首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NuMA protein is the largest, abundant, primate-specific chromosomal protein. The protein was purified from HeLa cells and monospecific monoclonal antibodies were prepared that react exclusively with NuMA protein in immunoblot analysis. These antibodies were used to define the intracellular location and properties of NuMA protein. Using indirect immunofluorescence, NuMA protein was detected only in the nucleus of interphase cells and on the chromosomes in mitotic cells. One class of monoclonal antibody called the 2E4-type antibody, caused NuMA protein (or a complex of proteins including NuMA) to be released from its binding site on metaphase or anaphase chromosomes. The separation of NuMA protein from chromosomes was observed either with the immunofluorescence assay or in electrophoretic analyses of proteins released from isolated metaphase chromosomes after reaction with 2E4 antibody. The immunofluorescence studies also showed that after release of the NuMA protein from chromosomes of metaphase or anaphase cells, the protein bound specifically to the polar region of the mitotic spindle. It was shown that exogenously added NuMA antigen/antibody complex bound only to the mitotic spindle poles of permeabilized primate cells and not to the spindle poles of other mammalian cells, thus demonstrating the specificity of the spindle-pole interaction. The antibody mediated transfer of NuMA from chromosomes to poles was blocked when the chromosomes were treated with cross-linking fixatives. Results suggest that the NuMA protein has specific attachment sites on both metaphase chromosomes and mitotic spindle poles (the site where post-mitotic nuclear assembly occurs). A model is proposed suggesting that a protein having such dual binding sites could function during nuclear reassembly to link mitotic chromosomes into the reforming nucleus.  相似文献   

2.
Monoclonal antibodies and human autoimmune sera specific for the nuclear mitotic apparatus protein (NuMA protein) were applied to study the structure of this protein and its intracellular distribution. The NuMA protein was purified using immuno-affinity columns. Studies on this large (250 kD) nuclear protein indicated that it is a highly asymmetric phosphoprotein. It is present in all mammalian cells examined and in those of some non-mammals. Immunofluorescence studies on fixed cells demonstrated that its intracellular distribution is essentially the same in all species at all stages of the cell cycle. Immunoblot (western blot) analysis showed that the size of the NuMA protein varies slightly in different species. At the onset of mitosis the NuMA protein redistributes from the nucleus to two centrosomal structures that later will become part of the mitotic spindle pole. This occurs at the time of nuclear breakdown and eventually leads to an accumulation of the NuMA protein at the polar region of the mitotic spindle. After anaphase the protein redistributes from the spindle polar region into the reforming nucleus and concentrates initially at the site where nuclear lamins and perichomatin have been reported to assemble. Living cells microinjected with fluorescent anti-NuMA antibodies were studied to examine parameters that effect the redistribution of the NuMA protein in vivo. These experiments indicate that microtubule assembly is essential for the NuMA protein to accumulate in the polar region.  相似文献   

3.
Red blood cell protein 4.1 (4.1R) is an 80- kD erythrocyte phosphoprotein that stabilizes the spectrin/actin cytoskeleton. In nonerythroid cells, multiple 4.1R isoforms arise from a single gene by alternative splicing and predominantly code for a 135-kD isoform. This isoform contains a 209 amino acid extension at its NH2 terminus (head piece; HP). Immunoreactive epitopes specific for HP have been detected within the cell nucleus, nuclear matrix, centrosomes, and parts of the mitotic apparatus in dividing cells. Using a yeast two-hybrid system, in vitro binding assays, coimmunolocalization, and coimmunoprecipitation studies, we show that a 135-kD 4.1R isoform specifically interacts with the nuclear mitotic apparatus (NuMA) protein. NuMA and 4.1R partially colocalize in the interphase nucleus of MDCK cells and redistribute to the spindle poles early in mitosis. Protein 4.1R associates with NuMA in the interphase nucleus and forms a complex with spindle pole organizing proteins, NuMA, dynein, and dynactin during cell division. Overexpression of a 135-kD isoform of 4.1R alters the normal distribution of NuMA in the interphase nucleus. The minimal sequence sufficient for this interaction has been mapped to the amino acids encoded by exons 20 and 21 of 4.1R and residues 1788-1810 of NuMA. Our results not only suggest that 4.1R could, possibly, play an important role in organizing the nuclear architecture, mitotic spindle, and spindle poles, but also could define a novel role for its 22-24-kD domain.  相似文献   

4.
NuMA is a nuclear matrix protein in interphase and distributes to the spindle poles during mitosis. While the essential function of NuMA for mitotic spindle assembly is well established, a structural role of NuMA in interphase nucleus has also been proposed. Several observations suggest that the apoptotic degradation of NuMA may relate to chromatin condensation and micronucleation. Here we demonstrate that four apoptotic cleavage sites are clustered at a junction between the globular tail and the central coiled-coil domains of NuMA. Cleavage of a caspase-6-sensitive site at D1705 produced the R-form, a major tail-less product of NuMA during apoptosis. The other two cleavage sites were defined at D1726 and D1747 that were catalyzed, respectively, by caspase-3 and an unknown aspartase. A NuMA deletion mutant missing the entire cleavage region of residues 1701–1828 resisted degradation and protected cells from nuclear disruption upon apoptotic attack. Under such conditions, cytochrome c was released from mitochondria, but the subsequent apoptotic events such as caspase-3 activation, poly(ADP-ribose) polymerase degradation, and DNA fragmentation were attenuated. Conversely, the tail-less NuMA alone, a mutant mimicking the R-form, induced chromatin condensation and activated the death machinery. It supports that intact NuMA is a structural element in maintaining nuclear integrity.  相似文献   

5.
Centrosomes, the main microtubule-organizing centers (MTOCs) in most animal cells, are important for many cellular activities such as assembly of the mitotic spindle, establishment of cell polarity, and cell movement. In nuclear transfer (NT), MTOCs that are located at the poles of the meiotic spindle are removed from the recipient oocyte, while the centrosome of the donor cell is introduced. We used mouse MII oocytes as recipients, mouse fibroblasts, rat fibroblasts, or pig granulosa cells as donor cells to construct intraspecies and interspecies nuclear transfer embryos in order to observe centrosome dynamics and functions. Three antibodies against centrin, gamma-tubulin, and NuMA, respectively, were used to stain the centrosome. Centrin was not detected either at the poles of transient spindles or at the poles of first mitotic spindles. gamma-tubulin translocated into the two poles of the transient spindles, while no accumulated gamma-tubulin aggregates were detected in the area adjacent to the two pseudo-pronuclei. At first mitotic metaphase, gamma-tubulin was translocated to the spindle poles. The distribution of gamma-tubulin was similar in mouse intraspecies and rat-mouse interspecies embryos. The NuMA antibody that we used can recognize porcine but not murine NuMA protein, so it was used to trace the NuMA protein of donor cell in reconstructed embryos. In the pig-mouse interspecies reconstructed embryos, NuMA concentrated between the disarrayed chromosomes soon after activation and translocated to the transient spindle poles. NuMA then immigrated into pseudo-pronuclei. After pseudo-pronuclear envelope breakdown, NuMA was located between the chromosomes and then translocated to the spindle poles of first mitotic metaphase. gamma-tubulin antibody microinjection resulted in spindle disorganization and retardation of the first cell division. NuMA antibody microinjection also resulted in spindle disorganization. Our findings indicate that (1) the donor cell centrosome, defined as pericentriolar material surrounding a pair of centrioles, is degraded in the 1-cell reconstituted embryos after activation; (2) components of donor cell centrosomes contribute to the formation of the transient spindle and normal functional mitotic spindle, although the contribution of centrosomal material stored in the recipient ooplasm is not excluded; and (3) components of donor cell centrosomes involved in spindle assembly may not be species-specific.  相似文献   

6.
One main feature of apoptosis is the sequential degradation of the nuclear structure, including the fragmentation of chromatin and caspase-mediated cleavage of various nuclear proteins. Among these proteins is the Nuclear Mitotic Apparatus protein (NuMA) which plays a specific role in the organization of the mitotic spindle. The exact function of NuMA in the interphase nucleus is unknown, but a number of reports have suggested that it may play a role in chromatin organization and/or gene expression. Here we show that upon cleavage in apoptotic cells, the N-terminal cleavage fragment of NuMA is solubilized while the C-terminal fragment remains associated with the condensed chromatin. Using pancaspase inhibitor z-VAD-fmk and caspase-3 deficient MCF-7 cells, we further show that the solubilization is dependent on caspase-mediated cleavage of NuMA. Finally, the silencing of NuMA by RNAi accelerated nuclear breakdown in apoptotic MCF-7 cells. These results suggest that NuMA may provide structural support in the interphase nucleus by contributing to the organization of chromatin.  相似文献   

7.
This work focuses on the assembly and transformation of the spindle during the progression through the meiotic cell cycle. For this purpose, immunofluorescent confocal microscopy was used in comparative studies to determine the spatial distribution of alpha- and gamma-tubulin and nuclear mitotic apparatus protein (NuMA) from late G2 to the end of M phase in both meiosis and mitosis. In pig endothelial cells, consistent with previous reports, gamma-tubulin was localized at the centrosomes in both interphase and M phase, and NuMA was localized in the interphase nucleus and at mitotic spindle poles. During meiotic progression in pig oocytes, gamma-tubulin and NuMA were initially detected in a uniform distribution across the nucleus. In early diakinesis and just before germinal vesicle breakdown, microtubules were first detected around the periphery of the germinal vesicle and cell cortex. At late diakinesis, a mass of multi-arrayed microtubules was formed around chromosomes. In parallel, NuMA localization changed from an amorphous to a highly aggregated form in the vicinity of the chromosomes, but gamma-tubulin localization remained in an amorphous form surrounding the chromosomes. Then the NuMA foci moved away from the condensed chromosomes and aligned at both poles of a barrel-shaped metaphase I spindle while gamma-tubulin was localized along the spindle microtubules, suggesting that pig meiotic spindle poles are formed by the bundling of microtubules at the minus ends by NuMA. Interestingly, in mouse oocytes, the meiotic spindle pole was composed of several gamma-tubulin foci rather than NuMA. Further, nocodazole, an inhibitor of microtubule polymerization, induced disappearance of the pole staining of NuMA in pig metaphase II oocytes, whereas the mouse meiotic spindle pole has been reported to be resistant to the treatment. These results suggest that the nature of the meiotic spindle differs between species. The axis of the pig meiotic spindle rotated from a perpendicular to a parallel position relative to the cell surface during telophase I. Further, in contrast to the stable localization of NuMA and gamma-tubulin at the spindle poles in mitosis, NuMA and gamma-tubulin became relocalized to the spindle midzone during anaphase I and telophase I in pig oocytes. We postulate that in the centrosome-free meiotic spindle, NuMA aggregates the spindle microtubules at the midzone during anaphase and telophase and that the polarity of meiotic spindle microtubules might become inverted during spindle elongation.  相似文献   

8.
NuMA is an abundant long coiled-coil protein that plays a prominent role in spindle organization during mitosis. In interphase, NuMA is localized to the nucleus and hypothesized to control gene expression and chromatin organization. However, because of the prominent mitotic phenotype upon NuMA loss, its precise function in the interphase nucleus remains elusive. Here, we report that NuMA is associated with chromatin in interphase and prophase but released upon nuclear envelope breakdown (NEBD) by the action of Cdk1. We uncover that NuMA directly interacts with DNA via evolutionarily conserved sequences in its C-terminus. Notably, the expression of the DNA-binding–deficient mutant of NuMA affects chromatin decondensation at the mitotic exit, and nuclear shape in interphase. We show that the nuclear shape defects observed upon mutant NuMA expression are due to its potential to polymerize into higher-order fibrillar structures. Overall, this work establishes the spindle-independent function of NuMA in choreographing proper chromatin decompaction and nuclear shape by directly associating with the DNA.  相似文献   

9.
NuMA is a well-characterized organizer of the mitotic spindle, which is believed to play a structural role in interphase nucleus. We studied the expression of NuMA in rat seminiferous epithelium in detail. Different stages of the cycle of the seminiferous epithelium were identified using transillumination. Corresponding areas were microdissected and analysed using immunofluorescence, immunohistochemistry, or immunoblotting. NuMA was expressed in Sertoli cells, proliferating type A and B spermatogonia, and early spermatids but it was absent in late spermatids and mature spermatozoa. Interestingly, NuMA-positive primary spermatocytes lost their nuclear NuMA at the beginning of long-lasting prophase of the first meiotic division. A strong expression was again observed at the end of the prophase and finally, a redistribution of NuMA into pole regions of the meiotic spindle was observed in first and second meiotic divisions. In immunoblotting, a single 250-kDa protein present in all stages of the rat seminiferous epithelial cycle was detected. Our results show that NuMA is not essential for the organization of nuclear structure in all cell types and suggest that its presence is more likely connected to the proliferation phase of the cells. They also suggest that NuMA may play an important role in meiotic cell division.  相似文献   

10.
11.
The formation of mitotic centrosomes is a complex process in which a number of cellular proteins translocate to mitotic poles and play a critical role in the organization of the mitotic apparatus. The 238-kDa nuclear mitotic apparatus protein NuMA is one of the important proteins that plays a significant role in this process. NuMA resides in the nucleus during interphase and becomes transiently associated with mitotic centrosomes after multiple steps of phosphorylations. The role of NuMA in the interphase nucleus is not well known but it is clear that NuMA responds to external signals (such as hormones) that induce cell division, or heat shock that induces apoptosis. In order to determine the function of NuMA it is important to study its localization. Here we report on nuclear organization of NuMA during the cell cycle in estrogen responsive MCF-7 breast cancer cells and in androgen responsive LNCaP prostate cancer cells using immunoelectron microscopy, and on correlation to MPM-2 monoclonal phosphoprotein antibody. These results show that NuMA is present in speckled and punctate form associated with distinct material corresponding to a speckled or punctate immunofluorescence appearance in the nucleus while MPM-2 is uniformly dispersed in the nucleus. At prophase NuMA disperses in the cytoplasm and associates with microtubules while MPM-2 is uniformly distributed in the cytoplasm. During metaphase or anaphase anti-NuMA labeling is associated with spindle fibers. During telophase NuMA relocates to electron-dense areas around chromatin and finally to the reconstituted nuclei. These results demonstrate NuMA organization in MCF-7 and LNCaP cells in the log phase of cell culture growth.  相似文献   

12.
NuMA expression and function in mouse oocytes and early embryos   总被引:2,自引:0,他引:2  
Nuclear mitotic apparatus protein (NuMA), originally described as a nuclear protein, is an essential component in the formation and maintenance of mitotic spindle poles. In this study, we analyze the expression pattern and function of NuMA in mouse oocytes and early embryos. In germinal vesicle-stage occytes, NuMA was detected both at the centrosome and in the nucleus. However, after nuclear maturation and extrusion of the first polar body, NuMA was concentrated at the broad meiotic spindle poles and at cytasters (centers of cytoplasmic microtubule asters) of mature metaphase II oocytes. Cold-induced depolymerization of microtubules appeared to disassociate NuMA foci from the cytoplasmic cytasters. During fertilization, NuMA was relocated into the reformed male and female pronuclei. Microinjection of anti-NuMA antibody into 1 of 2 cells of 2-cell-stage embryos inhibited normal cell division. These results suggest that NuMA might play an important role in cell division during early embryonic mitosis.  相似文献   

13.
A bank of 892 autoimmune sera was screened by indirect immunofluorescence on mammalian cells. Six sera were identified that recognize an antigen(s) with a cell cycle-dependent localization pattern. In interphase cells, the antibodies stained the nucleus and in mitotic cells the spindle apparatus was recognized. Immunological criteria indicate that the antigen recognized by at least one of these sera corresponds to a previously identified protein called the nuclear mitotic apparatus protein (NuMA). A cDNA which partially encodes NuMA was cloned from a lambda gt11 human placental cDNA expression library, and overlapping cDNA clones that encode the entire gene were isolated. DNA sequence analysis of the clones has identified a long open reading frame capable of encoding a protein of 238 kD. Analysis of the predicted protein sequence suggests that NuMA contains an unusually large central alpha-helical domain of 1,485 amino acids flanked by nonhelical terminal domains. The central domain is similar to coiled-coil regions in structural proteins such as myosin heavy chains, cytokeratins, and nuclear lamins which are capable of forming filaments. Double immunofluorescence experiments performed with anti-NuMA and antilamin antibodies indicate that NuMA dissociates from condensing chromosomes during early prophase, before the complete disintegration of the nuclear lamina. As mitosis progresses, NuMA reassociates with telophase chromosomes very early during nuclear reformation, before substantial accumulation of lamins on chromosomal surfaces is evident. These results indicate that the NuMA proteins may be a structural component of the nucleus and may be involved in the early steps of nuclear reformation during telophase.  相似文献   

14.
The epidermis is a multilayered epithelium that requires asymmetric divisions for stratification. A conserved cortical protein complex, including LGN, nuclear mitotic apparatus (NuMA), and dynein/dynactin, plays a key role in establishing proper spindle orientation during asymmetric divisions. The requirements for the cortical recruitment of these proteins, however, remain unclear. In this work, we show that NuMA is required to recruit dynactin to the cell cortex of keratinocytes. NuMA''s cortical recruitment requires LGN; however, LGN interactions are not sufficient for this localization. Using fluorescence recovery after photobleaching, we find that the 4.1-binding domain of NuMA is important for stabilizing its interaction with the cell cortex. This is functionally important, as loss of 4.1/NuMA interaction results in spindle orientation defects, using two distinct assays. Furthermore, we observe an increase in cortical NuMA localization as cells enter anaphase. Inhibition of Cdk1 or mutation of a single residue in NuMA mimics this effect. NuMA''s anaphase localization is independent of LGN and 4.1 interactions, revealing two distinct mechanisms responsible for NuMA cortical recruitment at different stages of mitosis. This work highlights the complexity of NuMA localization and reveals the importance of NuMA cortical stability for productive force generation during spindle orientation.  相似文献   

15.
NuMA is a nuclear matrix protein in interphase and relocates to the spindle poles in mitotis. Different NuMA constructs, in which either N- or C-terminal domains were deleted, and the full-length construct were expressed in Escherichia coli, and the NuMA polypeptides were purified to homogeneity and allowed to assemble in vitro. Electron microscopy showed that NuMA can build multiarm oligomers by interaction of the C-terminal globular domains. Each arm of the oligomer corresponds to a NuMA dimer. Oligomers with up to 10 or 12 arms have been observed for both full-length NuMA and for constructs that still contain the proximal part of the C-terminal tail domain. Other results from this laboratory have shown that transient overexpression of NuMA in HeLa cells induces a nuclear scaffold with a quasi-hexagonal organization that can fill the nuclei. Here we show that computer modelling of the three-dimensional packing of NuMA into such scaffolds can explain the different spacing of the hexagons seen when constructs with different coiled-coil lengths are used. Thus, the 12 arm oligomer, for which we have in vitro evidence, may be the structural unit from which the nuclear scaffold in transfected cells is built.  相似文献   

16.
17.
J Harborth  K Weber    M Osborn 《The EMBO journal》1995,14(11):2447-2460
NuMA, a 238 kDa protein present in the nucleus during interphase, translocates to the spindle poles in mitosis. NuMA plays an essential role in mitosis, since microinjection of the NuMA SPN-3 monoclonal antibody causes mitotic arrest and micronuclei formation. We have mapped the approximate position of the epitopes of six monoclonal NuMA antibodies using recombinant NuMA fragments. The SPN-3 epitope has been located to residues 255-267 at the C-terminus of the first helical subdomain of the central rod domain and several residues crucial for antibody binding have been identified. To gain insight into the ultrastructure of NuMA, several defined fragments, as well as the full-length recombinant protein, were expressed in Escherichia coli and purified to homogeneity. They were then characterized by chemical cross-linking, circular dichroism spectra and electron microscopy. The results directly reveal the tripartate structure of NuMA. A long central rod domain is flanked by globular end domains. The rod is 207 nm long and is at least 90% alpha-helical. It reflects a double-stranded coiled-coil with the alpha-helices arranged parallel and in register. The NuMA protein thus forms the longest coiled-coil currently known. Our analyses reveal no indication that recombinant NuMA assembles into filaments or other higher order structures.  相似文献   

18.
NuMA is required for the proper completion of mitosis   总被引:22,自引:6,他引:16       下载免费PDF全文
NuMA is a 236-kD intranuclear protein that during mitosis is distributed into each daughter cell by association with the pericentrosomal domain of the spindle apparatus. The NuMA polypeptide consists of globular head and tail domains separated by a discontinuous 1500 amino acid coiled-coil spacer. Expression of human NuMA lacking its globular head domain results in cells that fail to undergo cytokinesis and assemble multiple small nuclei (micronuclei) in the subsequent interphase despite the appropriate localization of the truncated NuMA to both the nucleus and spindle poles. This dominant phenotype is morphologically identical to that of the tsBN2 cell line that carries a temperature-sensitive mutation in the chromatin-binding protein RCC1. At the restrictive temperature, these cells end mitosis without completing cytokinesis followed by micronucleation in the subsequent interphase. We demonstrate that the wild-type NuMA is degraded in the latest mitotic stages in these mutant cells and that NuMA is excluded from the micronuclei that assemble post-mitotically. Elevation of NuMA levels in these mutant cells by forcing the expression of wild-type NuMA is sufficient to restore post-mitotic assembly of a single normal-sized nucleus. Expression of human NuMA lacking its globular tail domain results in NuMA that fails both to target to interphase nuclei and to bind to the mitotic spindle. In the presence of this mutant, cells transit through mitosis normally, but assemble micronuclei in each daughter cell. The sum of these findings demonstrate that NuMA function is required during mitosis for the terminal phases of chromosome separation and/or nuclear reassembly.  相似文献   

19.
Transient overexpression of nuclear mitotic apparatus protein (NuMA) in HeLa cells results in ordered lattices which can fill the nucleus and which are stable to detergent extraction. Electron microscopy reveals a quasi-hexagonal organization with an average spacing between the vertices of ∼170 nm and short 6-nm-diameter rods connecting the vertices. Overexpression of a NuMA construct with an in-frame addition in the coiled-coil domain shows hexagons with the spacing increased by 42% while constructs with deletions in the coiled-coil domain yield hexagons with the spacing decreased by 40 and 19%. NuMA constructs truncated at residue 2005 or 2030 in the tail domain cause a drastic reorganization of nuclear components with relocation of the DNA, histone H1, and nucleoli to the nuclear rim. A construct lacking the head and much of the coiled-coil region also affects nuclear organization. In contrast, NuMA constructs truncated at residue 1950 or 1935 which lack the nuclear localization signal display normal nuclear structure but form cytoplasmic aggregates which also display hexagonal organization. Immunoelectron microscopy confirms that the nuclear lattices are built from NuMA. We discuss the importance of the different domains of NuMA for building the orderedin vivolattices and whether NuMA could play a structural role in the architecture of the normal interphase nucleus.  相似文献   

20.
Preferential expression of NuMA in the nuclei of proliferating cells   总被引:3,自引:0,他引:3  
Nuclear mitotic apparatus protein (NuMA) has an indispensable function in normal mitosis as an organizer of the mitotic spindle. NuMA is a prominent component of interphase cell nuclear matrix but its role during interphase is largely unknown. We examined the presence of NuMA in several human tissues. The majority of cells were positive for NuMA but a few negative cell types were found, including spermatozoa, superficial keratinocytes, neutrophil granulocytes, syncytiotrophoblasts, and some neurons, fibroblasts, and smooth and skeletal muscle cells. We further investigated the presence of NuMA in a cultured estrogen-dependent human breast cancer cell line and observed the disappearance of nuclear NuMA in the quiescent cells. The percentage of NuMA-positive cells diminished from an initial approximately 100 to 60% during 6 days of culture. The presence of NuMA correlated positively with the presence of proliferation marker Ki-67 antigen and negatively with the culture time, confluence, and size of the cell islets. These results show that some nonproliferating, highly differentiated cell types lack NuMA and that cells may lose their NuMA without dramatic effects on the nuclear shape. This suggests that NuMA may be a nonessential component of the interphase nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号