首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We isolated seven cDNA clones from embryos of the Japanese eel Anguilla japonica. Each deduced amino acid sequence consisted of a signal peptide, a propeptide and a mature enzyme portion belonging to the astacin protease family. A phylogenetic analysis showed that the eel enzymes resembled the high choriolytic enzyme (HCE) of medaka Oryzias latipes, and the hatching enzymes of the zebra fish Danio rerio and masu salmon Oncorhynchus masou. Hatching enzymes of these teleosts belonged to the group of the medaka HCE, and not the medaka low choriolytic enzyme (LCE), another hatching enzyme of medaka. Southern blot analysis showed that the genes of the eel hatching enzymes were multicopy genes like the medaka HCE genes. However, one of the eel hatching enzyme genes comprised eight exons and seven introns, and the exon-intron organization was similar to the medaka LCE gene, which is a single-copy gene. The molecular evolution of the fish hatching enzyme genes is discussed. In addition, whole-mount in situ hybridization and immunocytochemistry showed that the eel hatching enzyme was first expressed in the pillow anterior to the forebrain of early neurula, and finally in the cell mass on the yolk sac of later stage embryos. The early differentiation profile of eel hatching gland cells was similar to that of medaka, masu salmon and zebrafish, whereas the final location of the gland cells was different among fishes.Edited by N. Satoh  相似文献   

2.
Two cDNA homologues of medaka hatching enzyme -- high choriolytic enzyme (HCE) and low choriolytic enzyme (LCE) -- were cloned from Fundulus heteroclitus embryos. Amino acid sequences of the mature forms of Fundulus HCE (FHCE) and LCE (FLCE) were 77.9% and 63.3% identical to those of medaka HCE and LCE, respectively. In addition, phylogenetic analysis clearly showed that FHCE and FLCE belonged to the clades of HCE and LCE, respectively. Exon-intron structures of FHCE and FLCE genes were similar to those of medaka HCE (intronless) and LCE (8-exon-7-intron) genes, respectively. Northern blotting and whole-mount in situ hybridization showed that both genes were concurrently expressed in hatching gland cells. Their spatio-temporal expression pattern was basically similar to that of medaka hatching enzyme genes. We separately purified two isoforms of FHCE, FHCE1 and FHCE2, from hatching liquid through gel filtration and cation exchange column chromatography in the HPLC system. The two isoforms, slightly different in molecular weight and in MCA-peptide-cleaving activity, swelled the inner layer of chorion by their limited proteolysis, like the medaka HCE isoforms. In addition, we identified FLCE by TOF-MS. Similar to the medaka LCE, FLCE hardly digested intact chorion. FHCE and FLCE together, when incubated with chorion, rapidly and completely digested the chorion, suggesting their synergistic effect in chorion digestion. Such a cooperative digestion was confirmed by electron microscopic observation. The results suggest that a hatching enzyme system composed of HCE and LCE is conserved between two different teleosts Fundulus and medaka.  相似文献   

3.
We purified eel hatching enzyme (EHE) from the hatching liquid of Japanese eel Anguilla japonica belonging to Elopomorpha to a single band on SDS/PAGE. TOF-MS analysis revealed that the purified EHE contained several isozymes with similar molecular masses. Comparison of the egg envelope digestion specificities of the purified EHE and of recombinant EHE4, one of the EHE isozymes, suggested that the isozymes contained in the purified EHE were functionally the same in terms of egg envelope digestion. By electron microscopy, the egg envelope became swollen after treatment with the purified EHE. The EHE cleavage sites on the zona pellucida (ZP) protein of the egg envelope were located in the N-terminal repeat regions. In previous phylogenetic analysis, we suggested that fishes included in Elopomorpha, as basal teleosts, possess a single type of hatching enzyme genes, and that fishes in Otocephala and Euteleostei gain two types of hatching enzyme genes called clade I and II genes by duplication. Further, the clade I enzymes, zebrafish hatching enzyme (ZHE1) and medaka high choriolytic enzyme (HCE), swell the egg envelope by cleaving the N-terminal regions of ZP proteins, while the clade II enzyme, medaka low choriolytic enzyme (LCE), solubilizes the swollen envelope by cleaving the site at the middle region on the ZP domain. In this evolutionary scenario, our findings support that hatching of Japanese eel conserves the ancestral mechanism of fish egg envelope digestion. The clade I enzymes inherit the ancestral enzyme function, and the clade II enzymes gain a new function during evolution to Otocephala and Euteleostei.  相似文献   

4.
The hatching enzyme of oviparous euteleostean fishes consists of two metalloproteases: high choriolytic enzyme (HCE) and low choriolytic enzyme (LCE). They cooperatively digest the egg envelope (chorion) at the time of embryo hatching. In the present study, we investigated the hatching of embryos of the ovoviviparous black rockfish Sebastes schlegelii. The chorion-swelling activity, HCE-like activity, was found in the ovarian fluid carrying the embryos immediately before the hatching stage. Two kinds of HCE were partially purified from the fluid, and the relative molecular masses of them matched well with those deduced from two HCE cDNAs, respectively, by MALDI-TOF MS analysis. On the other hand, LCE cDNAs were cloned; however, the ORF was not complete. These results suggest that the hatching enzyme is also present in ovoviviparous fish, but is composed of only HCE, which is different from the situation in other oviparous euteleostean fishes. The expression of the HCE gene was quite weak when compared with that of the other teleostean fishes. Considering that the black rockfish chorion is thin and fragile, such a small amount of enzyme would be enough to digest the chorion. The black rockfish hatching enzyme is considered to be well adapted to the natural hatching environment of black rockfish embryos. In addition, five aberrant spliced LCE cDNAs were cloned. Several nucleotide substitutions were found in the splice site consensus sequences of the LCE gene, suggesting that the products alternatively spliced from the LCE gene are generated by the mutations in intronic regions responsible for splicing.  相似文献   

5.
We purified two hatching enzymes, namely high choriolytic enzyme (HCE; EC 3.4.24.67) and low choriolytic enzyme (LCE; EC 3.4.24.66), from the hatching liquid of Fundulus heteroclitus, which were named Fundulus HCE (FHCE) and Fundulus LCE (FLCE). FHCE swelled the inner layer of egg envelope, and FLCE completely digested the FHCE-swollen envelope. In addition, we cloned three Fundulus cDNAs orthologous to cDNAs for the medaka precursors of egg envelope subunit proteins (i.e. choriogenins H, H minor and L) from the female liver. Cleavage sites of FHCE and FLCE on egg envelope subunit proteins were determined by comparing the N-terminal amino acid sequences of digests with the sequences deduced from the cDNAs for egg envelope subunit proteins. FHCE and FLCE cleaved different sites of the subunit proteins. FHCE efficiently cleaved the Pro-X-Y repeat regions into tripeptides to dodecapeptides to swell the envelope, whereas FLCE cleaved the inside of the zona pellucida domain, the core structure of egg envelope subunit protein, to completely digest the FHCE-swollen envelope. A comparison showed that the positions of hatching enzyme cleavage sites on egg envelope subunit proteins were strictly conserved between Fundulus and medaka. Finally, we extended such a comparison to three other euteleosts (i.e. three-spined stickleback, spotted halibut and rainbow trout) and found that the egg envelope digestion mechanism was well conserved among them. During evolution, the egg envelope digestion by HCE and LCE orthologs was established in the lineage of euteleosts, and the mechanism is suggested to be conserved.  相似文献   

6.
One of the two component proteases of the hatching enzyme of the fish, Oryzias latipes, low choriolytic enzyme (LCE), was isolated from the hatching liquid and partly characterized. The enzyme was a basic protein with molecular weight of about 25.5 kDa. Like high choriolytic enzyme (HCE), the other component of the O. latipes hatching enzyme [Yasumasu, S. et al. (1989) J. Biochem. 105, 204-211], LCE was considered to be a zinc-protease from the results of inhibitor studies and metal analyses. However, LCE was found to be distinct from HCE not only in some biochemical characteristics such as molecular weight, amino acid composition, and isoelectric point, but also in some enzymological properties such as substrate specificity, heat stability, and mode of action toward their natural substrate, chorion (egg envelope). Although LCE was almost incapable of digesting the inner layer of intact chorion, it very efficiently digested the inner layer of chorion that had been swollen previously by the action of HCE. Taking account of the fact that HCE swells the inner layer of intact chorion by partial proteolysis but does not efficiently digest the swollen chorion any more [Yasumasu, S. et al. (1989) J. Biochem. 105, 204-211], the present results demonstrated an essential role of LCE in choriolysis, in cooperation with HCE.  相似文献   

7.
Two constituent proteases of the hatching enzyme of the medaka ( Oryzias latipes ), choriolysin H (HCE) and choriolysin L (LCE), belong to the astacin protease family. Astacin family proteases have a consensus amino acid sequence of HExxHxxGFxHExxRxDR motif in their active site region. In addition, HCE and LCE have a consensus sequence, SIMHYGR, in the downstream of the active site. Oligonucleotide primers were constructed that corresponded to the above-mentioned amino acid sequences and polymerase chain reactions were performed in zebrafish ( Brachydanio rerio ) and masu salmon ( Oncorynchus masou ) embryos. Using the amplified fragments as probes, two full-length cDNA were isolated from each cDNA library of the zebrafish and the masu salmon. The predicted amino acid sequences of the cDNA were similar to that of the medaka enzymes, more similar to HCE than to LCE, and it was conjectured that hatching enzymes of zebrafish and masu salmon also belonged to the astacin protease family. The final location of hatching gland cells in the three fish species: medaka, zebrafish and masu salmon, is different. The hatching gland cells of medaka are finally located in the epithelium of the pharyngeal cavity, those of zebrafish are in the epidermis of the yolk sac, and those of masu salmon are both in the epithelium of the pharyngeal cavity and the lateral epidermis of the head. However, in the present study, it was found that the hatching gland cells of zebrafish and masu salmon originated from the anterior end of the hypoblast, the Polster, as did those of medaka by in situ hybridization. It was clarified, therefore, that such difference in the final location of hatching gland cells among these species resulted from the difference in the migratory route of the hatching gland cells after the Polster region.  相似文献   

8.
Formation, accumulation, and storage of two components of the Oryzias latipes hatching enzyme, high and low choriolytic enzymes (HCE and LCE), were examined by immunocytochemical and immunoblotting methods. Both of the enzymes were found to be formed specifically in the hatching gland cells at the stages of lens formation to eye pigmentation and their accumulation proceeded markedly and concurrently up to Day 5.5 embryos (the stage just before hatching). The amount of HCE formed was more abundant than that of LCE. In the hatching gland cells, HCE and LCE were found to be packaged in the same secretory granules but in distinct arrangement; HCE is localized to the inside of granules whereas LCE is situated at the periphery of the same granules. Their segregated arrangement is compatible with their relative quantities formed per embryo. The results provide not only the cellular and developmental basis for a view that this hatching enzyme is an enzyme system composed of HCE and LCE but also a clue to the regulatory mechanism of concurrent syntheses of two different specific proteins in the same embryonic cell.  相似文献   

9.
10.
We isolated genes for hatching enzymes and their paralogs having two cysteine residues at their N-terminal regions in addition to four cysteines conserved in all the astacin family proteases. Genes for such six-cysteine-containing astacin proteases (C6AST) were searched out in the medaka genome database. Five genes for MC6AST1 to 5 were found in addition to embryo-specific hatching enzyme genes. RT-PCR and whole-mount in situ hybridization evidenced that MC6AST1 was expressed in embryos and epidermis of almost all adult tissues examined, while MC6AST2 and 3 were in mesenterium, intestine, and testis. MC6AST4 and 5 were specifically expressed in jaw. In addition, we cloned C6AST cDNA homologs from zebrafish, ayu, and fugu. The MC6AST1 to 5 genes were classified into three groups in the phylogenetic positions, and the expression patterns and hatching enzymes were clearly discriminated from other C6ASTs. Analysis of the exon–intron structures clarified that genes for hatching enzymes MHCE and MAHCE were intron-less, while other MC6AST genes were basically the same as the gene for another hatching enzyme MLCE. In the basal Teleost, the C6AST genes having the ancestral exon–intron structure (nine exon/eight intron structure) first appeared by duplication and chromosomal translocation. Thereafter, maintaining such ancestral exon–intron structure, the LCE gene was newly diversified in Euteleostei, and the MC6AST1 to 5 gene orthologs were duplicated and diversified independently in respective fish lineages. The HCE gene lost all introns in Euteleostei, whereas in the lineage to zebrafish, it was translocated from chromosome to chromosome and lost some of its introns.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.The nucleotide sequence data reported in the present paper will appear in the DDBJ/EMBL/GenBank nucleotide sequence databases with accession numbers from AB256940 to AB256952.  相似文献   

11.
12.

Background  

Hatching enzyme, belonging to the astacin metallo-protease family, digests egg envelope at embryo hatching. Orthologous genes of the enzyme are found in all vertebrate genomes. Recently, we found that exon-intron structures of the genes were conserved among tetrapods, while the genes of teleosts frequently lost their introns. Occurrence of such intron losses in teleostean hatching enzyme genes is an uncommon evolutionary event, as most eukaryotic genes are generally known to be interrupted by introns and the intron insertion sites are conserved from species to species. Here, we report on extensive studies of the exon-intron structures of teleostean hatching enzyme genes for insight into how and why introns were lost during evolution.  相似文献   

13.
The hatching enzyme is an embryo-secreted enzyme(s) which digests the egg envelope, allowing the embryo to emerge at the time of hatching. The hatching enzyme of the fish, Oryzias latipes, has recently been found to consist of two kinds of proteases which may digest the inner layer of chorion (egg envelope) cooperatively [Yasumasu, S. et al. (1988) Zool. Sci. 5, 191-195]. In the present study, one of them, high choriolytic (egg envelope digesting) enzyme (HCE) was purified and some biochemical and enzymological properties were examined. The enzyme was a basic protein with a molecular weight of about 24 kDa, and exhibited choriolytic activity as well as proteolytic (caseinolytic) activity. The results of inhibitor studies and metal analyses strongly suggested that it was a zinc-protease. The purified HCE consisted of two probable isomers, HCE-1 and HCE-2. Both of them were markedly similar in amino acid composition, specific activities of choriolysis and proteolysis, and substrate specificity as determined using MCA-peptides. Moreover, they were not separable on SDS-PAGE, electrofocusing PAGE, or ultracentrifugal analysis, but were discriminated only on HPLC with a CM-300 column. Thus, the mixture of HCE-1 and HCE-2 could be regarded as almost a single enzyme, HCE. When it acted on an intact chorion, the purified HCE caused a remarkable swelling of its inner layer with concomitant release of peptides from it. Once the inner layer of chorion was swollen, the enzyme hardly digested it.  相似文献   

14.
15.
The phylogenetic positions of various fishes in the Teleostei are frequently confused. One such confusion is in the phylogenetic relationships among Salmoniformes, Esociformes, Osmeriformes, Argentiniformes and Alepocephaliformes. While morphology-based phylogenetic studies suggested that all of these belong to Euteleostei, molecule-based phylogenetic analyses indicated that the former four orders belong to the Euteleostei, and the Alepocephaliformes to the Otocephala. In addition, the phylogenetic relationships among the former four orders have not been established: morphological studies have proposed various hypotheses, while molecular analyses have suggested esociforms and salmoniforms to be sister groups at the basal position in euteleosts. In this study, we examined their controversial phylogenetic positions using exon-intron structures of hatching enzyme genes. The gene structures of alepocephaliforms were characteristic to those of lower otocephalans. Those of argentiniforms and osmeriforms were the same as those of higher euteleosts, but different from those of salmoniforms and esociforms. The results suggest that alepocephaliforms are closely related to otocephalans, and salmoniforms form a sister group to esociforms in euteleosts. Therefore, changes in exon-intron structure of hatching enzyme genes correspond well with the molecular phylogenetic relationship estimated from mitochondrial DNA sequences.  相似文献   

16.
Swordtail fishes and platies in the genus Xiphophorus (order Cyprinodontiformes, Teleostei) encompass 22 closely related species which are the products of a recent adaptive radiation in the streams of Central America. To investigate the evolution of the major histocompatibility complex (Mhc) genes in the period immediately following speciation, the class I genes from 20 of the 22 species were cloned and characterized by sequencing. The analysis revealed the existence of multiple loci (at least seven in some individuals) whose numbers vary among the different species and probably also among individuals of the same species. The variation does not seem to bear any relationship to the taxonomy of the genus. Genes at the different loci are distinguished by their intron sequences and by the presence of characteristic motifs in exons 2 and 3. The variation in copy number of loci may have been effected in part by unequal crossing over occurring between introns of misaligned closely related genes. The sequences of the genes fall into two groups, A and B, which represent ancient lineages. The groups define two families of loci, which diverged from each other an estimated 85 million years ago, before the separation of the Acanthopterygii from the Paracanthopterygii of the advanced bony fishes. Evolution of the genes within each family can be explained by the birth-and-death process driven by gene duplications and mutational differentiation.  相似文献   

17.
Dopaminergic regulation of hatching in fish embryos   总被引:1,自引:0,他引:1  
Enveloped medaka embryos and denuded zebrafish embryos were exposed to agents that are known to modify the activity of dopaminergic systems. Precocious emergence of medaka embryos was found in the presence of pimozide, salsolinol, and alpha-methyl-rho-tyrosine, whereas delayed hatching occurred with bromocriptine and apomorphine. Moreover, the hatching rate in the light period of medaka eggs, exposed to a 12-hr light/12-hr dark cycle, is significantly higher than in the dark period. Precocious hatching enzyme secretion from denuded zebrafish embryos is caused by salsolinol, whereas dopamine has an opposite effect. At the same time it turned out that in controls hatching enzyme release from denuded zebrafish embryos is well correlated with hatching of enveloped zebrafish embryos. These results do not support the hypothesis proposed by several authors that hatching enzyme is solely mechanically released, but suggest a controlling influence of dopamine receptors, probably located in the developing central nervous system. Assuming a stimulating effect of prolactin on teleostean hatching enzyme secretion, the present data indicate that hypothalamic-hypophyseal tracts are functional at the time of hatching.  相似文献   

18.
19.
High choriolytic enzyme (HCE), a constituent protease of the hatching enzyme of the teleost, Oryzias latipes, swells its natural substrate, egg envelope (chorion) by hydrolyzing it partially. This enzyme was found to be bound tightly to the chorion when it exerted catalytic action. This was evidenced by the experimental results showing (i) that the turnover of this enzyme seemed to be hindered by the chorion, (ii) that the enzyme bound to the chorion could be recovered by washing with an alkaline medium, and (iii) that the bound enzyme could be quantified by radioimmunological estimation. The bound enzyme sustained its original activity and the binding between the enzyme and the chorion seems to be stoichiometric.  相似文献   

20.
The Col2a1 gene is expressed in notochord, otic vesicle, cartilaginous tissue and the anlage of endochondral bone during development in higher vertebrates. Type II collagen, a homotrimeric product of the Col2a1 gene, functions as a key regulatory protein for cartilage development and endochondral ossification. In medaka and zebrafish, a single homolog of the col2a1 gene has been identified. However, it is necessary to note that many genes are duplicated in teleost fishes. To clarify function of col2a1 genes in teleost fishes and to further understand the process of cartilage development and endochondral ossification, we cloned and mapped the gene loci of two col2a1 orthologs in medaka. The proteins encoded by both medaka col2a1a and col2a1b genes were highly conserved (85.3% and 82.6%) relative to human COL2A1, but synteny was not observed. We also examined the expression patterns of col2a1a and col2a1b during embryonic development. Whole-mount insitu hybridization data suggests that expression patterns of both medaka co2a1a and col2a1b genes are similar to that of zebrafish co2a1 in the early embryonic stages. In medaka, the two col2a1 genes show a closely correlated pattern of spatial and temporal expression. In late embryonic stages, however, there were differences in both expression patterns in the pectoral fin. This study is the first report of two homologs of col2a1 in teleosts and also the first examination of col2a1a and col2a1b expression patterns in this group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号