异不显著,而ET和ECO2+T处理对4种土壤酶活性有显著抑制作用。有冬小麦生长条件下,与CK相比,ECO2和ECO2+T处理对4种土壤酶活性均无显著影响;ET处理对土壤ALP和PPO活性有显著影响;ECO2+T与ET间4种土壤酶活性有显著差异,与ET相比,ECO2+T处理的土壤βG活性在JS期显著增加,NAG活性在JS期显著降低,ALP活性在AS和FS期显著增加,PPO活性在JS期显著降低,而在AS期显著增加。CO2浓度升高与增温的交互作用在有、无冬小麦生长下均对土壤NAG和ALP活性有显著影响;无冬小麦生长下,增温和试验时段的交互作用对4种土壤酶活性有显著影响,而在有冬小麦生长下,增温和生育期的交互作用仅对ALP和PPO活性有显著影响;CO2浓度升高、增温与试验时段的交互作用在无冬小麦生长下对土壤βG、ALP和PPO活性有显著影响,而在有冬小麦生长下CO2浓度升高、增温与生育期对土壤NAG、ALP和PPO活性有显著影响。冬小麦生长对土壤βG、NAG和ALP活性在前两个生育期(JS+AS期)表现为显著抑制作用,在后两个生育期(FS+MS期)表现为显著促进作用,对土壤PPO活性在全生育期均表现为显著抑制作用。总体上,CO2浓度升高对冬小麦土壤酶活性的影响不显著,而CO2浓度与温度均升高对冬小麦土壤酶活性的影响在不同生育期因土壤酶种类不同而不同;此外,有、无冬小麦条件下4种土壤酶活性对CO2浓度升高与增温的交互作用响应程度不一。  相似文献   

16.
大气CO2浓度升高对不同施氮土壤酶活性的影响   总被引:7,自引:3,他引:7  
利用中国唯一的无锡FACE(Free-air CO2 enrichment,开放式空气CO2浓度升高)平台,研究了大气CO2浓度升高对土壤β-葡糖苷酶、转化酶、脲酶、酸性磷酸酶、-氨基葡糖苷酶的影响。研究发现,不同氮肥处理下大气CO2浓度升高对某些土壤酶活性的影响不同。在低氮施肥处理中,大气CO2浓度升高显著降低-葡糖苷酶活性,但是在高氮施肥处理下,大气CO2浓度升高显著增加β-葡糖苷酶活性。在低氮和常氮施肥处理中大气CO2浓度升高显著增加了土壤脲酶活性,但在高氮水平下影响不显著。在低氮、常氮施肥处理中,大气CO2浓度升高对土壤酸性磷酸酶活性没有影响,而在高氮施肥处理中显著增强了土壤中磷酸酶活性。大气CO2浓度升高对土壤转化酶活性和-氨基葡糖苷酶的活性有增加趋势,但影响不显著。研究还发现,在不同的CO2浓度下,土壤酶活性对不同氮肥处理的响应也不同。在正常CO2浓度下,土壤中β-葡糖苷酶活性随着氮肥施用量的增加而降低,而在大气CO2浓度升高条件下,却随着氮肥施用量的增加而增加。在大气CO2浓度升高条件下,高氮施肥显著增加了转化酶和酸性磷酸酶活性,而在正常CO2浓度下,影响不显著。在大气CO2浓度升高条件下,氮肥处理对脲酶活性的影响不大,但在正常CO2浓度下,脲酶活性随着氮肥施用量的增加而增加。氮肥对β-氨基葡糖苷酶活性的影响不明显。  相似文献   

17.
为研究大气CO2浓度升高条件下土壤动物的响应, 本文采用开顶式气室(OTC)控制大气CO2浓度, 设置了3个梯度, 分别为低浓度370 ppm背景CO2 (AC)、中浓度550 ppm CO2 (EC1)和高浓度700 ppm CO2 (EC2)。于2017年秋季取样并用改良Tullgren干漏斗法和Baermann湿漏斗分离土壤动物。结果表明: (1)共捕获土壤动物6,268头, 隶属于7纲15目, 优势类群为甲螨亚目, 占捕获量的88.13%; 常见类群为弹尾目和双翅目幼虫, 合计占捕获量的9%。不同CO2浓度水平下, 优势类群(甲螨亚目)和常见类群(弹尾目、双翅目幼虫)相同, 但是稀有类群存在一定差异。(2) CO2浓度升高显著增加了甲螨亚目的类群数和个体密度, 显著降低了弹尾目的类群数和个体密度, 对其他土壤动物无显著影响。(3)三江平原不同浓度条件下土壤动物的Shannon-Wiener多样性指数、Pielou均匀度指数均为AC > EC1 > EC2, 而优势度指数为EC2 > EC1 > AC, 丰富度指数为AC > EC2 > EC1。研究表明, 气候变化有可能影响土壤动物的群落结构以及土壤动物的多样性。  相似文献   

18.
In a mature temperate forest in Hofstetten, Switzerland, deciduous tree canopies were subjected to a free‐air CO2 enrichment (FACE) for a period of 8 years. The effect of this treatment on the availability of nitrogen (N) in the soil was assessed along three transects across the experimental area, one under Fagus sylvatica, one under Quercus robur and Q. petraea and one under Carpinus betulus. Nitrate, ammonium and dissolved organic N (DON) were analysed in soil solution obtained with suction cups. Nitrate and ammonium were also captured in buried ion‐exchange resin bags. These parameters were related to the local intensity of the FACE treatment as measured from the 13C depletion of dissolved inorganic carbon in the soil solution. Over the 8 years of experiment, the CO2 enrichment reduced DON concentrations, did not affect ammonium, but induced higher nitrate concentrations, both in soil solution and resin bags. In the nitrate captured in the resin bags, the natural abundance of the isotope 15N increased strongly. This indicates that the CO2 enrichment accelerated net nitrification, probably as an effect of the higher soil moisture resulting from the reduced transpiration of the CO2‐enriched trees. It is also possible that N mineralization was enhanced by root exudates (priming effect) or that the uptake of inorganic N by these trees decreased slightly as the result of a reduced N demand for fine‐root growth. In this mature deciduous forest, we did not observe any progressive N limitation due to elevated atmospheric CO2 concentrations; on the contrary, we observed an enhanced N availability over the 8 years of our measurements. This may, together with the global warming projected, exacerbate problems related to N saturation and nitrate leaching, although it is uncertain how long the observed trends will last in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号