首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
With the recent proliferation of computer models of auxin transport, it is important that plant biologists understand something about these techniques and how to evaluate them. The paper begins with a brief introduction to the parts of a computer model, followed by a discussion of the limitations of the most common auxin modelling technique. Lastly, several recent models of organ initiation in the shoot apical meristem (i.e. phyllotaxis) are reviewed. The cell and molecular biology of phyllotaxis is now understood well enough that computer models can go beyond a simple 'proof of principle' and start to provide insights into gene function.  相似文献   

3.
In higher plants, cell-to-cell polar auxin transport (PAT) of the phytohormone auxin, indole-3-acetic acid (IAA), generates maxima and minima that direct growth and development. Although IAA is present in all plant phyla, PAT has only been detected in land plants, the earliest being the Bryophytes. Charophyta, a group of freshwater green algae, are among the first multicellular algae with a land plant-like phenotype and are ancestors to land plants. IAA has been detected in members of Charophyta, but its developmental role and the occurrence of PAT are unknown. We show that naphthylphthalamic acid (NPA)-sensitive PAT occurs in internodal cells of Chara corallina. The relatively high velocity (at least 4-5 cm/h) of auxin transport through the giant (3-5 cm) Chara cells does not occur by simple diffusion and is not sensitive to a specific cytoplasmic streaming inhibitor. The results demonstrate that PAT evolved early in multicellular plant life. The giant Chara cells provide a unique new model system to study PAT, as Chara allows the combining of real-time measurements and mathematical modelling with molecular, developmental, cellular, and electrophysiological studies.  相似文献   

4.
Abscission: potentiating action of auxin transport inhibitors   总被引:3,自引:11,他引:3       下载免费PDF全文
Reduction in petiolar auxin transport has been proposed as one of the functional actions of endogenous or exogenous ethylene as it regulates intact leaf abscission. If this hypothesis is correct, auxin-transport inhibitors should hasten the rate or amount of abscission achieved with a given level of ethylene. Evidence presented here indicates that the hypothesis is correct. Three auxin transport inhibitors promoted ethylene-induced intact leaf abscission when applied to specific petioles or the entire cotton plant (Gossypium hirsutum L., cv. Stoneville 213). In addition, the transport inhibitors caused rapid abscission of leaves which usually do not abscise under the conditions employed. No stimulation of abscission occurred during the initial 3 to 5 days after plants were treated with transport inhibitors unless such treatments were coupled with exogenous ethylene or that derived from 2-chloroethylphosphonic acid. However, vegetative cotton plants did abscise some of their youngest true leaves during the 2nd and 3rd weeks of exposure to transport inhibitor alone. Taken as a whole, the results indicate that reducing the auxin supply to the abscission zone materially increases sensitivity to ethylene, a condition which favors a role of endogenous ethylene in abscission regulation. Such a role of ethylene indicates the importance of auxin-ethylene interactions in the over-all hormone balance of plants and specific tissues.  相似文献   

5.
The transport of indoleacetic acid-1-14C out of sunflower stem sections has been analyzed by a compartmental analysis procedure in which the radioactivity moving out of the tissue (log per cent) is plotted against time. The analysis indicates that indoleacetic acid is transported via a fast transport system (t½ of about 30 minutes) and a slow transport system (t½ about 10 hours). While we do not know the sources of these two pools, by analogy with ion transport studies, the fast efflux is characteristic of transport from the cytoplasm across the plasmalemma and the slow efflux is characteristic of transport across the tonoplast and thus out of the vacuole. Both components of transport are inhibited by 2,3,5-triiodobenzoic acid.  相似文献   

6.
Kinetics of polar auxin transport   总被引:3,自引:8,他引:3       下载免费PDF全文
The movement of auxin in the basipetal and acropetal directions is compared for 4 types of tissue. It is observed that the transport may proceed in either a linear or a non-linear manner with time. The polarity of transport through any given type of tissue increases exponentially with increasing lengths of tissue traversed, suggesting that the polarity of transport is developed as a consequence of the repeated passage through cells. Using the mathematical model of Leopold and Hall, the extent of polarity for individual cells is estimated, and a very small polarity of individual cells is found to be capable of accounting for the marked polarity of whole tissues. It is suggested that transport polarity may be functionally a property of the multicellular structure, being amplified from very small differences in activities at the 2 ends of individual cells.  相似文献   

7.
8.
Eike Krelle  Eike Libbert 《Planta》1968,80(3):317-320
Summary IAA- and gravity-induced curvatures in coleoptiles are altered by the morphactin methyl-2-chloro-9-hydroxyfluorene-(9)-carboxylate (CFM), the length of the curved part of the coleoptile being greatly reduced. A ring of CFM-containing paste blocks the bud-inhibiting effect of IAA when placed between the bud and the site of IAA application. The IAA-transporting capacity of Helianthus hypocotyl sections, as determined by the classical transport method (agar donors and receivers), is greatly reduced by a pretreatment of the sections with CFM.  相似文献   

9.
Effect of auxin on acropetal auxin transport in roots of corn   总被引:3,自引:0,他引:3       下载免费PDF全文
Acropetal [14C]indoleacetic acid (IAA) transport was investigated in roots of corn. At least 40 to 50% of this movement is dependent on activities in the root apex. Selective excision of various populations of cells comprising the root apex, e.g. the root cap, quiescent center, or proximal meristem show that the proximal meristem is the critical region in the apex with regard to influencing IAA movement. The quiescent center has no influence and the root cap has only a minor effect. Excision and replacement of the proximal meristem with an exogenous supply of 10−8 to 10−9 molar IAA prevents the reduction in acropetal IAA transport which would normally occur in the absence of this meristem. Substituting 10−9 molar IAA for the excised root cap brings about a significant increase in the amount of IAA moved acropetally, as compared to intact roots with the root cap still in place. From this and previous work, it is concluded that IAA synthesis occurring in the proximal meristem stimulates the movement of IAA from the basal to apical end of the root.  相似文献   

10.
Mathematical model of polar auxin transport   总被引:3,自引:2,他引:3       下载免费PDF全文
Leopold AC  Hall OF 《Plant physiology》1966,41(9):1476-1480
Polar auxin transport can be simulated by a model which achieves polarity through the preferential secretion of more auxin from the lower end than from the upper end of each cell. Solution of the model using a computer provides a possible explanation of the differences between the polarity expressed by different tissues and the differences between pieces of different lengths, on the basis of small differences in the polarity of auxin secretion from individual cells. A method of estimating the polarity of individual cells is described.  相似文献   

11.
Effects of ethylene on auxin transport   总被引:7,自引:23,他引:7  
The effect of ethylene on the uptake, distribution and polar transport of C14 from indole-3-acetic acid-2-C14 and naphthalene acetic acid-1-C14 in tissue sections was studied. Test species were cotton (Gossypium hirsutum, L.) and cowpea (Vigna sinensis, Endl.). Generally, incubation of tissue or intact plants with ethylene reduced the degree of polar auxin transport. Ethylene inhibited the movement of both auxins in stem tissue and IAA in petiole tissue of cotton. The effect of ethylene on auxin movement in cow-peas was more complex. Ethylene apparently inhibited transport in younger petiole and stem tissue, but stimulated the process to a small but significant degree in basal petiole segments.

Ethylene, in some experiments, reduced C14 (auxin) uptake. This reduction was consistently smaller than the inhibition of transport. Effects upon transport were observed when uptake was not different. Differences in uptake declined as the period of incubation with auxin was lengthened, but transport was inhibited for up to 23 hours.

It is proposed that ethylene may, through its effect on transport, cause localized shortages and surpluses of auxin which in turn contribute to symptoms now associated with the response of sensitive species to ethylene.

  相似文献   

12.
Selaginella willdenovii Baker is a prostrate vascular cryptogam with a dorsiventral stem. At each major branching of the stem apex a dorsal and a ventral angle meristem is formed. The ventral meristem becomes determined as a root, and the dorsal meristem as a shoot. The present investigation examined the distribution and transport of 14C-indoleacetic acid through stem tissues as a basis for the pattern of meristem determination. Externally applied indoleacetic acid is transported into receiver blocks with a velocity of 12 millimeters per hour. Much of the auxin becomes immobilized in the tissue and is not transported. The polar ratio of auxin transport is approximately 2. Auxin is transported equally on the dorsal and the ventral sides of the stem axis, and the auxin flux in vascular tissue is twice that in the cortex. In the branch junctions twice as much auxin is transported on the dorsal side as on the ventral side, and this is held to be the consequence of the lateral branch vascular tissue connecting with the dorsal and median, but not with the ventral vascular strand of the stem axis.  相似文献   

13.
Polar auxin transport is critical for normal embryo development in angiosperms. It has been proposed that auxin accumulates dynamically at specific positions, which in early Arabidopsis embryos correlates with developmental decisions such as specification of the apical cell lineage, specification of the hypophysis, and differentiation of the two cotyledons. In conifers, pattern formation during embryo development is different, and includes a free nuclear stage, nondividing suspensor cells, presence of tube cells, lack of hypophysis and formation of a crown of cotyledons surrounding the shoot apical meristem. We have recently shown that polar auxin transport is important for normal embryo development also in conifers. Here we suggest a model where auxin is transported from the suspensor cells to the embryonal mass during early embryogeny in conifers. This transport is essential for the developmental decisions of the tube cells and the suspensor, and affects both the amount of programmed cell death and the embryo patterning.Key words: conifer, embryo development, 1-N-naphtylphthalamic acid (NPA), patterning, polar auxin transport, programmed cell death, somatic embryogenesis, suspensorIn the model plant Arabidopsis thaliana auxin is transported, already from the first cell division of the zygote, from the basal cell to the apical cell, where it is involved in establishing the identity of the apical cell lineage. At the 32-cell stage the polar auxin transport is reversed, leading to an auxin accumulation in the uppermost suspensor cell, which occurs concomitantly with the specification of the hypophysis. During the heart stage auxin is transported towards the cotyledonary primordia, giving positional information about the cotyledon outgrowth.1 Formation of the apical-basal embryonic pattern during early embryogeny in conifers is quite different from that in Arabidopsis and proceeds through the establishment of three major cell types: the meristematic cells of the embryonal mass, the embryonal tube cells and terminally differentiated nondividing suspensor cells.2The somatic embryo system of Picea abies (Norway spruce) includes a stereotyped sequence of developmental stages, resembling zygotic embryogeny, which can be synchronized by specific treatments.3,4 We are using this as a model system for elucidating the regulation of embryo development in conifers.2 Early somatic embryos differentiate from proembryonic masses (PEMs) after withdrawal of the plant growth regulators (PGRs) auxin and cytokinin (Fig. 1A and B). We have previously shown that the organisation of the apical-basal polarity in early embryos is dependent on a gradient of PCD from the embryonal tube cells committed to death, to the cell corpses at the basal end of the suspensor.57 Dysregulation of the PCD leads to aberrant apical-basal patterning.Open in a separate windowFigure 1Model for polar auxin transport control of early embryo patterning in conifers. (A) Embryogenic cultures proliferate as proembryonic masses (PEMs) in the presence of the plant growth regulators (PGRs) auxin and cytokinin. (B) Early embryos start to differentiate from PEMs after withdrawal of PGRs. Endogenous auxin is transported to the newly formed embryonal mass. (C) Early embryos are formed within two weeks in PGR-free medium. Early embryos have a distinct embryonal mass, tube cells and a suspensor. IAA is transported from the suspensor and the tube cells to the embryonal mass. (D) Fully matured cotyledonary embryos are formed after 5–6 weeks on maturation medium. (E) Treatment with NPA blocks the polar auxin transport to the embryonal mass, leading to an IAA accumulation in the suspensor cells, tube cells and perhaps also in the cells of the embryonal mass most adjacent to the tube cells. (F) Embryos with supernumerary suspensor cells are formed if polar auxin transport is inhibited only during the earliest stages of suspensor differentiation. (G) Embryos with meristematic cells in the suspensor are formed if polar auxin transport is inhibited during both differentiation and elongation of the suspensor. We assume that these abnormalities abort further development and maturation of viable embryos. em, embryonal mass; s, suspensor; tc, tube cells. Green arrows indicate polar auxin transport, T indicates blocked polar auxin transport, green shadings indicate auxin accumulation.We recently showed that in embryogenic cultures of Norway spruce treated with the polar auxin transport inhibitor NPA, the number of cells undergoing PCD decreases. As a consequence the balance between the number of cells in the embryonal mass and the number of cells in the suspensor develop abnormally, and concomitantly the endogenous free IAA content increases almost two-fold.8In order to visualise the IAA accumulation within the embryos we used a -318 bp deletion of the auxin-responsive IAA4/5 promoter from Pisum sativum (pea), previously characterized by Oeller et al.,9 and Ballas et al.,10 fused to the GUS reporter gene.11 In tobacco (Nicotiana tabacum) the promoter is expressed in rapidly elongating hypocotyls,12 (our unpublished observations) and strong induction by auxin is clear in elongating zones of both roots and hypocotyls in transgenic pIAA4/5-GUS Arabidopsis plants.11 However, to our knowledge, expression of IAA4/5 has not been reported in embryonal shoot apical meristems. Hence, the pIAA4/5-GUS may preferentially be used as a biosensor of auxin activity in non-meristematic cells during spruce embryo development. During normal somatic embryo development in spruce, pIAA4/5-GUS activity is detected in PEMs, tube cells and suspensor cells, but not in the embryonal mass. Early embryos of Norway spruce that are treated with NPA show increased pIAA4/5-GUS activity in tube cells and suspensor cells (unpublished), well in line with the increment of free IAA levels.Our results indicate that IAA under normal conditions is transported from the suspensor cells to the cells in the embryonal mass (Fig. 1B and C). NPA-treatment blocks this polar transport of endogenous IAA, which results in an accumulation of IAA and increased pIAA4/5-GUS activity in the suspensor cells, the tube cells, and perhaps also in the cells of the embryonal mass most adjacent to the tube cells (Fig. 1F and G). Blocked polar auxin transport during early differentiation of the suspensor stimulates abnormal cell divisions of the meristematic cells most adjacent to the tube cells or perhaps even of the tube cells themselves. Consequently, embryos with supernumerary tube and suspensor cells are formed (Fig. 1F). If the polar auxin transport is blocked for a longer time, i.e., during both differentiation and elongation of the suspensor, the auxin accumulation leads to maintenance of meristematic fate and a failure to undergo PCD (Fig. 1G).It has been proposed that the fate of the suspensor cells is regulated by signals from the embryo proper which impede developmental potential and initiate PCD.13 In accordance, we assume that the abnormal embryo morphologies formed after NPA-treatment may result from adverse inhibitory signals from the embryonal mass.  相似文献   

14.
An emerging model of auxin transport regulation   总被引:15,自引:0,他引:15       下载免费PDF全文
Muday GK  Murphy AS 《The Plant cell》2002,14(2):293-299
  相似文献   

15.
16.
Summary In an effort to examine the specificity of the auxin transport system, the movement of a variety of growth substances and of auxin analogues through corn coleoptile sections was measured in both the basipetal and acropetal directions. In contrast to the basipetal, polar transport of the auxins indoleacetic acid (IAA) and 2,4-dichlorophenoxyacetic acid, no such movement was found for benzoic acid or for gibberellin A1. A comparison of the - and -isomers of naphthaleneacetic acid showed that the growth-active -form is transported, but not the inactive -analogue. Both the dextro (+) and leavo (-) isomer of 3-indole-2-methylacetic acid showed the basipetal movement characteristic of IAA, the dextro isomer being more readily transported than the (-)-form. In this instance, too, the transport was roughtly proportional to the growth promoting activity. The antiauxin p-chlorophenoxyisobutyric acid inhibited auxin transport as it inhibited auxin-induced growth. These results agree with the hypothesis that processes involved in auxin transport are closely linked to or even identical with the primary auxin action.  相似文献   

17.
生长素极性运输研究进展   总被引:1,自引:0,他引:1  
生长素极性运输与植物生长发育密切相关并受许多因素调控,生长素极性运输机理方面已取得较大进展,但仍有一些亟待解决的问题.研究植物生长素极性运输的生理机制及其调控具有十分重要的意义.通过了解生长素在植物生长发育中的作用,进而阐述生长素极性运输机理方面的研究进展.  相似文献   

18.
By being sessile, plants have evolved a remarkable capacity to perceive and respond to changes in environmental conditions throughout their life cycle. Light represents probably the most important environmental factor that impinge on plant development because, other than supplying the energy source for photosynthesis, it also provides seasonal and positional information that are essential for the plant survival and fitness. Changes in the light environment can dramatically alter plant morphogenesis, especially during the early phases of plant life, and a compelling amount of evidence indicates that light-mediated changes in auxin homeostasis are central in these processes. Auxin exerts its morphogenetic action through instructive hormone gradients that drive developmental programs of plants. Such gradients are formed and maintained via an accurate control on directional auxin transport. This review summarizes the recent advances in understanding the influence of the light environment on polar auxin transport.  相似文献   

19.
2-(p-carbethoxyphenyl)-1,3(2H,4H)-isoquinolinedione (CEPIQ), an experimental herbicide, caused effects on geotropism, which are often indicative of an effect on auxin transport, in a whole plant herbicidal screen. However, it showed little or no activity in an in vitro binding assay in corn coleoptiles for the auxin-transport inhibitor,N-1-naphthylphthalamic acid (NPA). Other active isoquinolinedione analogues of this compound did, however, exhibit significant in vitro activity. Direct measurements of auxin transport in corn coleoptiles were undertaken in an attempt to resolve the apparent discrepancy between herbicidal and binding activities. In all cases examined, compounds that were highly active on whole plants were good inhibitors of auxin transport, and compounds that were weak as herbicides showed little or no effect on auxin transport. Therefore, it is concluded that the mode of action of these isoquinolinedione herbicides is the inhibition of auxin transport. Ring-opened analogues of several isoquinolinediones were synthesized and assayed in both the transport and binding assays, in order to test whether compounds in this class express their herbicidal activity by undergoing ring-opening in vivo, yielding products that are more straightforward analogues of NPA with free carboxyl groups. The homophthalamic acids had little or no activity in both assays. On the other hand, thep-ethyl- andp-ethoxy-phenyl phthalamic acids showed auxin transport inhibition comparable to the parent isoquinolinediones, but with markedly increased binding activity. These results support the possible role of ring-opening in the generation of biological activity. However, thep-carbethoxyphenyl phthalamic acid, analogous to CEPIQ, was very weak in both assays. Thus, ring-opening in vivo cannot alone account for the biological activity of this class of compounds.  相似文献   

20.
Leyser O 《Current biology : CB》2006,16(11):R424-R433
Recent years have seen rapid progress in our understanding of the mechanism of action of the plant hormone auxin. A major emerging theme is the central importance of the interplay between auxin signalling and the active transport of auxin through the plant to create dynamic patterns of auxin accumulation. Even in tissues where auxin distribution patterns appear stable, they are the product of standing waves, with auxin flowing through the tissue, maintaining local pockets of high and low concentration. The auxin distribution patterns result in changes in gene expression to trigger diverse, context-dependent growth and differentiation responses. Multi-level feedback loops between the signal transduction network and the auxin transport network provide self-stabilising patterns that remain sensitive to the external environment and to the developmental progression of the plant. The full biological implications of the behaviour of this system are only just beginning to be understood through a combination of experimental manipulation and mathematical modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号