首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hasezawa S  Nozaki H 《Protoplasma》1999,209(1-2):98-104
Cortical microtubules (MTs) have been implicated in the morphogenesis of plant cells by regulating the orientation of newly deposited cellulose microfibrils (CMFs). However, the role of MTs in oriented CMF deposition is still unclear. We have investigated the mechanism of CMF deposition with cultured tobacco protoplasts derived from taxol-treated BY-2 cells (taxol protoplasts). The BY-2 protoplasts regenerated patches of beta-l,3-glucan (callose) and fibrils of beta-l,4-glucan (cellulose). Taxol protoplasts possessed the same ordered MT arrays as material cells and regenerated CMFs with patterns almost coincidental with MTs. Electron microscopy revealed that, on the surface of cultured taxol protoplasts, each CMF bundle appeared to be deposited on each cortical MT. These results suggest that MTs may attach directly to the cellulose-synthesizing complexes, by some form of linkage, and regulate the movement of these complexes in higher-plant cells.  相似文献   

2.
Summary. The roles of cellulose microfibrils and cortical microtubules in establishing and maintaining the pattern of secondary-cell-wall deposition in tracheary elements were investigated with direct dyes to inhibit cellulose microfibril assembly and amiprophosmethyl to inhibit microtubule polymerization. When direct dyes were added to xylogenic cultures of Zinnia elegans L. mesophyll cells just before the onset of differentiation, the secondary cell wall was initially secreted as bands composed of discrete masses of stained material, consistent with immobilized sites of cellulose synthesis. The masses coalesced, forming truncated, sinuous or smeared thickenings, as secondary cell wall deposition continued. The absence of ordered cellulose microfibrils was confirmed by polarization microscopy and a lack of fluorescence dichroism as determined by laser scanning microscopy. Indirect immunofluorescence showed that cortical microtubules initially subtended the masses of dye-altered secondary cell wall material but soon became disorganized and disappeared. Although most of the secondary cell wall was deposited in the absence of subtending cortical microtubules in dye-treated cells, secretion remained confined to discrete regions of the plasma membrane. Examination of non-dye-treated cultures following application of microtubule inhibitors during various stages of secondary-cell-wall deposition revealed that the pattern became fixed at an early stage such that deposition remained localized in the absence of cortical microtubules. These observations indicate that cortical microtubules are required to establish, but not to maintain, patterned secondary-cell-wall deposition. Furthermore, cellulose microfibrils play a role in maintaining microtubule arrays and the integrity of the secondary-cell-wall bands during deposition.Correspondence and reprints: Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, U.S.A.Present address: Biology Editors Co., Peacedale, Rhode Island, U.S.A.Present address: Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island, U.S.A.Present address: Department of Crop Science and Department of Botany, North Carolina State University, Raleigh, North Carolina, U.S.A.  相似文献   

3.
4.
Tobias I. Baskin 《Protoplasma》2001,215(1-4):150-171
Summary The hypothesis that microtubules align microfibrils, termed the alignment hypothesis, states that there is a causal link between the orientation of cortical microtubules and the orientation of nascent microfibrils. I have assessed the generality of this hypothesis by reviewing what is known about the relation between microtubules and microfibrils in a wide group of examples: in algae of the family Characeae,Closterium acerosum, Oocystis solitaria, and certain genera of green coenocytes and in land plant tip-growing cells, xylem, diffusely growing cells, and protoplasts. The salient features about microfibril alignment to emerge are as follows. Cellulose microfibrils can be aligned by cortical microtubules, thus supporting the alignment hypothesis. Alignment of microfibrils can occur independently of microtubules, showing that an alternative to the alignment hypothesis must exist. Microfibril organization is often random, suggesting that self-assembly is insufficient. Microfibril organization differs on different faces of the same cell, suggesting that microfibrils are aligned locally, not with respect to the entire cell. Nascent microfibrils appear to associate tightly with the plasma membrane. To account for these observations, I present a model that posits alignment to be mediated through binding the nascent microfibril. The model, termed templated incorporation, postulates that the nascent microfibril is incorporated into the cell wall by binding to a scaffold that is oriented; further, the scaffold is built and oriented around either already incorporated microfibrils or plasma membrane proteins, or both. The role of cortical microtubules is to bind and orient components of the scaffold at the plasma membrane. In this way, spatial information to align the microfibrils may come from either the cell wall or the cell interior, and microfibril alignment with and without microtubules are subsets of a single mechanism.Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

5.
The orientation of cortical microtubules (MTs) was synchronously regulated inSpirogyra cells. While the reorganized MTs in distilled water for 1.5 hr, after 1 hr treatment with amiprophos-methyl (APM) and complete depolymerization of the MTs, were all transverse, those reorganized in 0.30 M mannitol were all oblique or longitudinal. After the MTs had reorganized in 0.30 M mannitol, these cells were then incubated in distilled water for 6 hr, and the orientation of the MTs, in the cells in which MTs could be observed, all became transverse.  相似文献   

6.
The arrangement of cortical microtubules (MTs) in differentiating tracheids of Abies sachalinensis Masters was examined by confocal laser scanning microscopy after immunofluorescent staining. The arrays of MTs in the tracheids during formation of the primary wall were not well ordered and the predominant orientation changed from longitudinal to transverse. During formation of the secondary wall, the arrays of MTs were well ordered and their orientation changed progressively from a flat S-helix to a steep Z-helix and then to a flat S-helix as the differentiation of tracheids proceeded. The orientation of cellulose microfibrils (MFs) on the innermost surface of cell walls changed in a similar manner to that of the MTs. These results provide strong evidence for the co-alignment of MTs and MFs during the formation of the semi-helicoidal texture of the cell wall in conifer tracheids.Abbreviations MT cortical microtubule - MF cellulose microfibril - S1, S2 and S3 the outer, middle and inner layers of the secondary wall The authors thank Mr. T. Itoh of the Electron Microscope Laboratory, Faculty of Agriculture, Hokkaido University, for his technical assistance. This work was supported in part by a Grant-in-Aid from the Ministry of Education, Science and Culture, Japan (no. 06404013).  相似文献   

7.
Cellulose and pectin are major components of primary cell walls in plants, and it is believed that their mechanical properties are important for cell morphogenesis. It has been hypothesized that cortical microtubules guide the movement of cellulose microfibril synthase in a direction parallel with the microtubules, but the mechanism by which this alignment occurs remains unclear. We have previously identified cobtorin as an inhibitor that perturbs the parallel relationship between cortical microtubules and nascent cellulose microfibrils. In this study, we searched for the protein target of cobtorin, and we found that overexpression of pectin methylesterase and polygalacturonase suppressed the cobtorin-induced cell-swelling phenotype. Furthermore, treatment with polygalacturonase restored the deposition of cellulose microfibrils in the direction parallel with cortical microtubules, and cobtorin perturbed the distribution of methylated pectin. These results suggest that control over the properties of pectin is important for the deposition of cellulose microfibrils and/or the maintenance of their orientation parallel with the cortical microtubules.  相似文献   

8.
Cellulose is synthesized at the plasma membrane by protein complexes known as cellulose synthase complexes (CSCs). The cellulose-microtubule alignment hypothesis states that there is a causal link between the orientation of cortical microtubules and orientation of nascent cellulose microfibrils. The mechanism behind the alignment hypothesis is largely unknown. CESA interactive protein 1 (CSI1) interacts with CSCs and potentially links CSCs to the cytoskeleton. CSI1 not only co-localizes with CSCs but also travels bi-directionally in a speed indistinguishable from CSCs. The linear trajectories of CSI1-RFP coincide with the underlying microtubules labeled by YFP-TUA5. In the absence of CSI1, both the distribution and the motility of CSCs are defective and the alignment of CSCs and microtubules is disrupted. These observations led to the hypothesis that CSI1 directly mediates the interaction between CSCs and microtubules. In support of this hypothesis, CSI1 binds to microtubules directly by an in vitro microtubule-binding assay. In addition to a role in serving as a messenger from microtubule to CSCs, CSI1 labels SmaCCs/MASCs, a compartment that has been proposed to be involved in CESA trafficking and/or delivery to the plasma membrane.  相似文献   

9.
Arrangements of cortical microtubules (MTs) and of cellulose microfibrils at the surface of the vegetative shoot apex ofVinca major L. were examined by immunofluorescence microscopy and polarizing microscopy, respectively. Cortical MTs adjacent to the outermost walls of the apex were arranged more or less randomly in individual cells: especially in cells in the central region of the apex the arrangement was almost completely random. However, in the peripheral region MTs tended to show parallel alignment in individual cells, and an overall pattern that was roughly concentric around the apical dome was discerned. Observations of birefringence of cell walls indicated that cellulose microfibrils in the peripheral region of the apex were also arranged in a pattern which was roughly concentric around the apical dome. These patterns of arrangements of MTs and microfibrils are understood to be perpendicular to the radial cell files observed in the peripheral region of the apex, and can be related to the radial expansion of the surface of the apex.  相似文献   

10.
植物激素对微管和纤维素微纤丝排向的调节   总被引:7,自引:0,他引:7  
陈金桂  杨军  周燮 《生命科学》2001,13(3):139-141,106
回顾了微管和纤维素微纤丝在细胞骨架构成和延展中的作用;综述了植物激素在微管和纤维素微纤丝排向中的调节功能,并对细胞扩大和伸长的机制进行了探讨。  相似文献   

11.
Abstract An endoglucanase-cellobiohydrolase from Trichoderma reesei culture fluids was purified by means of preparative isoelectric focusing. The cellulase complex had a common apparent isoelectric point (p I ) of 3.8. Beyond this p I , the electrophoretic mobilities of endoglucanase and cellobiohydrolase were different under conditions of titration curves. The effect of this endoglucanase-cellobiohydronalase complex on Sinapis cellulose microfibril ultranstructure was observed by transmission electron microscopy after metal shadowing of the specimen. By the action of this cellulase complex, the microfibril structure was converted into an amorphous form of cellulose. Moreover, the hydrolase complex induced visible cross-fractures within the cellulose microfibril structure. The mean cellulose microfibril lenght of 1.2 μm was reduced to 0.9 μm in the presence (12 h) of this cellulase complex by the formation of shorter microfibril fragments.  相似文献   

12.
In maize (Zea mays L.) and pine (Pinus taeda L.) seedlings, cellulose microfibril impressions are present on freeze-fractured plasma membranes. It has been proposed that impressions of newly synthesized microfibrils are a record of the movement of terminal synthesizing complexes through the plasma membrane (Mueller and Brown, 1980, J. Cell Biol. 84, 315–326). The association of terminal complexes with the ends of microfibril impressions or with the ends of microfibrils torn through the membrane indicates the orientation of microfibril tips. Unidirectionally-oriented microfibril tips (all pointing in the same direction) are associated with the organized deposition of parallel arrays of microfibrils. Multidirectionally-oriented microfibril tips were observed in a cell in which microfibril deposition was unusually disorganized. Microfibril patterns around pit fields are asymmetric and resemble flow patterns. Unidirectionally-oriented tears are associated with these microfibrils. Although microfibril orientations are deflected around pit fields, the main axis of microfibril orientation is maintained across the surface of the cell. The hypothesis is proposed that the interaction of a flowing plasma membrane with microfibril synthesizing complexes in the plane of the membrane may result in unidirectional deposition and asymmetric microfibril impressions around pit fields.Some of this work has been published in preliminary form (Brown 1979)  相似文献   

13.
Cortical microtubules are considered to regulate the direction of cellulose microfibril deposition. Despite their significant role in determining cell morphology, cortical microtubules completely disappear from the cell cortex during M phase and become reorganized at G1 phase. The mechanism by which these microtubules become properly formed again is, however, still unclear. We have proposed that the origin of cortical microtubules is on the daughter nuclear surface, but further cortical microtubule reorganization occurs at the cell cortex. Hence it is probable that the locations of microtubule organizing centers (MTOCs) are actively changing. However, the actual MTOC sites of cortical microtubules were not clearly determined. In this paper, we have examined the distribution of gamma-tubulin, one of the key molecules of MTOCs in various organisms, during cortical microtubule reorganization using both immunofluorescence and a GFP reporter system. Using a monoclonal antibody (clone G9) that recognizes highly conserved residues in y-tubulin, y-tubulin was found to be constitutively expressed and to be clearly localized to microtubule structures, such as the preprophase bands, spindles, and phragmoplasts, specific to each cell cycle stage. This distribution pattern was confirmed by the GFP reporter system. During cortical microtubule reorganization at the M to G1 transition phase, gamma-tubulin first accumulated at the daughter nuclear surfaces, and then seemed to spread onto the cell cortex along with microtubules elongating from the daughter nuclei. Based on the results, it was confirmed that daughter nuclear surfaces acted as origins of cortical microtubules, and that further reorganization occurred on the cell cortex.  相似文献   

14.
Summary Based on precise information about the orientations of cellulose microfibrils (CMFs) in the secondary cell wall of theEquisetum hyemale root hair, a geometrical model was recently put forward to account for the deposition orientation of CMFs. The model supposes that synthases spin out the CMFs and that geometrical laws dictate their movement. Taking space-limiting conditions into account, CMF orientation is dependent on cell morphology, the amount of other wall molecules adhering to the CMFs, and the number and distribution pattern of synthases. In the present paper this geometrical model for CMF deposition is further applied to nontip-growing angular cells with varying diameters, cells with tapering morphology, various distribution patterns of synthases, various matrix/fibril ratios, and intercalarily elongating cells. The model can accurately predict the actual wall textures in a great variety of cell walls. In the proposed model for CMF orientation, microtubules are not required as cellular guiding structures for the CMFs, not even in elongating walls. They are supposed to be involved in cell elongation, possibly by delivering wall material including CMF synthases.Abbreviation CMF cellulose microfibril  相似文献   

15.
Excised stem sections of deepwater rice (Oryza sativa L.) containing the highest internode were used to study the induction of rapid internodal elongation by gibberellin (GA). It has been shown before that this growth response is based on enhanced cell division in the intercalary meristem and on increased cell elongation. In both GA-treated and control stem sections, the basal 5-mm region of the highest internode grows at the fastest rate. During 24 h of GA treatment, the internodal elongation zone expands from 15 to 35 mm. Gibberellin does not promote elongation of internodes from which the intercalary meristem has been excised. The orientation of cellulose microfibrils (CMFs) is a determining factor in cell growth. Elongation is favored when CMFs are oriented transversely to the direction of growth while elongation is limited when CMFs are oriented in the oblique or longitudinal direction. The orientation of CMFs in parenchymal cells of GA-treated and control internodes is transverse throughout the internode, indicating that CMFs do not restrict elongation of these cells. Changes in CMF orientation were observed in epidermal cells, however. In the basal 5-mm zone of the internode, which includes the intercalary meristem, CMFs of the epidermal cell walls are transversely oriented in both GA-treated and control stem sections. In slowly growing control internodes, CMF orientation changes to the oblique as cells are displaced from this basal 5-mm zone to the region above it. In GA-treated rapidly growing internodes, the reorientation of CMFs from the transverse to the oblique is more gradual and extends over the 35-mm length of the elongation zone. The CMFs of older epidermal cells are obliquely oriented in control and GA-treated internodes. The orientation of the CMFs parallels that of the cortical microtubules. This is consistent with the hypothesis that cortical microtubules determine the direction of CMF deposition. We conclude that GA acts on cells that have transversely oriented CMFs but does not promote growth of cells whose CMFs are already obliquely oriented at the start of GA treatment.  相似文献   

16.
The deposition of nascent cellulose microfibrils (CMFs) was studied in the walls of cortical cells in explants of Nicotiana tabacum L. flower stalks. In freshly cut explants the CMFs were deposited in two distinct and alternating orientations — all given with respect to the longitudinal axis of the cell —, at 75° and 115°, in a left-handed (S-helix) and right-handed (Z-helix) form, respectively. The CMFs deposited in these orientations did not form uninterrupted layers, but sheets in which both orientations were present. After explantation, the synthesis of CMFs and their deposition in bundles continued. New orientations occurred within 6 h. After 6 h a new sheet was deposited, with orientations of 15° (S-helix) and 165° (Z-helix). The changes could be seen as sudden bends in individual CMFs or in small bundles of CMFs. In the next stage, more CMFs were deposited with these new orientations and the bundles became larger. New orientations arose by a shift towards more longitudinal directions, starting from either the S-helix or the Z-helix form. It was only after an almost longitudinal orientation was reached that the CMFs were deposited in two opposing directions again and a new sheet was formed. Neither colchicine nor cremart influenced the changes in CMF deposition. It is concluded that microtubules do not control CMF deposition in cortical cells of tobacco explants; control of CMF deposition and microtubule orientation occurs by factors related to cell polarity.Abbreviations CMF cellulose microfibril - MT microtubule We thank Professor M.M.A. Sassen and Dr. G.W.M. Barendse (Department of Experimental Botany, University of Nijmegen, Nijmegen, The Netherlands) for helpful discussions and Mrs. A. Kemp for her assistance in the ethylene experiments.  相似文献   

17.
S. Sonobe  N. Nakayama  T. Shimmen  Y. Sone 《Protoplasma》2000,213(3-4):218-227
Summary Immunofluorescence microscopy using an antibody against xyloglucan (XG) revealed its dynamics during the cell cycle. In interphase tobacco BY-2 cells, punctate and scattered fluorescence was observed throughout the cytoplasm. Colocalization of such signals with cortical microtubules (MTs) was clearly observed on the membrane ghosts. They were also associated and accumulated on MT bundles of the preprophase band. Treatment of protoplasts with cytochalasin B prior to the preparation of the ghosts had no effect on the pattern of anti-XG staining, while treatment with propyzamide caused the disappearance of the staining. These results suggest an association of Golgi apparatus and/or Golgi-derived vesicles with MTs. In metaphase cells, the staining was dispersed in the cytoplasm, except in the area occupied by the metaphase spindle. During anaphase, a broad fluorescence band appeared between daughter chromosomes and gradually concentrated at the equatorial plane before formation of the phragmoplast. At telophase, a bright line of fluorescence appeared at the equatorial plane corresponding to the position of the cell plate. The length of the line increased as cytokinesis proceeded. Thus, we showed that immunofluorescence microscopy using anti-XG antibody can be considered as a powerful tool for the analysis of Golgi apparatus and Golgi-derived vesicles containing XG.  相似文献   

18.
The orientation of cellulose microfibrils (MFs) and the arrangement of cortical microtubules (MTs) in the developing tension-wood fibres of Japanese ash (Fraxinus mandshurica Rupr. var. japonica Maxim.) trees were investigated by electron and immunofluorescence microscopy. The MFs were deposited at an angle of about 45° to the longitudinal axis of the fibre in an S-helical orientation at the initiation of secondary wall thickening. The MFs changed their orientation progressively, with clockwise rotation (viewed from the lumen side), from the S-helix until they were oriented approximately parallel to the fibre axis. This configuration can be considered as a semihelicoidal pattern. With arresting of rotation, a thick gelatinous (G-) layer was developed as a result of the repeated deposition of parallel MFs with a consistent texture. Two types of gelatinous fibre were identified on the basis of the orientation of MFs at the later stage of G-layer deposition. Microfibrils of type 1 were oriented parallel to the fibre axis; MFs of type 2 were laid down with counterclockwise rotation. The counterclockwise rotation of MFs was associated with a variation in the angle of MFs with respect to the fibre axis that ranged from 5° to 25° with a Z-helical orientation among the fibres. The MFs showed a high degree of parallelism at all stages of deposition during G-layer formation. No MFs with an S-helical orientation were observed in the G-layer. Based on these results, a model for the orientation and deposition of MFs in the secondary wall of tension-wood fibres with an S1 + G type of wall organization is proposed. The MT arrays changed progressively, with clockwise rotation (viewed from the lumen side), from an angle of about 35–40° in a Z-helical orientation to an angle of approximately 0° (parallel) to the fibre axis during G-layer formation. The parallelism between MTs and MFs was evident. The density of MTs in the developing tension-wood fibres during formation of the G-layer was about 17–18 per m of wall. It appears that MTs with a high density play a significant role in regulating the orientation of nascent MFs in the secondary walls of wood fibres. It also appears that the high degree of parallelism among MFs is closely related to the parallelism of MTs that are present at a high density.Abbreviations FE-SEM field emission scanning electron microscopy - G gelatinous layer - MF cellulose microfibril - MT cortical microtubule - S1 outermost layer of the secondary wall - TEM transmission electron microscopy We thank Dr. Y. Akibayashi, Mr. Y. Sano and Mr. T. Itoh of the Faculty of Agriculture, Hokkaido University, for their experimental or technical assistance.  相似文献   

19.
In the regeneration of a shoot from a leaf of the succulent, Graptopetalum paraguayense E. Walther the first new organs are leaf primordia. The original arrangement of cellulose microfibrils and of microtubules (MTs) in the epidermis of the leaf-forming site is one of parallel, straight lines. In the new primordium both structures still have a congruent arrangement but it is roughly in the form of concentric circles that surround the new cylindrical organ. The regions which undergo the greatest shift in orientation (90°) were studied in detail. Departures from the original cellulose alignment are detected in changes in the polarized-light image. Departures from the original cortical MT arrangement are detected using electron microscopy. The over-all reorganization of the MT pattern is followed by the tally of MT profiles, the various regions being studied in two perpendicular planes of section. This corrects for the difference in efficiency in counting transverse versus longitudinal profiles of MTs. Reorientation takes place sporadically, cell by cell, for both the cellulose microfibrils and the MTs, indicating a coordinated reorientation of the two structures. That MTs and cellulose microfibrils reorient jointly in individual cells was shown by reconstruction of the arrays of cortical MTs in paradermal sections of individual cells whose recent change in the orientation of cellulose deposition had been detected with polarized light. Closeness of the two alignments was also indicated by images where the MT and microfibril alignments co-varied within a single cell. The change-over in alignment of the MTs appears to involve stages where arrays of contrasting orientation co-exist to give a criss-cross image. During this critical reorganization, the frequency of the MTs is high. It falls during subsequent enlargement of the organ. It was found that the rearrangement of the cortical MTs to approximate a series of concentric circles on the residual meristem occurred before the emergence of leaf primordia. Through their apparent influence on microfibril alignments, the changes in MT disposition, described here, have the potential to generate major biophysical changes that accompany organogenesis.Abbreviation MT(s) microtubule(s)  相似文献   

20.
T. Kakimoto  H. Shibaoka 《Protoplasma》1987,140(2-3):151-156
Summary Treatment with lysine prior to fixation of tobacco BY-2 cells with formaldehyde improved the preservation of actin filaments in the cells and enabled us to observe both networks of actin filaments and microtubules in the same cells. By using this method, we observed that (1) actin filaments were present in the preprophase band; (2) the actin filaments in the preprophase band and phragmoplast were runnig in the same direction as the microtubules in their respective structures; (3) a cortical network of actin filaments was present throughout all stages of cell cycle.The present method did not preserve the cortical actin filaments in interphase cells. The procedure for staining microtubules destroyed them.Abbreviations EGTA Ethyleneglycol-bis(-aminoethyl ether)N,N,N,N-tetraacetic acid - PIPES Piperazine-N,N-bis(2-ethanesulfonic acid) - PMSF Phenylmethylsulfonyl fluoride - TLCK Na-p-tosyl-L-lysine chloromethyl ketone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号