首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Ceramidases catalyze the conversion of ceramide to sphingosine. They are acylaminohydrolases that catalyze the deacylation of the amide-linked saturated fatty acid from ceramide to generate sphingosine. They also catalyze the reverse reaction of ceramide biosynthesis using sphingosine and fatty acid. In mammals, different proteins catalyze these reactions while individually exhibiting optimal activity over a narrow pH range and have been accordingly called acid, neutral, and alkaline ceramidases. Several genes encode for variants of alkaline ceramidase in mammals. Brainwashing (Bwa) is the only putative alkaline ceramidase homologue present in Drosophila. In this study we have demonstrated that BWA does not exhibit ceramidase activity and that bwa null mutants display no loss of ceramidase activity. Instead, the neutral ceramidase gene CDase encodes the protein that is responsible for all measurable ceramidase activity in Drosophila. Our studies show strong genetic interaction of Bwa with CDase and the Drosophila ceramide kinase gene (DCERK). We show that, although BWA is unlikely to be a ceramidase, it is a regulator of sphingolipid flux in Drosophila. Bwa exhibits strong genetic interaction with other genes coding for ceramide-metabolizing enzymes. This interaction might partly explain its original identification as a ceramidase.  相似文献   

2.
Sphingomyelinase (SMase) and ceramidase (CDase) activities participate in sphingomyelin (SM) metabolism and have a role in the signal transduction of a variety of ligands. In this study evidence is presented that caveolin-enriched light membranes (CELMs) of murine endothelial cells, characterized by high SM, ceramide (Cer) and cholesterol content, bear acid and neutral SMase as well as neutral CDase activities. Localization of neutral CDase in CELMs was confirmed by Western analysis. Notably, cell treatment with cyclodextrin, which depleted cell cholesterol, did not affect acid or neutral SMase activities but significantly enhanced neutral CDase activity in CELMs, indicating a negative role for cholesterol in CDase regulation. These findings suggest that neutral CDase is implicated, together with SMase activities, in the control of caveolar Cer content that may be critical for caveola dynamics.  相似文献   

3.
Ceramidase (CDase) is an enzyme that hydrolyzes the N-acyl linkage between the sphingoid base and fatty acid of ceramide. These enzymes are classified into three distinct groups, acid (Asah1), neutral (Asah2), and alkaline (Asah3) CDases, based on their primary structure and optimum pH. Acid CDase catabolizes ceramide in lysosomes and is found only in vertebrates. In contrast, the distribution of neutral and alkaline CDases is broad, with both being found in species ranging from lower eukaryotes to mammals; however, only neutral CDase is found in prokaryotes, including some pathogenic bacteria. Neutral CDase is thought to have gained a specific domain (mucin box) in the N-terminal region after the vertebrate split, allowing the enzyme to be stably expressed at the plasma membrane as a type II membrane protein. The X-ray crystal structure of neutral CDase was recently solved, uncovering a unique structure and reaction mechanism for the enzyme. Neutral CDase contains a zinc ion in the active site that functions as a catalytic center, and the hydrolysis of the N-acyl linkage in ceramide proceeds through a mechanism that is similar to that described for zinc-dependent carboxypeptidase. This review describes the structure, reaction mechanism, and biological functions of neutral CDase in association with the molecular evolution, topology, and mechanical conformation. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

4.
Ceramide is an important molecule not only structurally but also regulationally as a modulator of various cellular events. Ceramidase (CDase) are classified into three different types (acid, alkaline, and neutral CDases). Neutral CDase could play an important role in the regulation of ceramide levels in the extracellular space. In this study, we describe the characterization of a neutral CDase orthologue from the filamentous fungus Aspergillus oryzae . The gene encoding the neutral CDase orthologue was cloned and overexpressed in A . oryzae . The purified recombinant enzyme was optimally active at pH 4.0–4.5 and 40 °C. The apparent K m and V max values of the enzyme for C12-NBD-ceramide were 3.32 μM and 0.085 μmol min−1 mg−1, respectively.  相似文献   

5.
Ceramidases (CDase) are enzymes that catalyze the hydrolysis of N-acyl linkage of ceramide (Cer) to generate sphingosine and free fatty acids. In this study we report the purification and characterization of a novel second type of neutral ceramidase from rat brain (RBCDase II). Triton X-100 protein extract from rat brain membrane was purified sequentially using Q-Sepharose, HiLoad16/60 Superdex 200pg, heparin-Sepharose, phenyl-Sepharose HP, and Mono Q columns. After Mono Q, the specific activity of the enzyme increased by ~15,000-fold over that of the rat brain homogenate. This enzyme has pH optima of 7.5, and it has a larger apparent molecular weight (110kDa) than the previously purified (90kDa) and characterized neutral rat brain CDase (RBCDase I). De-glycosylation experiments show that the differences in molecular mass of RBCDase I and II on SDS-PAGE are not due to the heterogeneity with N-glycan. RBCDase II is partially stimulated by Ca(2+) and is inhibited by pyrimidine mono nucleotides such as TMP and UMP. This finding is significant as it demonstrates for the first time an effect by nucleotides on a CDase activity. The enzyme was also inhibited by both oxidized and reduced GSH. The effects of metal ions were examined, and we found that the enzyme is very sensitive to Hg(2+) and Fe(3+), while it is not affected by Mn(2+). EDTA was somewhat inhibitory at a 20mM concentration.  相似文献   

6.
As an effort to elucidate the quaternary structure of cyclomaltodextrinase I-5 (CDase I-5) as a function of pH and salt concentration, the dissociation/association processes of the enzyme were investigated under various pH and salt conditions. Previous crystallographic analysis of CDase I-5 indicated that it existed exclusively as a dodecamer at pH 7.0, forming an assembly of six 3D domain-swapped dimeric subunits. In the present study, analytical ultracentrifugation analysis suggested that CDase I-5 was present as a dimer in the pH range of 5.0-6.0, while the dodecameric form was predominant at pH values above 6.5. No dissociation of the dodecamer was observed at pH 7.0 and the above. Gel filtration chromatography showed that CDase I-5 dissociated into dimers at a rate of 8.58 x 10(-2) h(-1) at pH 6.0. A mutant enzyme with three histidine residues (H49, H89, and H539) substituted with valines dissociated into dimers faster than the wild-type enzyme at both pH 6.0 and 7.0. The tertiary structure indicated that the effect of pH on dissociation of the oligomer was mainly due to the protonation of H539. Unlike the pH-dependent process, the dissociation of wild-type CDase I-5 proceeded very fast at pH 7.0 in the presence of 0.2-1.0 M of KCl. Stopped-flow spectrophotometric analysis at various concentrations of KCl showed that the rate constants of dissociation (kd) from dodecamers into dimers were 5.96 s(-1) and 7.99 s(-1) in the presence of 0.2 M and 1.0 M of KCl, respectively.  相似文献   

7.
Previously, we reported two types of neutral ceramidase in mice, one solubilized by freeze-thawing and one not. The former was purified as a 94-kDa protein from mouse liver, and cloned (Tani, M., Okino, N., Mori, K., Tanigawa, T., Izu, H., and Ito, M. (2000) J. Biol. Chem. 275, 11229--11234). In this paper, we describe the purification, molecular cloning, and subcellular distribution of a 112-kDa membrane-bound neutral ceramidase of rat kidney, which was completely insoluble by freeze-thawing. The open reading frame of the enzyme encoded a polypeptide of 761 amino acids having nine putative N-glycosylation sites and one possible transmembrane domain. In the ceramidase overexpressing HEK293 cells, 133-kDa (Golgi-form) and 113-kDa (endoplasmic reticulum-form) Myc-tagged ceramidases were detected, whereas these two proteins were converted to a 87-kDa protein concomitantly with loss of activity when expressed in the presence of tunicamycin, indicating that the N-glycosylation process is indispensable for the expression of the enzyme activity. Immunohistochemical analysis clearly showed that the ceramidase was mainly localized at the apical membrane of proximal tubules, distal tubules, and collecting ducts in rat kidney, while in liver the enzyme was distributed with endosome-like organelles in hepatocytes. Interestingly, the kidney ceramidase was found to be enriched in the raft microdomains with cholesterol and GM1 ganglioside.  相似文献   

8.
Ceramidase (CDase) hydrolyzes the amide bond in ceramides to yield free fatty acid and sphingosine. From a 3-L Pseudomonas aeruginosa PA01 culture, 70 microg of extracellular alkaline, Ca(2+)-dependent CDase, was purified to homogeneity, the N-terminal sequence was determined, and the CDase gene was cloned. The CDase gene encodes a 670 amino acid protein with a 26 amino acid signal peptide. CDase was expressed in five prokaryotic and eukaryotic expression systems. Small amounts of recombinant active extracellular CDase were expressed by Pseudomonas putida KT2440. In Pichia pastoris GS115 low amounts of recombinant extracellular glycosylated CDase were expressed. High levels of intracellular CDase were expressed by Escherichia coli DH5alpha and E. coli BL21 cells under control of the lac-promoter and T7-promoter, respectively. From a 3-L E. coli DH5alpha culture, 280 microg of pure CDase was obtained after a three-step purification protocol. Under control of the T7-promotor CDase, without its signal peptide, was produced in inclusion bodies in E. coli BL21 cells. After refolding, 1.8 mg of pure active CDase was obtained from a 2.4-L culture after ammonium sulfate precipitation and gel filtration. Both the recombinant and wild-type CDases have a pH optimum of 8.5. The recombinant enzyme was partially characterized. This is the first report of a high yield CDase production system allowing detailed characterization of the enzyme at the molecular level.  相似文献   

9.
Clostridium thermohydrosulfuricum 39E, a gram-positive thermophilic anaerobic bacterium, produced a cyclodextrin (CD)-degrading enzyme, cyclodextrinase (CDase) (EC 3.2.1.54). The enzyme was purified to homogeneity from Escherichia coli cells carrying a recombinant multicopy plasmid that contained the gene encoding for thermophilic CDase. The purified enzyme was a monomer with an M(r) of 66,000 +/- 2,000. It showed the highest activity at pH 5.9 and 65 degrees C. The enzyme hydrolyzed alpha-, beta-, and gamma-CD and linear maltooligosaccharides to yield maltose and glucose. The Km values for alpha-, beta-, and gamma-CD were 2.5, 2.1, and 1.3 mM, respectively. The rates of hydrolysis for polysaccharides (starch, amylose, amylopectin, and pullulan) were less than 5% of the rate of hydrolysis for alpha-CD. The entire nucleotide sequence of the CDase gene was determined. The deduced amino acid sequence of CDase, consisting of 574 amino acids, showed some similarities with those of various amylolytic enzymes.  相似文献   

10.
The bioactive molecule sphingosine 1-phosphate (S1P) is abundantly stored in platelets and can be released extracellularly. However, although they have high sphingosine (Sph) kinase activity, platelets lack the de novo sphingolipid biosynthesis necessary to provide the substrates. Here, we reveal a generation pathway for Sph, the precursor of S1P, in human platelets. Platelets incorporated extracellular 3H-labeled Sph much faster than human megakaryoblastic cells and rapidly converted it to S1P. Furthermore, Sph formed from plasma sphingomyelin (SM) by bacterial sphingomyelinase (SMase) and neutral ceramidase (CDase) was rapidly incorporated into platelets and converted to S1P, suggesting that platelets use extracellular Sph as a source of S1P. Platelets abundantly express SM, possibly supplied from plasma lipoproteins, at the cell surface. Treating platelets with bacterial SMase resulted in Sph generation at the cell surface, conceivably by the action of membrane-bound neutral CDase. Simultaneously, a time-dependent increase in S1P levels was observed. Finally, we demonstrated that secretory acid SMase also induces S1P increases in platelets. In conclusion, our results suggest that in platelets, Sph is supplied from at least two sources: generation in the plasma followed by incorporation, and generation at the outer leaflet of the plasma membrane, initiated by cell surface SM degradation.  相似文献   

11.
Recently, we purified an alkaline ceramidase (CDase) of Pseudomonas aeruginosa and found that the enzyme catalyzed a reversible reaction in which the N-acyl linkage of ceramide was hydrolyzed or synthesized [J. Biol. Chem. 273 (1998) 14368-14373]. Here, we report the characterization of the reverse hydrolysis reaction of the CDase using a recombinant enzyme. The reverse hydrolysis reaction of the CDase was clearly distinguishable from the reaction of an acyl-coenzyme A (CoA) dependent N-acyltransferase, because the CDase catalyzed the condensation of a free fatty acid to sphingosine (Sph) without cofactors but did not catalyze the transfer of a fatty acid from acyl-CoA to Sph. The reverse hydrolysis reaction proceeded most efficiently in the presence of 0.05% Triton X-100 at neutral pH, while the hydrolysis reaction tended to be favored with an increase in the concentration of the detergent at alkaline pH. The specificity of the reverse reaction for fatty acids is quite broad; saturated and unsaturated fatty acids were efficiently condensed to Sph. In contrast, the stereo-specificity of the reverse reaction for the sphingoid bases is very strict; the D-erythro form of Sph, not the L-erythro or D/L-threo one, was only acceptable for the reverse reaction. Chemical modification of the enzyme protein affected or did not affect both the hydrolysis and reverse reactions to the same extent, suggesting that the two reactions are catalyzed at the same catalytic domain.  相似文献   

12.
13.
14.
The expression of the Paenibacillus sp. A11 cyclodextrinase (CDase) gene using the pUC 18 vector in Escherichia coli JM 109 resulted in the formation of an insoluble CDase protein in the cell debris in addition to a soluble CDase protein in the cytoplasm. Unlike the expression in Paenibacillus sp. A11, CDase was primarily observed in cytoplasm. However, by adding 0.5 M sorbitol as an osmolyte, the formation of insoluble CDase was prevented while a three-fold increase in cytoplasmic CDase activity was achieved after a 24 h-induction. The recombinant CDase protein was purified to approximately 14-fold with a 31% recovery to a specific activity of 141 units/mg protein by 40-60% ammonium sulfate precipitation, DEAE-Toyopearl 650 M, and Phenyl Sepharose CL-4B chromatography. It was homogeneous by non-denaturing and SDS-PAGE. The enzyme was a single polypeptide with a molecular weight of 80 kDa, as determined by gel filtration and SDS-PAGE. It showed the highest activity at pH 7.0 and 40 degrees C. The catalytic efficiency (k(cat)/K(m)) values for alpha-, beta-, and gamma- CD were 3.0 x 10(5), 8.8 x 10(5), and 5.5 x 10(5) M(-1) min(-1), respectively. The enzyme hydrolyzed CDs and linear maltooligosaccharides to yield maltose and glucose with less amounts of maltotriose and maltotetraose. The rates of hydrolysis for polysaccharides, soluble starch, and pullulan were very low. The cloned CDase was strongly inactivated by N-bromosuccinimide and diethylpyrocarbonate, but activated by dithiothreitol. A comparison of the biochemical properties of the CDases from Paenibacillus sp. A11 and E. coli transformant (pJK 555) indicates that they were almost identical.  相似文献   

15.
PC2 is a member of the eukaryotic family of subtilisin-related proprotein convertases which are thought to be involved in the intracellular proteolytic processing of prohormones and proneuropeptides. The presence of only small amounts of PC2 in the secretory granules of certain mammalian neuroendocrine cell types has made the characterization and further study of this enzyme difficult. We report here the expression of proteolytically active human PC2 protein in the insect cell-baculovirus system. Human PC2 expressed in insect cells is a calcium-dependent intracellular protein active at neutral pH. In insect cells, human PC2 was found intracellularly as 75-kDa and 71-kDa proteins. Both 73-kDa and 68-kDa forms were found in the conditioned medium, but no PC2 proteolytic activity was detected. We demonstrated the presence of a soluble inhibitor in infected-cell medium which may block PC2 activity.  相似文献   

16.
Biochemical properties of the concanavalin A-binding 43-kDa glycoprotein (gp43) of Paracoccidioides brasiliensis and its deglycosylated form were compared. Deglycosylation was achieved by treatment with trifluoromethanesulfonic acid, endoglycosidase H, N-glycanase, or metabolically, by growing cells with tunicamycin. The resulting antigen in all cases had Mr 38,000, and probably derived from the gp43 by loss of N-linked high-mannose oligosaccharide chains. The presence of galactopyranose units in the carbohydrate chains was suggested by antigen binding to peanut lectin. Pulse and chase experiments using [35S]methionine metabolic labeling of P. brasiliensis growing in the presence of tunicamycin showed that the N-linked chains of gp43 are not required for antigen secretion. The 38-kDa antigen was more susceptible than the native antigen to the action of papain and pronase, thus indicating a protective role of the carbohydrate moiety against proteolysis. Both forms are equally resistant to endogenous proteases at neutral pH. The gp43, itself, has a proteolytic activity at pH 5-6, but not at neutral pH. Deglycosylation with endoglycosidase H or tunicamycin preserved epitopes in the 38-kDa molecule reactive with (a) antibodies from patients with paracoccidioidomycosis, or rabbit immunized with the gp43 and (b) mouse monoclonal antibodies against the gp43 antigen. The present results provide a basis for the understanding of diagnostic reactions and fungal virulence involving the gp43 exocellular antigen of P. brasiliensis.  相似文献   

17.
Rapid activation of phospholipase D (PLD) in response to cell stimulation was recently demonstrated in many systems, raising the hypothesis that PLD participates in transduction of extracellular signals across the plasma membrane. In the present study, we describe the identification of a neutral PLD activity in purified rat brain synaptic plasma membranes, and the in vitro conditions required to assay its catalytic activity with exogenous [3H]phosphatidylcholine as substrate. Production of [3H]phosphatidic acid, the natural lipid product of PLD and of [3H]phosphatidylethanol, catalyzed by PLD in the presence of ethanol via transphosphatidylation, were measured. The synaptic membrane PLD exhibited its highest activity at pH 7.2 and was thus defined as a neutral PLD. Enzyme activity was absolutely dependent on the presence of sodium oleate and was strongly activated by Mg2+ ions (at 1 mM). Ca2+ at concentrations up to 0.25 mM was as stimulatory as Mg2+, but at 2 mM it completely inhibited enzyme activity. Mg2+ extended the linear phase of PLD activity from 2 to 15 min, suggesting that it may stabilize the enzyme under our assay conditions. The production of [3H]phosphatidylethanol was a saturable function of ethanol concentration. Production of [3H] phosphatidic acid was inversely related to the concentration of ethanol and to the accumulation of phosphatidylethanol, indicating that the two phospholipids are indeed produced by the competing hydrolase and transferase activities of the same enzyme. beta,beta-Dimethylglutaric acid, utilized previously as a buffer in studies of rat brain PLD, inhibited enzyme activity at neutral pH but not at acidic pH. The properties of the neutral synaptic membrane PLD and its relationships with other in vitro, acid, and neutral PLD activities, as well as with the signal-dependent PLD detected in intact cells, are discussed.  相似文献   

18.
Proteolytic processing enzymes are required to convert the enkephalin precursor to active opioid peptides. In this study, a novel 33-kDa thiol protease that cleaves complete precursor in the form of [35S]methionine preproenkephalin was purified from bovine adrenal medullary chromaffin granules. Chromatography on concanavalin A-Sepharose and Sephacryl S-200, chromatofocusing, and chromatography on thiopropyl-Sepharose resulted in an 88,000-fold purification with a recovery of 35% of enzyme activity. The thiol protease is a glycoprotein with a pI of 6.0. It cleaves [35S]methionine preproenkephalin with a pH optimum of 5.5, indicating that it is functional at the intragranular pH of 5.5-6.0. Interestingly, production of trichloroacetic acid-soluble products was optimal at pH 4.0, suggesting that processing of initial precursor and intermediates may require slightly different pH conditions. The protease requires dithiothreitol for activity and is inhibited by the thiol protease inhibitors iodoacetate, p-hydroxymercuribenzoate, mercuric chloride, and cystatin. These properties distinguish it from other thiol proteases (cathepsins B, H, L, N, and S), indicating that a unique thiol protease has been identified. The enzyme converted [35S]cysteine preproenkephalin (possessing [35S]cysteine residues specifically within the precursor's NH2-terminal segment) to 22.1-, 21.6-, 17.7-, 17.3-, and 15.0-kDa intermediates that contain the precursor's NH2-terminal segment; proenkephalin in vivo is converted to similar intermediates. The enzyme cleaves peptide F at Lys-Arg and Lys-Lys dibasic amino acid sites to generate methionine enkephalin and intermediates. The appropriate vesicular localization, pH optimum, proteolytic products, and cleavage site specificity suggest that this thiol protease may be involved in enkephalin precursor processing. Most interestingly, [35S]methionine beta-preprotachykinin, a precursor of substance P, is minimally cleaved, suggesting that the thiol protease may possess some selectivity for the enkephalin precursor.  相似文献   

19.
Ceramidase (CDase) hydrolyses the N-acyl linkage of the sphingolipid ceramide. We synthesized the non-fluorescent ceramide analogue (4E,2S,3R)-2-N-(10-pyrenedecanoyl)-1,3,17-trihydroxy-17-(3,5-dinitrobenzoyl)-4-heptadecene (10) that becomes fluorescent upon hydrolysis of its N-acyl bond. This novel substrate was used to study several kinetic aspects of the recombinant CDase from the pathogenic bacterium Pseudomonas aeruginosa PA01. Maximum CDase activity was observed above 1.5 microM substrate, with an apparent K(m) of 0.5+/-0.1 microM and a turnover of 5.5 min(-1). CDase activity depends on divalent cations without a strong specificity. CDase is inhibited by sphingosine and by several sphingosine analogues. The lack of inhibition by several mammalian CDase inhibitors such as D-erythro-MAPP, L-erythro-MAPP or N-oleoylethanolamine points to a novel active site and/or substrate binding region. The CDase assay described here offers the opportunity to develop and screen for specific bacterial CDase inhibitors of pharmaceutical interest.  相似文献   

20.
Recombinant Escherichia coli cytosine deaminase is purified as a mixture of Zn(2+) and Fe(2+) forms of the enzyme. Fe(2+) is removed readily by o-phenanthroline to yield apoenzyme (apoCDase) that contains <0.2 mol of Zn(2+)per mol of subunit. ApoCDase was efficiently reconstituted to Zn(2+)CDase by treatment with ZnCl(2). The interaction of cytosine with apoCDase and Zn(2+)CDase was investigated at pH 7.5 and 25 degrees C by monitoring changes in intrinsic protein fluorescence. The values for the kinetic data K(1), k(2), and k(3) for Zn(2+)CDase were 0.25 mM, 80 s(-1), and 38 s(-1), respectively. The value for k(-2) was statistically indistinguishable from zero. The analogous values for K(1), k(2), and k(-2), (k(3)=0) for apoCDase were 0.157 mM, 186 s(-1) and approximately 0.8 s(-1), respectively. The overall dissociation constant of apoCDase for cytosine was 0.00069 mM, whereas the K(m) of Zn(2+)CDase for cytosine was 0.20 mM. The pre-steady state phase of the reaction was associated with an absorbance increase at 280 nm that was attributed to solvent perturbation of the spectrum of cytosine or enzyme. Formation of the Fe(2+)CDase-cytosine complex was too rapid to monitor by these techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号