首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In near-isogenic lines of winter wheat (Triticum aestivum L. cv. Maris Huntsman) grown at 20° C under long days the reduced-height genes, Rht1 (semi-dwarf) and Rht3 (dwarf) reduced the rate of extension of leaf 2 by 12% and 52%, respectively, compared with corresponding rht (tall) lines. Lowering the growing temperature from 20° to 10° C reduced the rate of linear extension of leaf 2 by 2.5-fold (60% reduction) in the rht3 line but by only 1.6-fold (36% reduction) in the Rht3 line. For both genotypes, the duration of leaf expansion was greater at the lower temperature so that final leaf length was reduced by only 35% in the rht3 line and was similar in the Rht3 line at both temperatures. Seedlings of the rht3 (tall) line growing at 20° C responded positively to root-applied gibberellin A1 (GA1) in the range 1–10 μM GA1; there was a linear increase in sheath length of leaf 1 whereas the Rht3 (dwarf) line remained unresponsive. Gibberellins A1, 3, 4, 8, 19, 20, 29, 34, 44 and 53 were identified by full-scan gas chromatography-mass spectrometry in aseptically grown 4-d-old shoots of the Rht3 line. In 12-d-old seedlings grown at 20° C, there were fourfold and 24-fold increases in the concentration of GA1 in the leaf expansion zone of Rht1 and Rht3 lines, respectively, compared with corresponding rht lines. Although GA3 was present at a similar level to GA1 in the rht3 (tall) line it accumulated only fivefold in the Rht3 (dwarf) line. The steady-state pool sizes of endogenous GAs were GA19 ? GA20 = GA1 in the GA-responsive rht3 line whereas in the GA non-responsive Rht3 line the content of GA19≈ GA20 ? GA1. It is proposed that one of the consequences of GA1 action is suppression of GA19-oxidase activity such that the conversion of GA19 to GA20 becomes a rate-limiting step on the pathway to GA1 in GA-responsive lines. In the GA-non-responsive Rht lines it is suggested that GA19 oxidase is not downregulated to the same extent and GA1 accumulates before the next rate-limiting step on the pathway, its 2β-hydroxylation to GA8. The steady-state pool sizes of GA19, 20, 1, 3 and 8 were similar in developmentally equivalent tissues of the rht3 (tall) line growing at 10° C and 20° C despite a 2.5-fold difference in the rate of leaf expansion. In contrast, in the Rht3 (dwarf) line, the extent of accumulation of GA1 reflected the severity of the phenotype at the two temperatures with slower growing tissues accumulating less, not more, GA1. These results are interpreted as supporting the proposed model of regulation of the GA-biosynthetic pathway rather than previous suggestions that GA1 accumulates in GA-insensitive dwarfs as a consequence of reduced growth rates.  相似文献   

2.
本文系统地研究了带有Rht3基因的4B染色体二体(宁矮1号)、单体(宁矮1号M4B)、缺体(宁矮1号N4B)材料的光合特性,发现带有Rht3基因的4B染色体对光合速率、叶绿素含量、RuBP羧化酶含量及活性、叶片导度均有正效应,并有累加作用,而且对叶绿素含量缓降期和光合速率高值持续期也有正效应,因此带有Rht3基因的4B染色体具有促进光合作用的效应。对具有不同Rht3基因剂量的矮秆系(宁矮1号,即苏麦3号的Rht3矮秆等基因系)、半矮秆系(MD苏麦3号)及其苏麦3号的光合碳同化特性的研究,发现Rht3基因对光合速率、叶绿素含量、叶片导度具有正效应,但对于RuBP羧化酶含量和活性、叶绿素含量缓降期、光合速率高值持续期有负效应。  相似文献   

3.
A field experiment was carried out with a set of near-isogenicspring wheat lines (cv. Triple Dirk) to determine the influenceof the Rht1 and Rht2 alleles on the partitioning of dry matterbetween the developing stem and the ear. Each line was sampledtwice weekly and dissected into its component above-ground parts.The rate of change of the dry mass of the individual plant organswas expressed as a proportion of the rate of change of the totalplant dry mass. This ratio was used to assess the relative sinkstrengths of the stem and ear during crop growth. The Rht1 andRht2 alleles reduced plant height, but increased grain yield.The greater yield was achieved through a greater grain numberper ear in the Rhtl line, a greater ear number per plant inthe Rht2 line, and a greater allocation of assimilate to thedeveloping ear than to the developing stem in both Rht lines,particularly at the time of maximum stem growth (17 d beforeanthesis). From the earliest stages of detectable ear growthuntil anthesis, the ear masses per unit area of the Rht1 andRht2 lines exceeded that of Triple Dirk (Rht). It was not possibleto determine whether the Rht1 and Rht2 alleles were directlyresponsible for increasing grain number per ear and ear numberper plant, respectively, since the increase in these componentsof yield could equally be explained by a greater partitioningof assimilate to developing ears and tillers caused simply bya reduction in plant height. Triticum aestivum L., wheat Rht genes, stem and ear development, dry matter partitioning, allocation ratio  相似文献   

4.
The gibberellin insensitivity genes, Rht1 and Rht2, reducedepidermal cell lengths in leaves of isogenic lines of field-and laboratory-grown wheat (Triticum aestivum L.). Rht dosagesof zero (wild type), two (semi-dwarf) and four alleles (doubledwarf) had a linear negative effect on cell length in flag leavesof field-grown plants, and in the sheaths and blades of leafnumber 1 in laboratory grown plants. Decrease in cell length,rather than reduced cell number, accounted for most to all ofthe reduction in blade and sheath length. In sheaths, cell widthincreased with Rht dosage, but not sufficiently to compensatefor decreased length in determining average projected surfacearea. Rates of extension of leaf number 1 in laboratory-grownplants were negatively and linearly correlated with Rht dosage.Maximal growth rate was maintained longer in wild type thanin double dwarf, but the total duration of measurable extensionin leaf number 1 was not affected by Rht dosage. Cell size, elongation, Rht, wheat, Triticum aestivum L  相似文献   

5.
A field experiment was undertaken with a set of near-isogenicspring wheat lines (cv. Triple Dirk) to determine the influenceof the Rht1 and Rht2 alleles on the deposition of carbon inthe stem, and the subsequent use of these reserves during graingrowth. The amount of dry matter stored and mobilized was estimatedby the measurement of changes in masses of stem from frequentharvests. Deposition or absolute reserve was defined as thesum of the increments in mass in each segment of the large culmbetween the time that the segment ceased extending and the timethat it reached maximum mass. The incorporation of the Rht1and Rht2 alleles into a Triple Dirk background reduced the absoluteamount of stored carbon in the stem by 35 and 39%, respectively.This was a consequence of the 21% reduction of stem height inRht1 and Rht2 lines. Use or mobilization of reserve was definedas the sum of the decrements in mass in each segment of thelarge culm between maximum and maturity. The alleles did notconfer an ability to mobilize more of the stored stem reservesin absolute terms, although the efficiency of use of stem reserves(i.e. use as a proportion of deposition) was higher in Rht1than in rht or Rht2 . The possible contribution of stored carbonin the stem to final grain yield was estimated to be 22, 18and 14% in the rht, Rht1 and Rht2 lines. In these estimates,the loss of mass was adjusted by 33% to allow for respiration.It was concluded that the larger stem reserves in rht wheatsare of no real advantage under favourable environmental conditions,and may in fact be a disadvantage if the accumulation of thatextra dry matter results in a reduction of sink size.Copyright1993, 1999 Academic Press Triticum aestivum L., Rht genes, stem reserves, deposition, mobilization, grain growth  相似文献   

6.
7.
Biomechanical and morphometric comparisons among coleoptilesfrom wheat seedlings differing in Rht gene-dosage (Rht = 0,2, 4 doses) are presented in an effort to evaluate the influenceof Rht on the mechanics of soil penetration by this organ. Rhtis known to reduce seedling establishment compared to the wildtype. Data from 3–7-day-old seedlings indicate that Rhtreduces tissue elastic modulus E, increases the second momentof area I, and decreases the slenderness ratio (l/r) of coleoptiles.Rht-relatedchanges in E and I are such that the flexural stiffness of coleoptilesfrom Rht plants does not differ significantly from the wildtype-hence the growing coleoptiles of all three genotypes haveequivalent biomechanical capacity to penetrate the soil. Rhtreduction of coleoptile slenderness ratios confers a capacityto safely sustain higher axial compressive loads compared tocoleoptiles with equivalent flexural stiffness but higher ratios.However, wild type seedlings produce longer coleoptiles andlonger subcrown internodes than Rht seedlings. Longer coleoptilesdeliver the crown node closer to the top of the soil beforethe crown node extends beyond the lateral confinement of thecoleoptile. This reduces the potential for buckling of the subcrowninternode and leaves due to the compressive loading of soil.Rht affects a variety of mechanical features whose influenceis dependent upon the stage of seedling growth and the degreeof soil compaction. However, at equivalent depths of burialwhich exceed the maximum length of coleoptiles and moderatesoil compaction, Rht is biomechanically disadvantageous to seedlingestablishment. Wheat, germination, biomechanics, Rht-gene  相似文献   

8.
小麦矮秆基因Rht3的RAPD和RFLP标记分析   总被引:8,自引:0,他引:8  
万平  周青文  马正强  陈佩度  刘大钧 《遗传学报》2001,28(11):1028-1033
利用PCR和RFLP技术分析了小麦赤霉酸反应不敏感的矮秆基因Rht3的近等基因系及其分离群体,RAPD分析从310条随机引物中,筛选出3个引物可以在高矮亲本中稳定地扩增出多态带,连锁分析表明仅S10601900和S10602000扩增片段与Rht3;连锁,遗传距离分别为7.1cM和9.2cM.RFLP分析选用了主要位于第4部分同源群短臂上的53个探针,其中Xper584,XksuF8和Xcdo38 3个探针在高矮亲本中揭示出多态性,;连锁分析表明仅Xper584与Rht3基因连锁,遗传距离为8.0cM。  相似文献   

9.
Opportunities exist for replacing reduced height (Rht) genes Rht-B1b and Rht-D1b with alternative dwarfing genes, such as the gibberellin-responsive gene Rht12, for bread wheat improvement. However, a comprehensive understanding of the effects and mode of action of Rht12 is lacking. In the present study, the effects of Rht12 were characterized by analyzing its effects on seeding vigour, seedling roots, leaf and stem morphology, spike development and carbohydrate assimilation and distribution. This was carried out in the four genotypes of F2:3 lines derived from a cross between Ningchun45 and Karcagi (12) in two experiments of autumn sowing and spring sowing. Rht12 significantly decreased stem length (43%∼48% for peduncle) and leaf length (25%∼30% for flag leaf) while the thickness of the internode walls and width of the leaves were increased. Though the final plant stature was shortened (40%) by Rht12, the seedling vigour, especially coleoptile length and root traits at the seedling stage, were not affected adversely. Rht12 elongated the duration of the spike development phase, improved the proportion of spike dry weight at anthesis and significantly increased floret fertility (14%) in the autumn sowing experiment. However, Rht12 delayed anthesis date by around 5 days and even the dominant Vrn-B1 allele could not compensate this negative effect. Additionally, grain size was reduced with the ability to support spike development after anthesis decreased in Rht12 lines. Finally, grain yield was similar between the dwarf and tall lines in the autumn sowing experiment. Thus, Rht12 could substantially reduce plant height without altering seeding vigour and significantly increase spikelet fertility in the favourable autumn sowing environment. The successful utilization of Rht12 in breeding programs will require careful selection since it might delay ear emergence. Nonetheless, the potential exists for wheat improvement by using Rht12.  相似文献   

10.
 Wheat microsatellite WMS 261 whose 192-bp allele has been shown to be diagnostic for the commercially important dwarfing gene Rht8 was used to screen over 100 wheat varieties to determine the worldwide spread of Rht8. The results showed Rht8 to be widespread in southern European wheats and to be present in many central European wheats including the Russian varieties ‘Avrora’, ‘Bezostaya’ and ‘Kavkaz’. Rht8 appears to be of importance to South European wheats as alternative giberellic acid (GA)-insensitive dwarfing genes do not appear to be adapted to this environment. The very successful semi-dwarf varieties bred by CIMMYT, Mexico, for distribution worldwide have been thought to carry Rht8 combined with GA-insensitive dwarfing genes. Additional height reduction would have been obtained from pleiotropic effects of the photoperiod-response gene Ppd1 that is essential to the adaptability of varieties bred for growing under short-winter days in tropical and sub-tropical areas. The microsatellite analysis showed that CIMMYT wheats lack Rht8 and carry a WMS 261 allelic variant of 165 bp that has been associated with promoting height. This presumably has adaptive significance in partly counteracting the effects of other dwarfing genes and preventing the plants being too short. Most UK, German and French wheats carry an allelic variant at the WMS 261 locus with 174 bp. This could be selected because of linkage with the recessive photoperiod-sensitive ppd1 allele that is thought to offer adaptive significance northern European wheats. Received: 17 October 1997 / Accepted: 12 November 1997  相似文献   

11.
The effect of gibberellic acid (GA3) on phospholipid metabolismand -amylase production was studied in aleurone tissue of twonear-isogenic lines of wheat (Triticum aesuvum L.). Incubationof embryoectomized seeds from a GA-responsive line (rht3, tall)with GA3 caused the induction of -amylase activity after a lagphase of 30 h. In the case of embryoectomized seeds from a ‘GA-insensitive’line (Rh13, dwarf), however, the lag phase was extended up to50 h. During the first 14 h following imbibition, GA3 inhibitedcholine uptake and its subsequent incorporation into phosphatidylcholine in the Rhr3 line but not in the rht3 line. GA3 promotedphospholipid breakdown in both the lines during this period,however. GA3 also terminated independent turnover of the cholineN-methyl groups in phosphatidyl choline and promoted turnoverof the whole choline headgroup. These results are discussedin relation to the possibility that phosphatidyl choline turnoveris an integral part of the GA3 signal-transduction mechanismin aleurone tissue. Key words: GA3, Rht3 gene, choline, phospholipid  相似文献   

12.
John L. Stoddart 《Planta》1984,161(5):432-438
Growth parameters were determined for tall (rht3) and dwarf (Rht3) seedlings of wheat (Triticum aestivum L.). Plant statures and leaf length were reduced by 50% in dwarfs but root and shoot dry weights were less affected. Leaves of dwarf seedlings had shorter epidermal cells and the numbers of cells per rank in talls and dwarfs matched the observed relationships in overall length. Talls grew at twice the rate of dwarfs (2.3 compared with 1.2 mm h-1). [3H]Gibberellin A1 ([3H]GA1) was fed to seedlings via the third leaf and metabolism was followed over 12 h. Immature leaves of tall seedlings transferred radioactivity rapidly to compounds co-chromatographing with [3H]gibberellin A8 ([3H]GA8) and a conjugate of [3H]GA8, whereas leaves of dwarf seedlings metabolised [3H]GA1 more slowly. Roots of both genotypes produced [3H]GA8-like material at similar rates. Isotopic dilution studies indicated a reduced 2-hydroxylation capacity in dwarfs, but parallel estimates of the endogenous GA pool size, obtained by radioimmunoassay, indicated a 12–15 times higher level of GA in the dwarf immature leaves. Dwarfing by the Rht3 gene does not appear to operate through enhanced, or abnormal metabolism of active gibberellins and the act of GA metabolism does not bear an obligate relationship to the growth response.Abbreviations GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

13.
 Two sets of single chromosome recombinant lines comparing 2D chromosomes from the wheat varieties ‘Ciano 67’ and ‘Mara’ with the common 2D chromosome of ‘Cappelle-Desprez’ in a ‘Cappelle-Desprez’ background were used to detect a diagnostic wheat microsatellite marker for the dwarfing gene Rht8. The genetic linkage maps place the wheat microsatellite marker WMS 261 0.6 cM distal to Rht8 on the short arm of chromosome 2D. By PCR analysis the WMS 261 alleles of ‘Mara’, ‘Cappelle-Desprez’ and ‘Ciano 67’ could be distinguished by different fragment sizes of 192 bp, 174 bp and 165 bp, respectively. A screen of over 100 international varieties of wheat showed that the three allelic variants were all widespread. It also demonstrated that a limited number of varieties carried novel WMS 261 variants of over 200 bp. Following classification of the individual recombinant lines for allelic variants at the WMS 261 locus it was possible to attribute a 7- to 8-cm reduction in plant height with the WMS 261-192-bp allele compared to the WMS 261-174-bp allele in the set of recombinant lines comparing 2D chromosomes of ‘Mara’ and ‘Cappelle-Desprez’. A height reduction of around 3 cm was detected between the WMS 261-174-bp allele and the WMS 261-165-bp allele in the recombinant lines comparing 2D chromosomes of ‘Cappelle-Desprez’ and ‘Ciano 67’. Received: 17 October 1997 / Accepted: 12 November 1997  相似文献   

14.
Wheat is the main crop and often a strategic crop in many European countries. From a historical perspective, we describe the transfer of "reduced height genes" (Rht genes) from Japanese wheat varieties to wheat varieties in Europe and their influence on the increase of the total wheat production in the last century. Historic pathways of Rht genes were influenced directly or indirectly by wheat breeders exchanging seed samples and by some governments importing large quantities of wheat during historically critical periods for their countries.  相似文献   

15.
In the south part of Ukraine the haplotype of Rht8c and Ppd-D1 genes is widely distributed among modern bread wheat varieties. During the time of scientific breeding program it has been selected as one of the most important adaptive complexes for plants of this region. The genetic distance between the Rht8 and Ppd-D1 genes was clarified.  相似文献   

16.
Kurkiev KU 《Genetika》2007,43(9):1269-1272
A gene determining reduced height, Rht10, from the wheat cultivar Ai-Bian 1 was introgressed into the triticale genotype. Initially, Ai-Bian 1 was crossed with the wheat cultivar Chinese Spring (CS), a carrier of Kr genes, to overcome the uncrossability of this cultivar with rye. Amphidiploids were produced by hybridizing the F2 (CS x Ai-Bian 1) plants displaying reduced height (at the level of Ai-Bian 1) with rye. Free pollination of F1 (F2 of CS x Ai-Bian 1) x Saratovskaya 7 with triticale pollen gave fertile viable hybrids; the majority of hybrids were phenotypically closer to octoploid triticale; however, the variants intermediate between octo- and hexaploids were also present. The height of amphidiploids varied from 40 to 90 cm, and the grain yield per spike amounted on the average to 11.7--24.7 grains, which exceeded essentially this value in F1 plants.  相似文献   

17.
The effect of GA3 on coleoptile-and first leaf elongation of tall (rht1) and semi-dwarf (Rht1) nearly-isogenic genotypes, within each of 25 random F9 wheat families, was determined on seedlings grown in a growth room at 18 °C. Conspicuous and very significant inter-family variation in the response of the first leaf to GA3 application was found in both the rht1 and Rht1 genotypes. The magnitudes of the response of the different families within genotypes to GA3 were not related to the leaf length of their untreated seedlings. It is suggested that, under given environmental conditions, background genotypic effects, inducing inter-family variation in responsiveness to GA3, regulate the elongation growth up to the limits set by the Rht alleles.  相似文献   

18.
Over the next decade, wheat grain production must increase to meet the demand of a fast growing human population. One strategy to meet this challenge is to raise wheat productivity by optimizing plant stature. The Reduced height 8 (Rht8) semi-dwarfing gene is one of the few, together with the Green Revolution genes, to reduce stature of wheat (Triticum aestivum L.), and improve lodging resistance, without compromising grain yield. Rht8 is widely used in dry environments such as Mediterranean countries where it increases plant adaptability. With recent climate change, its use could become increasingly important even in more northern latitudes. In the present study, the characterization of Rht8 was furthered. Morphological analyses show that the semi-dwarf phenotype of Rht8 lines is due to shorter internodal segments along the wheat culm, achieved through reduced cell elongation. Physiological experiments show that the reduced cell elongation is not due to defective gibberellin biosynthesis or signalling, but possibly to a reduced sensitivity to brassinosteroids. Using a fine-resolution mapping approach and screening 3104 F(2) individuals of a newly developed mapping population, the Rht8 genetic interval was reduced from 20.5 cM to 1.29 cM. Comparative genomics with model genomes confined the Rht8 syntenic intervals to 3.3 Mb of the short arm of rice chromosome 4, and to 2 Mb of Brachypodium distachyon chromosome 5. The very high resolution potential of the plant material generated is crucial for the eventual cloning of Rht8.  相似文献   

19.
The use of codominant microsatellite molecular markers allows one to study the inheritance and distribution of alleles linked to important agronomic characters. A microsatellite locus WMS261tightly linked to a dwarfing geneRht8was analyzed in wheat cultivars and selection material of the Institute of Plant Breeding and Genetics. PCR screening of common wheat cultivars produced in the southern Ukraine showed the prevalence of a 192-bp allele at locus WMS261that indicates adaptive significance of a corresponding allele of the Rht8gene in the southern regions.  相似文献   

20.
The most common dwarfing genes in wheat, Rht-B1b and Rht-D1b, classified as gibberellin-insensitive (GAI) dwarfing genes due to their reduced response to exogenous GA, have been verified as encoding negative regulators of gibberellin signaling. In contrast, the response of gibberellin-responsive (GAR) dwarfing genes, such as Rht12, to exogenous GA is still unclear and the role of them, if any, in GA biosynthesis or signaling is unknown. The responses of Rht12 to exogenous GA3 were investigated on seedling vigour, spike phenological development, plant height and other agronomic traits, using F2∶3 and F3∶4 lines derived from a cross between Ningchun45 and Karcagi-12 in three experiments. The application of exogenous GA3 significantly increased coleoptile length and seedling leaf 1 length and area. While there was no significant difference between the dwarf and the tall lines at the seedling stage in the responsiveness to GA3, plant height was significantly increased, by 41 cm (53%) averaged across the three experiments, in the GA3-treated Rht12 dwarf lines. Plant height of the tall lines was not affected significantly by GA3 treatment (<10 cm increased). Plant biomass and seed size of the GA3-treated dwarf lines was significantly increased compared with untreated dwarf plants while there was no such difference in the tall lines. GA3-treated Rht12 dwarf plants with the dominant Vrn-B1 developed faster than untreated plants and reached double ridge stage 57 days, 11 days and 50 days earlier and finally flowered earlier by almost 7 days while the GA3-treated tall lines flowering only 1–2 days earlier than the untreated tall lines. Thus, it is clear that exogenous GA3 can break the masking effect of Rht12 on Vrn-B1 and also restore other characters of Rht12 to normal. It suggested that Rht12 mutants may be deficient in GA biosynthesis rather than in GA signal transduction like the GA-insensitive dwarfs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号