首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effect of the seasonal variability of environmental air pollutants on oxidative stress and cytogenetic biomarkers in a group of 59 city policemen working in Prague, Czech Republic. The studied group was monitored in February and May 2007. The exposure to environmental pollutants (carcinogenic polycyclic aromatic hydrocarbons, c-PAHs, including benzo[a]pyrene, B[a]P, and particulate matter of aerodynamic diameter<2.5μm, PM2.5) was measured by personal and/or stationary monitors. Levels of c-PAHs were significantly higher in winter than spring, while exposure to PM2.5 was higher in May than in February 2007. We did not observe any significant difference between the two seasons for any biomarker of oxidative stress (8-oxo-7,8-dihydro-2'-deoxyguanosine, 8-oxodG, 15-F(2t)-isoprostane, 15-F(2t)-IsoP, protein carbonyl levels) or any cytogenetic parameter, including the genomic frequency of translocations (F(G)/100), the percentage of aberrant cells (%AB.C.) or the number of acentric fragments (ace). Analyses of associations between oxidative stress biomarkers and cytogenetic parameters showed a negative relationship between protein oxidation and F(G)/100, as well as protein oxidation and ace. We further analyzed the effect of air pollution on all subjects regardless of the season. Data from stationary monitors showed that 8-oxodG levels were significantly increased by exposure to PM2.5 over a 2-day period before sampling and by exposure to B[a]P over a 28-day period, days 57-84 before sampling. 15-F(2t)-IsoP levels were increased after exposure to B[a]P over both 2-day and 3-day periods preceding sample collection and after exposure to c-PAHs over a 2-day period before sampling. %AB.C. was significantly affected by exposure to B[a]P over a 14-day period, days 57-70 before sampling. In summary, our results indicate that the exposure to environmental pollutants affects urinary excretion of 8-oxodG, lipid peroxidation and the frequency of chromosomal aberrations.  相似文献   

2.
We investigated the seasonal variability of 8-oxodeoxyguanosine (8-oxodG), a marker of oxidative damage to DNA, in urine of 50 bus drivers and 50 controls in Prague, Czech Republic, in three seasons with different levels of air pollution: winter 2005, summer 2006 and winter 2006. The exposure to environmental pollutants (carcinogenic polycyclic aromatic hydrocarbons, c-PAHs, particulate matter (PM), and volatile organic compounds (VOC)) was monitored by personal and/or stationary monitors. For the analysis of 8-oxodG levels, the ELISA technique was used. Bus drivers were exposed to significantly higher levels of c-PAHs in winter 2006, while in the other two seasons the exposure of controls was unexpectedly higher than that of bus drivers. We did not see any difference in VOC exposure between both groups in summer 2006 and in winter 2006; VOC were not monitored in winter 2005. 8-OxodG levels were higher in bus drivers than in controls in all seasons. The median levels of 8-oxodG (nmol/mmol creatinine) in bus drivers vs. controls were as follows: winter 2005: 7.79 vs. 6.12 (p=0.01); summer 2006: 6.91 vs. 5.11 (p<0.01); winter 2006: 5.73 vs. 3.94 (p<0.001). Multivariate logistic regression analysis identified PM2.5 and PM10 levels, measured by stationary monitors during a 3-day period before urine collection, as the only factors significantly affecting 8-oxodG levels, while the levels of c-PAHs had no significant influence.  相似文献   

3.
Epidemiological studies conducted in metropolitan areas have demonstrated that exposure to environmental air pollution is associated with increases in mortality. Carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) are the major source of genotoxic activities of organic mixtures associated with respirable particulate matter, which is a constituent of environmental air pollution. In this study,we wanted to evaluate the relationship between exposure to these genotoxic compounds present in the air and endogenous oxidative DNA damage in three different human populations exposed to varying levels of environmental air pollution. As measures of oxidative DNA damage we have determined 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) by liquid chromatography–tandem mass spectrometry (LC–MS/MS) and cyclic pyrimidopurinone N-1,N2 malondialdehyde-2′-deoxyguanosine (M1dG) by the immunoslot blot assay from lymphocyte DNA of participating individuals. The level of endogenous oxidative DNA damage was significantly increased in individuals exposed to environmental air pollution compared to unexposed individuals from Kosice (8-oxodG adducts) and Sofia (M1dG adducts). However, there was no significant difference in the level of endogenous oxidative DNA and exposure to environmental air pollution in individuals from Prague (8-oxodG and M1dG adducts) and Kosice (M1dG adducts). The average level of M1dG adducts was significantly lower in unexposed and exposed individuals from Kosice compared to those from Prague and Sofia. The average level of 8-oxodG adducts was significantly higher in unexposed and exposed individuals from Kosice compared to those from Prague. A significant increasing trend according to the interaction of c-PAHs exposure and smoking status was observed in levels of 8-oxodG adducts in individuals from Kosice. However, no other relationship was observed for M1dG and 8-oxodG adduct levels with regard to the smoking status and c-PAH exposure status of the individuals. The conclusion that can be made from this study is that environmental air pollution may alter the endogenous oxidative DNA damage levels in humans but the effect appears to be related to the country where the individuals reside. Genetic polymorphisms of the genes involved in metabolism and detoxification and also differences in the DNA repair capacity and antioxidant status of the individuals could be possible explanations for the variation observed in the level of endogenous oxidative DNA damage for the different populations.  相似文献   

4.
We analyzed the effect of exposure to carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) in ambient air on the plasma levels of p53 and p21WAF1 proteins among city policemen, bus drivers and controls in three European cities: Prague (Czech Republic), Kosice (Slovakia) and Sofia (Bulgaria). p53 and p21WAF1 proteins are key regulators of the cell cycle and are accepted as universal markers of genotoxic stress and DNA damage. In total 204 exposed subjects (100 smokers, 104 nonsmokers) and 152 controls (54 smokers, 98 nonsmokers) were analyzed. Personal exposure to c-PAHs was evaluated using personal samplers during the working shift. The levels of p53 and p21WAF1 proteins were assessed by ELISA assay. There were no differences between the levels of either protein between exposed and controls, or smokers and nonsmokers, in any city. However, we observed significant differences in p53 plasma levels in all subjects regardless of the exposure status between the individual cities (median values: 5, 31, 234 pg/ml, p < 0.001, for Prague, Kosice and Sofia, respectively). The levels correspond to the differences in exposure levels to c-PAHs and benzo[a]pyrene (B[a]P) in the individual cities. A multiple linear regression analysis confirmed that c-PAHs exposure is a variable significantly affecting levels of both proteins in all locations. When all subjects were divided into the group exposed to below-median levels of c-PAHs and the group exposed to above-median levels of c-PAHs we found significantly higher p53, as well as p21WAF1 levels in the above-median exposure group (p53, 167 pg/ml versus 25 pg/ml, p < 0.001; p21WAF1, 2690 pg/ml versus 2600 pg/ml, p < 0.05). Among all subjects p53 plasma levels were positively correlated with p21WAF1 levels, exposure to B[a]P, c-PAHs and levels of total DNA adducts; for p21WAF1 levels we observed the positive correlation with cotinine, c-PAHs exposure, total and B[a]P-like DNA adduct levels. In conclusion our results suggest that p53 and p21WAF1 proteins plasma levels may be useful biomarkers of c-PAHs environmental exposure.  相似文献   

5.
The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2'-deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels>50μmol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with γ-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels>50μmol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels>50μmol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.  相似文献   

6.
Exposure to ambient air pollution is associated with many diseases. Oxidative and nitrosative stress are believed to be two of the major sources of particulate matter (PM)-mediated adverse health effects. PM in ambient air arises from industry, local heating, and vehicle emissions and poses a serious problem mainly in large cities. In the present study we analyzed the level of oxidative and nitrosative stress among 50 bus drivers from Prague, Czech Republic, and 50 matching controls. We assessed simultaneously the levels of 15-F(2t)-isoprostane (15-F(2t)-IsoP) and 8-oxodeoxyguanosine (8-oxodG) in urine and protein carbonyl groups and 3-nitrotyrosine (NT) in blood plasma. For the analysis of all four markers we used ELISA techniques. We observed significantly increased levels of oxidative and nitrosative stress markers in bus drivers. The median levels (min, max) of individual markers in bus drivers versus controls were as follows: 8-oxodG: 7.79 (2.64-12.34)nmol/mmol versus 6.12 (0.70-11.38)nmol/mmol creatinine (p<0.01); 15-F(2t)-IsoP: 0.81 (0.38-1.55)nmol/mmol versus 0.68 (0.39-1.79)nmol/mmol creatinine (p<0.01); carbonyl levels: 14.1 (11.8-19.0)nmol/ml versus 12.9 (9.8-16.6)nmol/ml plasma (p<0.001); NT: 694 (471-3228)nmol/l versus 537 (268-13833)nmol/l plasma (p<0.001). 15-F(2t)-IsoP levels correlated with vitamin E (R=0.23, p<0.05), vitamin C (R=-0.33, p<0.01) and cotinine (R=0.47, p<0.001) levels. Vitamin E levels also positively correlated with 8-oxodG (R=0.27, p=0.01) and protein carbonyl levels (R=0.32, p<0.001). Both oxidative and nitrosative stress markers positively correlated with PM2.5 and PM10 exposure. In conclusion, our study indicates that exposure to PM2.5 and PM10 results in increased oxidative and nitrosative stress.  相似文献   

7.
The aim of the present study was to investigate the seasonal variability of markers of oxidative damage to lipids (15-F2t-isoprostane, 15-F2t-IsoP) and proteins (protein carbonyl levels) in 50 bus drivers and 50 controls from Prague, Czech Republic, and to identify factors affecting oxidative stress markers. The samples were collected in three seasons with different levels of air pollution. The exposure to environmental pollutants (carcinogenic polycyclic aromatic hydrocarbons, c-PAHs, particulate matter, PM2.5 and PM10, and volatile organic compounds, VOC) was monitored by personal and/or stationary monitors. For the analysis of both markers, ELISA techniques were used. The median levels of individual markers in bus drivers versus controls were as follows: 15-F2t-IsoP (nmol/mmol creatinine): winter 2005, 0.81 versus 0.68 (p<0.01); summer 2006, 0.62 versus 0.60 (p=0.90); winter 2006, 0.76 versus 0.51 (p<0.001); carbonyl levels (nmol/ml plasma): winter 2005, 14.1 versus 12.9 (p=0.001); summer 2006, 17.5 versus 16.6 (p=0.26); winter 2006, 13.5 versus 11.7 (p<0.001). Multivariate logistic regression identified PM levels measured by stationary monitors over a period 25-27 days before urine collection as a factor positively associated with lipid peroxidation, while protein oxidation levels correlated negatively with both c-PAHs and PM levels. In conclusion, markers of oxidative damage to lipids and proteins were increased in bus drivers in winter seasons, but not in summer. Lipid peroxidation was positively correlated with c-PAHs and PM exposure; protein oxidation correlated negatively and was highest in summer suggesting another factor(s) affecting protein carbonyl levels.  相似文献   

8.
The capital city of Prague is one of the most polluted localities of the Czech Republic. Therefore, the effect of exposure to carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) adsorbed onto respirable air particles (<2.5 μm) on chromosomal aberrations was studied in a group of policemen (males, aged 22–50 years) working in the downtown area of Prague and spending daily >8 h outdoors (N = 53). Age- and sex-matched healthy volunteers spending > 90% daily time indoors were chosen as controls (N = 52). Ambient air particles (PM10, PM2.5) and c-PAHs were monitored using versatile air pollution sampler (VAPS), and personal exposure was evaluated using personal samplers during working shift. Chromosomal aberrations were analyzed by conventional cytogenetic analysis and fluorescent in situ hybridization (FISH). Urinary cotinine plasma levels of vitamins A, E and C, folate, total cholesterol, HDL, LDL cholesterols and triglycerides were also analyzed as possible effect modifiers. Genotypes CYP1A1*2A, CYP1A1*2C, GSTM1, GSTP1, GSTT1, EPHX1, NAT2, hOGG1, XRCC1, XPD, p53 BstI, p53 MspI, MTHFR677, and MS2656 were determined by PCR-based RFLP assays. The following levels of air pollution were recorded during the study period (mean from HiVol sampling): PM10 62.6 μg/m3, c-PAHs 24.7 ng/m3, B[a]P 3.50 ng/m3. The conventional cytogenetic analysis did not reveal any differences between the group of policemen exposed to the ambient air pollution and the control group. The cytogenetic analysis by FISH analysis used the whole chromosome painting probes for chromosomes #1 and #4 (Cambio, UK). It detected a significant increase in all studied endpoints in the policemen compared to controls (% AB.C. = 0.33 ± 0.25 versus 0.24 ± 0.18, p < 0.05, FG/100 = 1.72 ± 1.57 versus 1.25 ± 1.11, p < 0.05, AB/1000 (aberrations/1000 cells) = 5.58 ± 4.62 versus 3.90 ± 3.06, p < 0.05). CYP1A1*2C (Ile/Ile), XPD 23 (Lys/Lys), and XPD 6 (CC) genotypes were associated with an increase of aberrant cells by conventional method. Factors associated with an increased level of translocations by FISH included age, smoking, B[a]P-like DNA adducts (corresponding to the exposure of c-PAHs), folate, polymorphisms of CYP1A1*2C, GSTP1, EPHX1, p53 MspI and MTHFR. Ambient air exposure to c-PAHs significantly increased FISH cytogenetic parameters in nonsmoking policemen. We may conclude that FISH indicates that the city policemen in Prague represent a group of increased genotoxic risk. This is the first study that has reported a relationship between DNA adducts (biomarker of exposure) and chromosomal aberrations by FISH (biomarker of effect).  相似文献   

9.
The effect of exposure to organic compounds adsorbed onto respirable air particles (<2.5microm) on DNA adducts in lymphocytes was studied in a group of non-smoking policemen (N=109, aged 35+/-0.9 years) working in the downtown area of Prague and spending >8h daily outdoors. Personal exposure to carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) adsorbed on respirable particles was monitored in each subject for 48h before biological sampling. DNA adducts were analyzed by a (32)P-postlabelling assay, and total DNA adduct levels and B[a]P-like spots were determined. Further biomarkers included cotinine levels in urine to control for exposure to tobacco smoke, plasma levels of vitamins A, E and C and polymorphisms of metabolic genotypes (GSTM1, GSTP1, GSTT1, CYP 1A1-Msp I and Ile/Val, MTHFR, MS), DNA repair genotypes (XRCC1, hOGG1 and XPD exons 6 and 23) and the p53 gene (p53 Msp I and BstU I). All the biomarkers of exposure and effect were analyzed repeatedly during a period of one year at 2-3 month intervals (January, March, June, September 2004) to cover periods with high (winter) and low (summer) levels of air pollution. The highest personal exposure to c-PAHs was found in January (8.1+/-8.8ng/m(3)), while the other three sampling periods exhibited 3-4-fold lower c-PAH exposure. The total DNA adducts were only slightly elevated in January (2.08+/-1.60) compared to March (1.66+/-0.65), June (1.96+/-1.73) and September (1.77+/-1.77). B[a]P-like DNA adducts, however, were significantly higher in January than in the March and June sampling periods (0.26+/-0.14 vs. 0.19+/-0.12 and 0.22+/-0.13, respectively; p<0.0001 and p=0.017) indicating that c-PAH exposure probably plays a crucial role in DNA adduct formation in lymphocytes. No effect of individual metabololic or DNA repair genotypes on DNA adduct levels was observed. However, the combination of two genotypes encoding enzymes metabolizing c-PAHs - CYP 1A1 and GSTM1 - was associated with the levels of total and B[a]P-like DNA adducts under conditions of increased exposure to c-PAHs. Our study suggests that DNA adducts in the lymphocytes of subjects exposed to increased c-PAH levels are an appropriate biomarker of a biologically effective dose, directly indicating whether or not the extent of exposure to these compounds is related to an increased mutagenic and carcinogenic risk.  相似文献   

10.
Oxidative stress has been implicated in etiopathogenesis of Graves' disease (GD). Increased lipid peroxidation and oxidative DNA damage have been found in GD patients. Oxidative DNA damage is mainly repaired by the base‐excision repair (BER) pathway. Polymorphisms in DNA‐repair genes have been associated with the increased risk of various diseases and could also be related to the etiology of GD. Therefore, we conducted a study including 197 patients with GD and age‐ and sex‐matched 303 healthy subjects to examine the role of single‐nucleotide polymorphisms of BER genes, APE/Ref‐1 (codon 148) and XRCC1 (codons 194 and 399) as a risk factor for GD. These polymorphisms were determined by quantitative real‐time PCR and melting curve analysis using LightCycler. No significant association was observed between the variant alleles of APE/Ref‐1 codon 148 [odds ratio (OR) = 0.89, 95% confidence interval (CI) = 0.69–1.17], XRCC1 codon 194 (OR = 1.24, 95% CI = 0.79–1.94), and XRCC1 codon 399 (OR = 1.12, 95% CI = 0.86–1.46) and GD. These preliminary results suggest that APE/Ref‐1 (codon 148) and XRCC1 (codons 194 and 399) polymorphisms are not significant risk factors for developing GD. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Neural tube defects (NTDs) are among the most common and severe congenital malformations. To examine the association between markers of macromolecular oxidative damage and risk of NTDs, we measured levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG), protein carbonyl (PC), and 8-iso-prostaglandin F2α (8-iso-PGF2α) in maternal serum samples of 117 women with NTD-affected pregnancies and 121 women with healthy term newborns. We found higher levels of 8-OHdG and PC in the NTD group than in the control group; however, we did not observe a statistically significant difference in 8-iso-PGF2α levels between the NTD and the control groups. NTD risk increased with increasing quartiles of 8-OHdG [odds ratio (OR)=1.17; 95% confidence interval (CI) 0.39–3.51; OR=2.19; 95% CI, 0.68–7.01; OR=3.70; 95% CI, 1.30–10.51, for the second, third, and fourth quartile relative to the lowest quartile, respectively; P=0.009], and with increasing quartiles of PC (OR=2.26; 95% CI, 0.66–7.69; OR=3.86; 95% CI, 1.17–12.80; OR=5.98; 95% CI, 1.82–19.66, for the second, third, and fourth quartile relative to the lowest quartile, respectively; P=0.002]. Serum levels of 8-OHdG were higher in women who did not take folic acid supplements during the periconceptional period. These results suggest that oxidative stress is present in women carrying pregnancies affected by NTDs.  相似文献   

12.
Context: X-ray repair cross-complementing groups 1 and 3 (XRCC1 and XRCC3) and xeroderma pigmentosum group D (XPD) are mainly involved in base excision repair, homologous recombination repair, and nucleotide excision repair of DNA repair pathways, respectively. Previous studies have demonstrated that their gene polymorphisms were associated with some cancer susceptibility. Objective and design: To investigate the effect of XPD Lys751Gln, XRCC1 Arg399Gln, Arg194Trp, Arg280His, and XRCC3 Thr241Met polymorphisms on the risk of nasopharyngeal carcinoma (NPC), a population-based case-control study of 153 NPC patients and 168 healthy controls among Sichuan population was conducted. Results: Our results showed that XRCC1 codon 194 Trp allele was associated with an increased risk of NPC (odds ratio [OR] = 1.828, 95% confidence interval [CI]: 1.286-2.598), and XPD codon 751Gln allele was associated with a borderline decrease of NPC (OR = 0.600, 95% CI: 0.361-1.000); combination analysis showed that individuals with both putative genotypes of XPD codon 751 Lys/Lys and XRCC1 codon 194 Arg/Trp or Trp/Trp have a significantly elevated risk of NPC (OR = 2.708, 95% CI: 1.338-5.478). Conclusion: The results indicated that XRCC1 codon 194 Trp allele and XPD codon 751 Lys allele may be contributing factors in the risk of NPC.  相似文献   

13.
X-ray repair cross-complementing group 1 gene (XRCC1) has been implicated in risk for lung cancer. However, the results from different studies remain controversial. In this meta-analysis, we have assessed 44 published case-control studies regarding associations of lung cancer risk with three common polymorphisms, codon 194, codon 280 and codon 399, and -77 T?>?C in the promoter region of XRCC1. The results in total population showed that the risk for lung cancer was increased among the variant homozygote Trp/Trp of codon 194 polymorphism, compared with the wild type Arg/Arg (OR: 1.19; 95?% CI 1.01-1.39), and the variant genotype CC of -77 T?>?C polymorphism showed a significantly increased risk of developing lung cancer, compared to wild-type genotype TT (OR: 1.91; 95?% CI 1.24-2.94). However, no associations were found between lung cancer risk and codon 280, codon 399. In the subgroup analyses by ethnicity, the OR for the variant homozygote Trp/Trp of codon 194 was 1.21(95?% CI 1.02-1.43) for Asian. When stratified by source of control, we found a protective effect of codon 194 Arg/Trp genotype (OR: 0.87; 95?% CI 0.77-0.98) and risk effect of codon 399 combined Arg/Gln?+?Gln/Gln variant genotype (OR: 1.09; 95?% CI 1.01-1.18) for lung cancer on the basis of hospital control. Subgroup analyses by histological types of lung cancer indicated that the heterozygote Arg/Trp in codon 194 could decrease and the combined variant genotype Arg/Gln?+?Gln/Gln in codon 399 could increase the risk of non-small cell lung cancer (OR: 0.69; 95?% CI 0.57-0.85 and OR: 1.14; 95?% CI 1.04-1.24). In conclusion, this meta-analysis has demonstrated that codon 194, codon 399 and -77 T?>?C polymorphisms of XRCC1 gene might have contributed to individual susceptibility to lung cancer. To further evaluate effect of XRCC1 polymorphisms, gene-gene interaction and gene-environment interaction on lung cancer risk, a single large sample size study with thousands of subjects is required to get conclusive results.  相似文献   

14.
Measurement of the products of oxidatively damaged DNA in urine is a frequently used means by which oxidative stress may be assessed non-invasively. We believe that urinary DNA lesions, in addition to being biomarkers of oxidative stress, can potentially provide more specific information, for example, a reflection of repair activity. We used high-performance liquid chromatography prepurification, with gas chromatography-mass spectrometry (LC-GC-MS) and ELISA to the analysis of a number of oxidative [e.g., 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxo-7,8-dihydro-guanine, 5-(hydroxymethyl)uracil], non-oxidative (cyclobutane thymine dimers) and oligomeric DNA products in urine. We analysed spot urine samples from 20 healthy subjects, and 20 age- and sex-matched cancer patients. Mononuclear cell DNA 8-oxodG levels were assessed by LC-EC. The data support our proposal that urinary DNA lesion products are predominantly derived from DNA repair. Furthermore, analysis of DNA and urinary 8-oxodG in cancer patients and controls suggested reduced repair activity towards this lesion marker in these patients.  相似文献   

15.
Gastric cancer is one of highly cancer-related deaths in the world. Previous evidence suggests that the X-ray repair cross-complementing group 1 gene (XRCC1) is one of the most important candidate genes for influencing gastric cancer risk. The objective of this study was to detect the potential association of genetic variants in XRCC1 gene with gastric cancer risk in Chinese Han population. In total, we enrolled 395 gastric cancer patients and 398 cancer-free controls in this study. The genotyping of c.910A>G and c.1804C>A genetic variants in XRCC1 gene were investigate by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and created restriction site-PCR (CRS-PCR) methods, respectively. We found the genotypes/alleles from these two genetic variants were statistically associated with the increased risk of gastric cancer (for c.910A>G, GG versus (vs.) AA: OR = 2.00, 95% CI 1.21-3.31; AG vs. AA: OR = 1.50, 95% CI 1.12-2.02; GG/AG vs. AA: OR = 1.59, 95% CI 1.20-2.10; GG vs. AG/AA: OR = 1.68, 95% CI 1.03-2.73; G vs. A: OR = 1.47, 95% CI 1.18-1.83; for c.1804C>A, AA vs. CC: OR = 2.68, 95% CI 1.46-4.94; AA vs. CA/CC: OR = 2.62, 95% CI 1.44-4.76; A vs. C: OR = 1.33, 95% CI 1.06-1.66). The allele-G of c.910A>G and allele-A of c.1804C>A genetic variants may contribute to gastric cancer susceptibility. These preliminary results indicate that these XRCC1 genetic variants are potentially related to gastric cancer susceptibility in Chinese Han population, and might be used as molecular markers.  相似文献   

16.
The X-ray repair cross-complementing group 1 (XRCC1) gene, one of over 20 genes that participate in the base excision repair pathway, is thought to account for differences in susceptibility to hepatocellular carcinoma. To assess the relationship between the XRCC1 Arg399Gln polymorphism and the risk of hepatocellular carcinoma (HCC), we performed a meta-analysis. All the relevant studies were extracted from PubMed, Embase, the Chinese biomedicine databases, the Chinese national knowledge infrastructure, and the Wanfang databases (prior to August 2012). The meta-analysis was performed using all eligible studies, which covered a total of 2,554 cases and 3,320 controls, to examine the association between XRCC1 Arg399Gln polymorphism and the risk of HCC. Our analysis suggested that the variant genotypes of the XRCC1 Arg399Gln gene were associated with a significantly increased risk of HCC in a co-dominant model (Arg/Gln vs. Arg/Arg, odd ratios [OR] 1.39, 95 % confidence interval [CI] 1.08–1.79; Gln/Gln vs. Arg/Arg, OR 1.26, 95 % CI 1.04–1.52) and a dominant model (Arg/Gln + Gln/Gln vs. Arg/Arg OR 1.36, 95 % CI 1.07–1.72), whereas no association was observed in the recessive model (Gln/Gln vs. Arg/Gln + Arg/Arg, OR 1.05, 95 % CI 0.91–1.21). The results of the subgroup analysis by ethnicity indicated that the XRCC1 Arg399Gln polymorphism was associated with increased risk of HCC in Asian populations using the co-dominant model (Arg/Gln vs. Arg/Arg, OR 1.41, 95 % CI 1.06–1.87) and the dominant model (Gln/Gln vs. Arg/Gln + Arg/Arg, OR 1.35, 95 % CI 1.03–1.76). Our analysis provides evidence that the XRCC1 Arg399Gln polymorphism may be associated with a higher risk of HCC, especially among Asian populations.  相似文献   

17.
It has been shown that DNA repair is reduced in patients with systemic lupus erythematosus (SLE) and that the X-ray repair cross-complementing (XRCC1) Arg399Gln (rs25487) polymorphism may contribute to DNA repair. We evaluated the frequency of the XRCC1 Arg399Gln substitution in patients with SLE (n=265) and controls (n=360) in a sample of the Polish population. The odds ratio (OR) for SLE patients with the Gln/Gln versus Gln/Arg or Arg/Arg genotypes was 1.553 (95% confidence interval [CI]=0.9573-2.520; p=0.0729). OR for the Gln/Gln or Gln/Arg versus Arg/Arg genotype was 1.551 (95% CI=1.122-2.144, p=0.0077). The OR for the 399 Gln allele in patients with SLE was 1.406 (95% CI=1.111-1.779, p=0.0045). There was also a statistically significant p-value of the χ(2) test for the trend observed in the XRCC1 Arg399Gln polymorphism (ptrend=0.0048). We also found a significant contribution of the Gln/Gln or Arg/Gln versus Arg/Arg genotype to the presence of either the malar rash or photosensitivity manifestations of SLE OR=2.241 (1.328-3.781, p=0.0023, pcorr=0.0414). Moreover, the meta-analysis of Taiwanese Han Chinese, Brazilian, and Polish populations showed that the Gln/Gln or Gln/Arg genotype and Gln allele were associated with SLE incidence. OR for the Gln/Gln or Gln/Arg versus Arg/Arg genotype was 1.440 (95% CI=1.15-1.80, p=0.0019) and OR for the Gln allele was 1.27 (95% CI=1.08-1.51, p=0.0051). Our studies may confirm that the XRCC1 Arg399Gln polymorphism may increase the risk of incidence of SLE and the occurrence of some SLE manifestations.  相似文献   

18.
Accumulation of high levels of mutagenic oxidative mitochondrial DNA (mtDNA) lesions like 8-oxodeoxyguanine (8-oxodG) is thought to be involved in the development of mitochondrial dysfunction in aging and in disorders associated with aging. Mice null for oxoguanine DNA glycosylase (OGG1) are deficient in 8-oxodG removal and accumulate 8-oxodG in mtDNA to levels 20-fold higher than in wild-type mice (N.C. Souza-Pinto et al., 2001, Cancer Res. 61, 5378-5381). We have used these animals to investigate the effects on mitochondrial function of accumulating this particular oxidative base modification. Despite the presence of high levels of 8-oxodG, mitochondria isolated from livers and hearts of Ogg1-/- mice were functionally normal. No differences were detected in maximal (chemically uncoupled) respiration rates, ADP phosphorylating respiration rates, or nonphosphorylating rates with glutamate/malate or with succinate/rotenone. Similarly, maximal activities of respiratory complexes I and IV from liver and heart were not different between wild-type and Ogg1-/- mice. In addition, there was no indication of increased oxidative stress in mitochondria from Ogg1-/- mice, as measured by mitochondrial protein carbonyl content. We conclude, therefore, that highly elevated levels of 8-oxodG in mtDNA do not cause mitochondrial respiratory dysfunction in mice.  相似文献   

19.
Defective DNA damage processing has been reported in systemic lupus erythematosus (SLE). Vitamin C may modulate formation/removal of the oxidative DNA lesion 8-oxo-2'-deoxyguanosine (8-oxodG). Baseline levels of 8-oxodG measured in SLE serum, urine and PBMC DNA did not differ significantly from healthy subjects. In contrast to healthy subjects, no significant decrease in PBMC 8-oxodG or increase in urinary 8-oxodG was noted in vitamin C supplemented SLE patients. A significant, although attenuated, increase in serum 8-oxodG was detected in SLE patients, compared to healthy subjects. These data support putative abnormalities in the repair/processing of 8-oxodG in SLE.  相似文献   

20.
Differences in response to carcinogenic agents are due to the allelic variants of the genes that control it. Key genes are those involved in the repair of the DNA damage caused by such agents. This paper describes the results of a case-control epidemiological study designed to determine the genotypes of four of these genes in persons exposed to a single genotoxic factor, i.e. asbestos, who had or had not developed malignant mesothelioma (MM). Our working hypothesis was that an imperfect DNA repair, as revealed by subtle polymorphic variants, could reduce protection against the chronic DNA insult provoked by asbestos and eventually result in mutagenesis and cancer. Seven variants (i.e. XRCC1-R399Q-NCBI SNP, XRCC1-R194W, XRCC3-T241M, XRCC3-IVS6-14, XPD-K751Q, XPD-D312N, OGG1-S326C) were investigated in 81 patients and 110 age and sex-matched controls, all residents at Casale Monferrato, a Piedmontese town highly exposed to asbestos pollution. Unconditional multivariable logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). When considered as a categorical variable, XRCC1-399Q showed an increased OR both in heterozygotes (OR=2.08; 95% CI=1.00-4.33) and homozygotes (2.38; 95% CI=0.82-6.94), although individual ORs were not significant. When it was considered as a continuous variable OR was significant (OR=1.68; 95% CI: 1.02-2.75). When genotypes were divided into "non-risk" and "risk" genotypes, i.e. those thought to be associated with increased risk in the light of the functional significance of the variants, XRCC1-399Q (Q homozygotes+Q/R heterozygotes versus R homozygotes) had an OR=2.147 (95% CI: 1.08-4.28), whereas that of XRCC3-241T (T homozygotes+M/T heterozygotes versus M homozygotes) was 4.09 (95% CI: 1.26-13.21) and that of OGG1-326C was increased, though not significantly. None of the haplotypes showed a significantly different frequency between patients and controls. This is the first report of an association between polymorphisms in DNA repair genes and asbestos-associated MM. Our data indicate that genetic factors are involved in MM development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号