首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isometric virus-like particles c. 22–25 nm in diameter were found in ultrathin sections of chervil leaves infected with carrot red leaf virus (CRLV). The particles were confined to the phloem and occurred in less than 5% of the cells in the vascular bundles. They were commonest in companion cells, occurred frequently in sieve elements and were also found in phloem parenchyma cells. The observations support other evidence that CRLV should be classified in the luteovirus group.  相似文献   

2.
In minor veins of leaves of Beta vulgaris L. (sugar beet) yellows virus particles were found both in parenchyma cells and in mature sieve elements. In parenchyma cells the particles were usually confined to the cytoplasm, that is, they were absent from the vacuoles. In the sieve elements, which at maturity have no vacuoles, the particles were scattered throughout the cell. In dense aggregations the particles tended to assume an orderly arrangement in both parenchyma cells and sieve elements. Most of the sieve elements containing virus particles had mitochondria, plastids, endoplasmic reticulum, and plasma membrane normal for mature sieve elements. Some sieve elements, however, showed evidence of degeneration. Virus particles were present also in the pores of the sieve plates, the plasmodesmata connecting the sieve elements with parenchyma cells, and the plasmodesmata between parenchyma cells. The distribution of the virus particles in the phloem of Beta is compatible with the concept that plant viruses move through the phloem in the sieve tubes and that this movement is a passive transport by mass flow. The observations also indicate that the beet yellows virus moves from cell to cell and in the sieve tube in the form of complete particles, and that this movement may occur through sieve-plate pores in the sieve tube and through plasmodesmata elsewhere.  相似文献   

3.
Summary This paper is the second in the series dealing with the ultrastructure ofTetragonia expansa Murr. infected with the beet yellows virus. It considers the relation of the virus to the conducting cells in the phloem and the xylem. Virus particles occurred in mature sieve elements, their amount increasing as the infected leaf became older. In older leaves some sieve elements were completely blocked with virus. Virus particles were seen in pores of sieve plates, in plasmodesmata interconnecting sieve elements and parenchyma cells, and in those between parenchyma cells. Mature and immature tracheary elements also contained virus particles. Presence of inclusions composed of vesicles and virus in some immature tracheary elements may indicate that virus multiplies in these cells. No vesicles and no virus particles were discovered in immature sieve elements.This work was supported in part by National Science Foundation grant GB-5506.  相似文献   

4.
Summary The distribution of adenosine triphosphatase (ATPase) activity in the phloem of petioles and minor veins of Cucurbita maxima has been studied using a lead phosphate precipitation procedure. ATPase activity was localized in sieve elements, companion cells and parenchyma cells. Activity was found at the cell surfaces, associated with the dispersed P-protein of mature sieve elements, in mitochondria, sieve-element reticulum, and at specific regions of the cell walls. It is suggested that the ATPase at the phloem cell surfaces may function in intercellular transport of assimilates or ions, and that the ATPase activity associated with the P-protein may function in the translocation process or in callose deposition.  相似文献   

5.
Summary This is the third paper of the series dealing with beet yellows virus infection ofTetragonia expansa Murr. It concerns the different kinds of aggregates of virus and the state of the virus particles in the different cells. In vascular parenchyma cells, the aggregates of virus are variable but are consistently intermingled with host cell components. In the sieve elements, the virus may fill the cell lumen solidly either without obvious order or in stacks of layers each as wide as the particle is long. The virus particles appear to be commonly disorganizing in parenchyma cells with degenerating protoplasts and in sieve elements solidly packed with virus. The factors possibly determining the conformation of viruses in plant cells and the terminological problems regarding designations of aggregates of virus particles and other products appearing in infected cells are discussed.This work was supported in part by National Science Foundation grant GB-5506.  相似文献   

6.
Johannes Lehmann 《Planta》1973,111(3):187-198
Summary In the stem phloem of Cucurbita pepo the enzymes GAPDH, ADH, MDH, NADP-IDH, NAD-IDH, G6PDH and SDH were localized histochemically with the aid of tetrazolium salt (NBT). When the stems were deep-frozen the most intense formation of formazan was found in companion cells, less in phloem parenchyma cells, and very little in sieve tubes.The distribution of enzymes in phloem markedly changes when stems were cut 2 minutes before freezing: 2,5 cm behind the sectional area little formazan was found. Companion cells and parenchyma cells had lost nearly all activity. 15 cm behind the sectional area there was again a higher concentration of formazan in the companion cells and parenchyma cells. In this region an even higher activity was detected in sieve tubes. 25–30 cm behind the sectional area the distribution of formazan was nearly the same as in the intact stems.Apparently activities of the enzymes tested primaily occur in the companion cells and parenchyma cells only. After wounding they are translocated into sieve tubes or exudate.  相似文献   

7.
Haritatos E  Medville R  Turgeon R 《Planta》2000,211(1):105-111
Leaf and minor vein structure were studied in Arabidopsis thaliana (L.) Heynh. to gain insight into the mechanism(s) of phloem loading. Vein density (length of veins per unit leaf area) is extremely low. Almost all veins are intimately associated with the mesophyll and are probably involved in loading. In transverse sections of veins there are, on average, two companion cells for each sieve element. Phloem parenchyma cells appear to be specialized for delivery of photoassimilate from the bundle sheath to sieve element-companion cell complexes: they make numerous contacts with the bundle sheath and with companion cells and they have transfer cell wall ingrowths where they are in contact with sieve elements. Plasmodesmatal frequencies are high at interfaces involving phloem parenchyma cells. The plasmodesmata between phloem parenchyma cells and companion cells are structurally distinct in that there are several branches on the phloem parenchyma cell side of the wall and only one branch on the companion cell side. Most of the translocated sugar in A. thaliana is sucrose, but raffinose is also transported. Based on structural evidence, the most likely route of sucrose transport is from bundle sheath to phloem parenchyma cells through plasmodesmata, followed by efflux into the apoplasm across wall ingrowths and carrier-mediated uptake into the sieve element-companion cell complex. Received: 5 October 1999 / Accepted: 20 November 1999  相似文献   

8.
Amsinckia douglasiana when infected with beet curly top virus (BCTV) produces more exudate, which is highly infective, than any other known host. Attempts were made to purify BCTV from the phloem exudate of infected Amsinckia douglasiana by differential centrifugation and sucrose density gradient fractionation. A260/280 ratio of virus preparations was 1.58; S values were 74 and 147. Infectivity was distributed among several fractions during density gradient purification. Electron microscopy revealed the presence of pentagonal and hexagonal particles of 14–23 nm, some of which were paired. The virus was insensitive to DNAse, RNAse, and trypsin when these enzymes were tested individually but infectivity was substantially decreased when the virus was subjected to trypsin treatment followed by DNAse, suggesting that DNA is associated with the beet curly top virus.  相似文献   

9.
Evert , Ray F. (U. Wisconsin, Madison.) Ontogeny and structure of the secondary phloem in Pyrus malus. Amer. Jour. Bot. 50(1): 8–37. Illus. 1963.—The secondary phloem of apple consists of sieve-tube elements, companion cells, phloem parenchyma cells, fiber-sclereids, and ray parenchyma cells. The sieve-tube elements are generally long, slender cells with very oblique end walls and much-compounded sieve plates. All sieve-tube elements initially possess nacreous thickenings. Similar wall thickenings were observed in the differentiating fiber-sclereids and xylem elements. Of the 245 sieve-tube elements critically examined, 242 were associated with companion cells. All of the companion cells were shorter than their associated sieve-tube elements. Young companion cells possess slime bodies which later become dispersed. Callose is often found on the sieve-tube element side of the common wall between sieve-tube element and companion cell. In several collections, callose was found on both sides of that wall. The parenchyma cells are of 3 types: crystal-containing cells; tannin-and/or starch-containing cells; and those with little or no tannins or starch. Any type parenchyma cell may be on to genetically related to a sieve-tube element, that is, may be derived from the same phloem initial as the sieve-tube element. Morphologically, the phloem parenchyma cells intergrade with the companion cells, the tannin- and starch-free parenchyma cells often being difficult to distinguish from companion cells. Most of the tannin- and starch-free parenchyma cells collapse when the contiguous sieve-tube elements become nonfunctional. The fiber-sclereids arise from parenchyma cells which overwinter on the margin of the cambial zone and differentiate in nonfunctional phloem.  相似文献   

10.
A light and electron microscope investigation was conducted on phloem in the aerial stem of Epifagus virginiana (L.) Bart. Tissue was processed at field collection sites in an effort to overcome problems resulting from manipulation. At variance with earlier accounts, Epifagus phloem consists of sieve elements, companion cells, phloem parenchyma cells, and primary phloem fibers. The sieve elements possess simple sieve plates and the phloem is arranged in a collateral type of vascular bundle. In addition, this constitutes the first study on phloem ultrastructure in the aerial stems of a holoparasitic dicotyledon, an entire plant which could be viewed as an “ideal sink.” Epifagus phloem possesses unoccluded sieve plate pores in mature sieve elements and a total lack of P-protein in sieve elements at all stages of development. Mature sieve elements lack nuclei. Plastids were rarely observed in mature sieve elements. Vacuoles with intact tonoplasts were encountered in some mature sieve elements. Otherwise, the ultrastructural features of sieve elements appear to differ little from those described by investigators of non-parasitic species.  相似文献   

11.
The uhrastructure and intercellular connection of the sugar unloading zone (i. e. the phloem in the dorsal vascular bundle and the phloem-surrounding the assimilate sink-cells) of grape ( Vitis vinifera x V. labrusca cv. Jingchao) berry was observed via transmission electron microscopy. The results showed that during the early developmental stages of grape berry, numerous plasmodesmata were found in the phloem between sieve element (SE) and companion cell (CC), between SE/CC complexes, between SE/CC complex and phloem parenchyma cell and in between phloem parenchyma cells, which made the phloem a symplastic integration, facilitating sugar unloading from sieve elements into both companion cells and phloem parenchyma cells via a symplastic pathway. On the contrary, there was almost no plasmodesma between phloem and its surrounding flesh photoassimilate sink-cells, neither in between the flesh photoassimilate sink-cells giving rise to a symplastic isolation both between phloem and its surrounding flesh photoassimilate sink-cells, as well as among the flesh photoassimilate sink-cells. This indicated that both the sugar unloading from phloem and pestphloem transport of sugars should be mainly via an apoplastic pathway. Dining the ripening stage, most of the plasmodesmata between SE/CC complex and the surrounding phloem parenchyma cells were shown to be blocked by the electron-opaque globules, and a phenomenon of plasmolysis was found in a number of companion cells, indicating a symplastic isolation between SE/CC complex and its surrounding parenchynm cells during this phase. The symplastic isolation between the whole phloem and its surrounding photoassimilate sink-cells during the early developmental stages shifted to a symplastic isolation within the phloem during the ripening phase, and thus the symplastic pathway of sugar unloading from SE/CC complex during the early development stages should be replaced by a dominant apoplastic unloading pathway from SE/CC complex in concordance.  相似文献   

12.
Electron microscopy of sugarbeet leaves infected with the beet curly top virus confirmed earlier findings by light microscopy that the hyperplastic phloem consists mainly of sieve elements that are more or less abnormal in structure. Some parenchyma cells and occasional companion cells may be present. The hyperplastic phloem develops in the place of normal phloem and sometimes in the adjacent ground tissue and the xylem. The sieve elements vary in shape and may be haphazardly arranged. The protoplasts of the sieve elements have the usual characteristics of this type of cell. The sieve element plastids develop from chloroplasts if the hyperplasia occurs in chloroplast-containing parenchyma cells. The cell walls have sieve areas that often are less well differentiated than those of normal sieve elements. The hyperplastic growth in the phloem of curly top diseased plants is discussed with reference to plant tumors induced by certain other plant viruses.  相似文献   

13.
The conducting elements of phloem in angiosperms are a complex of two cell types, sieve elements and companion cells, that form a single developmental and functional unit. During ontogeny of the sieve element/companion cell complex, specific proteins accumulate forming unique structures within sieve elements. Synthesis of these proteins coincides with vascular development and was studied in Cucurbita seedlings by following accumulation of the phloem lectin (PP2) and its mRNA by RNA blot analysis, enzyme-linked immunosorbent assay, immunocytochemistry and in␣situ hybridization. Genes encoding PP2 were developmentally regulated during vascular differentiation in hypocotyls of Cucurbita maxima Duch. Accumulation of PP2 mRNA and protein paralleled one another during hypocotyl elongation, after which mRNA levels decreased, while the protein appeared to be stable. Both PP2 and its mRNA were initially detected during metaphloem differentiation. However, PP2 mRNA was detected in companion cells of both bundle and extrafascicular phloem, but never in differentiating sieve elements. At later stages of development, PP2 mRNA was most often observed in extrafascicular phloem. In developing stems of Cucurbita moschata L., PP2 was immunolocalized in companion cells but not to filamentous phloem protein (P-protein) bodies that characterize immature sieve elements of bundle phloem. In contrast, PP2 was immunolocalized to persistent ␣ P-protein bodies in sieve elements of the extrafascicular phloem. Immunolocalization of PP2 in mature wound sieve elements was similar to that in bundle phloem. It appears that PP2 is synthesized in companion cells, then transported into differentiated sieve elements where it is a component of P-protein filaments in bundle phloem and persistent P-protein bodies in extrafascicular phloem. This differential accumulation in bundle and extrafascicular elements may result from different functional roles of the two types of phloem. Received: 31 July 1996 / Accepted: 27 August 1996  相似文献   

14.
应用透射电镜技术研究了宁夏枸杞果实韧皮部细胞的超微结构变化。结果表明:(1)随着枸杞果实的发育成熟,果实维管组织中的韧皮部筛分子筛域逐渐变宽,筛孔大而多,通过筛孔的物质运输十分活跃;筛分子和伴胞间有胞间连丝联系,伴胞属传递细胞类型,与其相邻韧皮薄壁细胞和果肉薄壁细胞连接处的细胞界面发生质膜内突,整个筛分子/伴胞复合体与韧皮薄壁细胞之间形成共质体隔离,韧皮部糖分的卸载方式主要以质外体途径进行。(2)韧皮薄壁细胞间的胞间连丝较多,而韧皮薄壁细胞与果肉薄壁细胞的胞间连丝相对较少,但果肉薄壁细胞间几乎无胞间连丝;果肉薄壁细胞之间胞间隙较大,细胞壁和质膜内突间形成较大的质外体空间,为质外体的糖分运输创造了条件。(3)筛管、伴胞、韧皮薄壁细胞和果肉薄壁细胞中丰富的囊泡以及活跃的囊泡运输现象,暗示囊泡也参与了果实糖分的运输过程。研究推测,枸杞果实韧皮部同化物的卸载方式以及卸载后的同化物运输主要以质外体途径为主。  相似文献   

15.
为了探讨灵武长枣果实光合同化物韧皮部卸载和运输的途径,该研究采用透射电镜技术,对不同发育时期灵武长枣果实维管束韧皮部及其周围薄壁细胞的超微结构特征进行了分析.结果表明:筛管/伴胞复合体及其周围韧皮薄壁细胞间在果实膨大前期富含胞间连丝,而韧皮薄壁细胞与周围库细胞以及相邻库细胞间几乎不存在胞间连丝,形成共质体隔离;筛管/伴...  相似文献   

16.
We investigated the phloem loading pathway in barley, by determining plasmodesmatal frequencies at the electron microscope level for both intermediate and small blade bundles of mature barley leaves. Lucifer yellow was injected intercellularly into bundle sheath, vascular parenchyma, and thin-walled sieve tubes. Passage of this symplastically transported dye was monitored with an epifluorescence microscope under blue light. Low plasmodesmatal frequencies endarch to the bundle sheath cells are relatively low for most interfaces terminating at the thin- and thick-walled sieve tubes within this C3 species. Lack of connections between vascular parenchyma and sieve tubes, and low frequencies (0.5% plasmodesmata per μm cell wall interface) of connections between vascular parenchyma and companion cells, as well as the very low frequency of pore-plasmodesmatal connections between companion cells and sieve tubes in small bundles (0.2% plasmodesmata per μm cell wall interface), suggest that the companion cell-sieve tube complex is symplastically isolated from other vascular parenchyma cells in small bundles. The degree of cellular connectivity and the potential isolation of the companion cell-sieve tube complex was determined electrophysiologically, using an electrometer coupled to microcapillary electrodes. The less negative cell potential (average –52 mV) from mesophyll to the vascular parenchyma cells contrasted sharply with the more negative potential (–122.5 mV) recorded for the companion cell-thin-walled sieve tube complex. Although intercellular injection of lucifer yellow clearly demonstrated rapid (0.75 μm s-1) longitudinal and radial transport in the bundle sheath-vascular parenchyma complex, as well as from the bundle sheath through transverse veins to adjacent longitudinal veins, we were neither able to detect nor present unequivocal evidence in support of the symplastic connectivity of the sieve tubes to the vascular parenchyma. Injection of the companion cell-sieve tube complex, did not demonstrate backward connectivity to the bundle sheath. We conclude that the low plasmodesmatal frequencies, coupled with a two-domain electropotential zonation configuration, and the negative transport experiments using lucifer yellow, precludes symplastic phloem loading in barley leaves.  相似文献   

17.
Seminal root tissue of Hordeum vulgare L. var. Barsoy was fixed in glutaraldehyde and osmium tetroxide and studied with the light and electron microscopes. The roots consist of an epidermis, 6–7 layers of cortical cells, a uniseriate endodermis and a central vascular cylinder. Cytologically, the cortical and endodermal cells are similar except for the presence of tubular-like invaginations of the plasmalemma, especially near the plasmodesmata, in the former. The vascular cylinder consists of a uniseriate pericycle surrounding 6–9 phloem strands occurring on alternating radii with an equal number of xylem bundles. The center of the root contains a single, late maturing metaxylem vessel element. Each phloem strand consists of one protophloem sieve element, two companion cells and 1–3 metaphloem sieve elements. The protophloem element and companion cells are contiguous with the pericycle. Metaphloem sieve elements are contiguous with companion cells and are separated from tracheary elements by xylem parenchyma cells. The protoplasts of contiguous cells of the root are joined by various numbers of cytoplasmic connections. With the exception of the pore-plasmodesmata connections between sieve-tube members and parenchymatic elements, the plasmodesmata between various cell types are similar in structure. The distribution of plasmodesmata supports a symplastic pathway for organic solute unloading and transport from the phloem to the cortex. Based on the arrangement of cell types and plasmodesmatal frequencies between various cell types of the root, the major symplastic pathway from sieve elements to cortex appears to be via the companion and xylem parenchyma cells.  相似文献   

18.
Summary The presence of mycoplasma has been demonstrated in the phloem of leaves of white clover (Trifolium repens L.) affected by clover dwarf. Mycoplasma-like bodies were found both in parenchyma and companion cells and in sieve elements.In young parenchyma and companion cells mycoplasma-like bodies appeared as round or oval particles with high ribosomal content, delimited by a ribosome-bearing membrane. Their diameter ranged between 50 and 400 nm. In mature sieve elements they were larger, more pleomorphic, and showed a central clear area containing presumed DNA filaments. Budding and dividing forms were sometimes seen among them.The main alterations found in the infected cells were: increased ribosome content, dilation of the perinuclear space, degeneration of mitochondria and chloroplasts, and cytoplasmic vacuolation. Many cells appeared completely disrupted and their content was replaced by a great number of pleomorphic mycoplasma.This investigation was supported by a grant of Consiglio Nazionale delle Ricerche, Rome.  相似文献   

19.
K. J. Oparka 《Protoplasma》1986,131(3):201-210
Summary Potential pathways for sucrose unloading in the potato tuber were examined by light and electron microscopy. Abundant plasmodesmata connected sieve elements with surrounding parenchyma elements and also sieve elements with companion cells. Plasmodesmata were rarer, however, between companion cells and parenchyma elements. These observations suggest that sucrose may leave the sieve elements and enter the storage parenchyma cells directly via the symplast and that transport through the companion cell may not be a prerequisite for unloading. Plasmodesmata, grouped together in primary pit fields, were also abundant between storage cells, and isolated storage cells, separated enzymically, showed considerable variation in plasmodesmatal distribution between cells and also on different faces of a single cell. Deposition of starch was found to occur in the tuber cortex while an endodermis with Casparian strip was present external to the phloem, suggesting that assimilates initially enter the cortical storage cells by an entirely symplastic pathway. The possible involvement of ATPase in the unloading process was examined cytochemically, using a lead-salt precipitation method. By contrast with previous findings for phloem no evidence was found for ATPase activity that was unique to the sieve element-companion cell complex. The present observations favour the view that phloem unloading in the potato tuber is a symplastic and passive process.  相似文献   

20.
When special precautions were taken to permit killing and fixation of sieve elements before they were cut, sieve pores were found to be open. Companion cells were shown to be highly resistant to freezing injury and less plasmolyzable than phloem parenchyma. Plasmodesmata connected parenchyma to parenchyma, parenchyma to companion cells, and companion cells to sieve elements. Their general absence between parenchyma cells and sieve elements points to a specific role of companion cells in sieve tube functioning. EM studies of these cells revealed an ER system which connects the central core of the plasmodesma to the sieve tube. This system may be responsible for active sucrose transport. Callose was always present on sieve plates of mature functioning sieve elements even with the most rapid killing and fixing possible. Extra callose promoted by heating (45 C) an intact stem segment was found to constrict the sieve pores almost completely. Constriction of plasmodesmata in lateral sieve areas also was evident. Fine structure analysis of the blocking mechanism is in accord with evidence obtained by tracer studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号