首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first stage in termination of chromosome replication in Bacillus subtilis involves arrest of the clockwise fork at the inverted repeat region (IRR), comprising the opposed IRI and IRII sequences, adjacent to the upstream region of the rtp gene, which encodes the replication terminator protein RTP. RTP binds to IRI and IRII. The ability of the IRR and its components to function as terminators, in conjunction with RTP, and their polarity of action have now been tested by the use of plasmids replicating in B. subtilis as unidirectional theta structures and into which potential terminator sequences were inserted in alternate orientations relative to fork movement. When the complete IRR was inserted into such plasmids and the new plasmids transferred into a B. subtilis strain overproducing RTP, it was able to block movement of a replication fork approaching from either direction. IRI and IRII were shown to function as polar terminators, each blocking movement of a fork when it approached from one particular direction but not the other. Furthermore, the polarity of action was in accordance with the IRR being able to operate as a replication fork trap. Thus, a fork approaching the IRR would pass through the first terminator encountered (IRI or IRII) and be halted by the second. The previously observed nonfunctioning of a particular orientation of chromosomal IRR as a fork arrest site probably reflects a limiting level of RTP in the cell. Interestingly, a 21 base-pair core sequence spanning a single RTP binding site within IRI (the 47 base-pair IRI contains 2 binding sites) was unable to arrest a fork approaching from either direction in the plasmid system. This suggests that both binding sites within an IR must be filled in order to function as an arrest site. It is possible that co-operative interaction between adjacent dimers within IRI or IRII provides the necessary conformation for causing fork arrest.  相似文献   

2.
Flexible DNA binding of the BTB/POZ-domain protein FBI-1   总被引:7,自引:0,他引:7  
  相似文献   

3.
A functional DNA replication terminator of Bacillus subtilis contains two overlapping binding sites, A and B, for the replication terminator protein (RTP). A degenerate 17-mer oligonucleotide corresponding to the consensus B site has been used to detect four new terminators in the B. subtilis chromosome, in addition to the previously identified and closely spaced IRI and IRII. All the new terminators lie in the terminus region of the chromosome, on both sides of IRI and IRII, with their positions spanning <1O% of its length. Their DNA sequences are characterized by clearly identifiable A- and B-binding sites. They bind RTP in a manner indistinguishable from IRI, although precise affinities have not been compared. Each new terminator is functional in causing fork arrest when present in a plasmid replicating in B. subtilis . Three of the four were tested for polarity in fork-arrest activity and exhibited the polarity expected. The total of six terminators now identified in B. subtilis have been named TerI-TerVI . TerI and TerII correspond to the previously identified IRI and IRII, respectively. The chromosomal orientations of all but one of the terminators ( TerIV ) have been established and they conform to an arrangement similar to that in Escherichia coli in which two opposed groups of polar terminators provide a replication-fork trap ensuring that the approaching forks meet within a restricted region of the chromosome. The development of a strikingly similar arrangement of terminators in the two organisms, despite the lack of any detectable similarity in their respective DNA terminators and terminator proteins, emphasizes the importance of the replication-fork trap in each case.  相似文献   

4.
Binding of the Tn3 transposase to the inverted repeats of Tn3   总被引:4,自引:0,他引:4  
The transposase protein and the inverted repeat sequences of Tn3 are both essential for Tn3 cointegrate formation and transposition. We have developed two assays to detect site-specific binding of transposase to the inverted repeats: (1) a nitrocellulose filter binding assay in which transposase preferentially retains DNA fragments containing inverted repeat sequences, and (2) a DNase 1 protection assay in which transposase prevents digestion of the inverted repeats by DNase 1. Both assays show that transposase binds directly to linear, duplex DNA containing the inverted repeats. The right inverted repeat of Tn3 binds slightly more strongly than the left one. Site-specific binding requires magnesium but does not require a high energy cofactor.  相似文献   

5.
6.
Tc3 is a member of the Tc1/mariner family of transposable elements. All these elements have terminal inverted repeats, encode related transposases and insert exclusively into TA dinucleotides. We have studied the DNA binding properties of Tc3 transposase and found that an N-terminal domain of 65 amino acids binds specifically to two regions within the 462 bp Tc3 inverted repeat; one region is located at the end of the inverted repeat, the other is located approximately 180 bp from the end. Methylation interference experiments indicate that this N-terminal DNA binding domain of the Tc3 transposase interacts with nucleotides on one face of the DNA helix over adjacent major and minor grooves.  相似文献   

7.
TraM is a DNA binding protein required for conjugative transfer of the self-transmissible IncF group of plasmids, including F, R1, and R100. F TraM binds to three sites in F oriT: two high affinity binding sites, sbmA and sbmB, which are direct repeats of nearly identical sequence involved in the autoregulation of the traM gene; and a lower affinity site, sbmC, an inverted repeat important for transfer, which is situated nearest to the nic site where transfer originates. TraM bound cooperatively to its binding sites at oriT; the presence of sbmA and sbmB increased the affinity for sbmC 10-fold. Bending of oriT DNA by TraM was minimal, suggesting that TraM, a tetramer, was able to loop the DNA when bound to sbmA and sbmB simultaneously. Hydroxyl radical footprinting of DNA of sbmA and sbmC revealed that TraM contacted the DNA within a region previously delineated by DNase I footprinting. TraM protected the CT bases within the sequence CTAG, which occurred at 12-base intervals on the top and bottom strand of sbmA, most consistently with other protected bases. The footprint on sbmC revealed that the predicted inverted repeats were protected by TraM with a pattern that began at the center of the repeats and radiated outward at 11-12 base intervals toward the 5'-ends of either strand. At high protein concentrations, this pattern extended beyond the footprint defined by DNase I, suggesting that the DNA was wrapped around the protein forming a nucleosome-like structure, which could aid in preparing the DNA for transfer.  相似文献   

8.
The segregation of plasmid F of Escherichia coli is highly reliable. The Sop partition locus, responsible for this stable maintenance, is composed of two genes, sopA and sopB and a centromere, sopC, consisting of 12 direct repeats of 43 bp. Each repeat carries a 16-bp inverted repeat motif to which SopB binds to form a nucleoprotein assembly called the partition complex. A database search for sequences closely related to sopC revealed unexpected features that appeared highly conserved. We have investigated the requirements for specific SopB–sopC interactions using a surface plasmon resonance imaging technique. We show that (i) only 10 repeats interact specifically with SopB, (ii) no base outside the 16-bp sopC sites is involved in binding specificity, whereas five bases present in each arm are required for interactions, and (iii) the A-C central bases contribute to binding efficiency by conforming to a need for a purine–pyrimidine dinucleotide. We have refined the SopB–sopC binding pattern by electro-mobility shift assay and found that all 16 bp are necessary for optimal SopB binding. These data and the model we propose, define the basis of the high binding specificity of F partition complex assembly, without which, dispersal of SopB over DNA would result in defective segregation.  相似文献   

9.
The DNA sequence limits of the leading and lagging strands in the arrested clockwise replication fork at the terminus of the Bacillus subtilis chromosome have been investigated. On the basis of hybridization to synthetic oligonucleotides corresponding to known positions in the terminus region sequence it has been shown that neither the leading nor lagging strands, as they approach terC, traverse the distal inverted repeat, IRI. But a small fraction of the leading strands pass through the proximal inverted repeat, IRII. This is consistent with IRI being the functional inverted repeat in arresting the clockwise fork. But most of the forks appear to stop at least 100 nucleotides short of IRI, and at various positions extending over a distance of at least 100 nucleotides.  相似文献   

10.
11.
F Olasz  T Farkas  J Kiss  A Arini    W Arber 《Journal of bacteriology》1997,179(23):7551-7558
In the present study, we demonstrate that the terminal inverted repeats of the Escherichia coli insertion sequence IS30 are functional target sites for the transposition of the (IS30)2 dimer, which represents an intermediate structure in the transposition of IS30. Comparative analysis of various target regions revealed that the left and right ends differ in their "attractivity." In our experiments, the joined left and right ends, i.e., the (IS30)2 intermediate structure, was found to be the most preferred target. It was also shown that flanking sequences can influence the target activity of the terminal repeats. The functional part of the target region was localized in the inverted repeats by means of mutational analysis, and it corresponds to the binding site of IS30 transposase. Insertion of 1 bp into the right inverted repeat resulted in unusual target duplication accompanied by gene conversion. The choice of the terminal inverted repeats as targets in transposition leads to the reconstruction of the (IS30)2 structure, which may induce a cascade of further rearrangements. Therefore, this process can play a role in the evolution of the genome.  相似文献   

12.
A Koff  P Tegtmeyer 《Journal of virology》1988,62(11):4096-4103
To investigate early initiation events in the replication of herpes simplex virus type 1, we analyzed interactions of proteins from infected cell extracts with the small origin of herpes simplex virus type 1 (oris1). Using the mobility shift assay, we detected two origin-specific binding interactions. We characterized the more prominent interaction on both strands of the DNA duplex with DNase I protection and methylation interference assays. Protein binding protects 17 bases of DNA on each strand from DNase I. These sequences are located at the left end of the central palindrome and are shifted four bases relative to one another. On the basis of the DNase protection pattern, we believe this protein to be related to the origin-binding protein defined by Elias et al. (P. Elias, M.E. O'Donnell, E.S. Mocarski, and I.R. Lehman, Proc. Natl. Acad. Sci. 83:6322-6326, 1986). Our DNase I footprint shows both strong and weak areas of protection. The regions strongly protected from DNase I align with the essential contact residues identified by interference footprinting. Methylation interference defines a small binding domain of 8 base pairs: 5'-GTTCGCAC-3'/3'-CAAGCGTG-5'. This recognition sequence contains two inverted 5'-GT(T/G)CG-3' repeats which share a 2-base overlap; thus, the origin-binding protein probably binds to the inverted repeats as a dimer.  相似文献   

13.
The interaction between the DNA replication terminator, IRI, of Bacillus subtilis and its cognate replication terminator protein (RTP) has been examined by the technique of missing nucleoside interference (MNI). IRI contains two adjacent binding sites (A and B) for RTP dimers. The B site is proximal to the replication fork arrest site. The present results have shown that nucleoside contacts with RTP in the two sites are very different. There are more extensive contacts of nucleosides in both strands of the B site with RTP compared with the A site. The data also strongly suggest that filling by RTP of the B site occurs first and is needed for subsequent co-operative filling of an overlapping A site. The A site alone binds RTP poorly. The findings are consistent with interaction occurring between RTP dimers bound to adjacent sites of IRI, which would explain why RTP bound to the B site alone cannot cause replication fork arrest.  相似文献   

14.
An 864 bp EcoRI fragment carrying oriVR751, the vegetative replication origin of broad host range IncP plasmid R751, was cloned and sequenced. Only the trfA gene of the IncP plasmid RK2 was required in trans for the function of oriVR751. The sequence of oriVR751 showed 65% overall homology to that of oriVRK2 determined previously. Highly conserved regions of probable functional importance were apparent, including two sets of direct repeats postulated to be interaction sites for the trfA protein(s), a putative dnaA protein binding site and a downstream inverted repeat of unknown function.  相似文献   

15.
16.
The DnrI protein, essential for the biosynthesis of daunorubicin in Streptomyces peucetius , was purified almost to homogeneity from dnrI expression strains of Escherichia coli and S. peucetius through several steps of chromatography. The proteins purified from both organisms had identical chromatographic and electrophoretic behaviour. Purified His-tagged or native DnrI was used to conduct DNA-binding assays by gel mobility-shift analysis, and the results showed no significant difference in the DNA-binding activity of native or His-tagged proteins. DnrI binds specifically to DNA segments containing the intergenic regions separating the putative dnrG–dpsABCD and dpsEF operons, and the dnrC gene and dnrDKPSQ operon. DNase I footprinting assays indicated that the DNA-binding sites for DnrI extended from upstream of the −10 to −35 regions of the dnrG or dpsE promoters to include about 65 bp of the dnrG – dpsE intergenic region and about 80 bp of the dnrC – dnrD intergenic region. Both binding sites contain imperfect inverted repeat sequences of 6–10 bp with a 5'-TCGAG-3' consensus sequence that was present in 4 out of 10 other promoter regions in the cluster of daunorubicin biosynthesis genes.  相似文献   

17.
Characterization of the oriT region of the IncFV plasmid pED208   总被引:4,自引:2,他引:2  
DNA sequence analysis of a 2.2kb EcoRI-HindIII fragment from pED208, the derepressed form of the IncFV plasmid Folac, revealed sequences highly homologous to the oriT region, traM, and traJ genes of other IncF plasmids. The TraM protein was purified and immunoblots of fractionated cells containing pED208 or Folac showed that TraM was predominantly in the cytoplasm. Using DNA retardation assays and the DNase I footprinting technique, the TraM protein was found to bind to three large motifs in the oriT region: (I) an inverted repeat, (II) two direct repeats, and (III) the traM promoter region. These three footprint regions contained a Hinfl-like sequence (GANTC) that appeared 16 times, spaced 11-12 bp (or multiples thereof) apart, suggesting that TraM protein binds in a complex manner over this entire region.  相似文献   

18.
The NarL and NarP proteins are homologous response regulators of Escherichia coli that control the expression of several operons in response to nitrate and nitrite. A consensus heptameric NarL DNA-binding sequence has been identified, and previous observations suggest that the NarP protein has a similar sequence specificity. However, some operons are regulated by NarL alone, whereas others are controlled by both NarL and NarP. In this study, DNase I footprinting experiments with the fdnG , nirB and nrfA control regions revealed that NarP only binds to heptamer sequences organized as an inverted repeat with a 2 bp spacing (7–2–7 sites). The NarL protein also binds to these 7–2–7 sites but, unlike NarP, also recognizes heptamers in other arrangements. These results provide an explanation for the regulation of some operons by NarL alone and for the different effects of NarL and NarP at common target operons, such as fdnG and nrfA . To investigate this differential DNA binding further, derivatives of the nrfA control region were constructed in which the spacing of the 7–2–7 heptamers was increased (7– n –7 constructs). Increasing the spacing to four or more basepairs abolished NarP binding and significantly reduced NarL binding. The NarL protein also had a reduced binding affinity for heptamers adjacent to the 7– n –7 heptamer pair, suggesting a decrease in cooperative interactions. In conclusion, we propose that 7–2–7 sites are preferred by both NarL and NarP. NarL can also recognize other binding site arrangements, an ability that appears to be lacking in NarP.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号