首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preeclampsia is characterized by pregnancy-induced hypertension accompanied with protein urea and generalized edema. Preeclampsia develops during the second half of pregnancy and resolves postpartum promptly, implicating the placenta as a primary cause in the disorder. Normal pregnancy is associated with reductions in arterial pressure and attenuated pressor response to exogenous infused angiotensin II (ANG II). In contrast, women with preeclampsia show the similar sensitivity to the pressor effect of ANG II as do non-pregnant women. To elucidate the involvement of placental peptidases associated with renin–angiotensin systems, we determined the localization of angiotensin-converting enzyme (ACE) and aminopeptidase A (AP-A), ANG II degrading enzyme, in the placenta and compared the expression of mRNA and protein in uncomplicated and preeclamptic placenta. In addition, AP-A expression in trophoblastic cells treated with ANG II and ACE expression in HUVECs under hypoxic condition were analyzed, respectively. The expression of both peptidases in the preeclamptic placenta was significantly higher than those from uncomplicated. ACE was primarily localized to venous endothelial cells of stem villous whereas AP-A expression was recognized in the trophoblast and pericytes of fetal arterioles and venules within stem villous. Hypoxia induced ACE expression in HUVECs while both hypoxia and ANG II evoked AP-A expression in trophoblast. These results suggested that hypoxic condition in preeclampsia induces ACE activation in feto-placental unit to maintain the fetal hemodynamics and placental AP-A plays a role as a component of the barrier of ANG II between mother and fetus.  相似文献   

2.
Preeclampsia is a high-prevalence systemic pregnancy disorder associated with maternal and foetal mortality. Its pathogenesis is unknown, but it is thought that oxidative stress and endothelial dysfunction may play a fundamental role. Von Willebrand factor (vWF), a marker of endothelial cell injury, can be found in different cells and zones of the placenta. To determine the differential immunoexpression of vWF at different tissue types of preeclamptic placenta and endothelial dysfunction markers at maternal serum of preeclamptic pregnancies. A case–control study was performed on a population of pregnant women with preeclampsia (n = 14), and normal pregnancies (n = 8). Placental and blood plasma samples were withdrawn at delivery. Immunohistochemical vWF expression in the placental tissue was determined. Endothelial dysfunction was assessed through plasminogen activator inhibitor (PAI) 1 and 2 ratio and vWF concentration in maternal plasma. P values less than 0.05 were considered statistically significant. Preeclamptic women showed increased plasma PAI-1/PAI-2 ratio (P < 0.05). There was diminished placental vWF expression in syncytiotrophoblast and increased in the intervillous space of preeclamptic placentas (P < 0.05). No significant differences in vWF expression were found in the villous endothelium and stroma, but it was significantly higher in maternal plasma (P < 0.05). In preeclampsia occurs endothelial damage and placental cell injury. Cell damage in syncytiotrophoblast that occurs in preeclampsia could liberate vWF from syncytiotrophoblast to the placental intervillous space, and this may have pathogenic implications.  相似文献   

3.
Preeclampsia is a serious complication of pregnancy, which affects 2–8% of all pregnancies and is one of the leading causes of maternal and perinatal mortality and morbidity worldwide. To better understand the molecular mechanisms involved in pathological development of placenta in preeclampsia, we used high-resolution LC-MS/MS technologies to construct a comparative N-glycoproteomic and phosphoproteomic profiling of human placental plasma membrane in normal and preeclamptic pregnancies. A total of 1027 N-glyco- and 2094 phospho- sites were detected in human placental plasma membrane, and 5 N-glyco- and 38 phospho- proteins, respectively, with differentially expression were definitively identified between control and preeclamptic placental plasma membrane. Further bioinformatics analysis indicated that these differentially expressed proteins correlate with several specific cellular processes occurring during pathological changes of preeclamptic placental plasma membrane.  相似文献   

4.
5.
BACKGROUND: It is well known that the acceptance of the fetoplacental unit in human pregnancy requires maternal immune tolerance, which is thought to be regulated locally by the placenta. Therefore an anti-inflammatory cytokine such as IL-10 plays a critical role in different pregnancy disorders including preeclampsia. In the present study, we examined the expression of both proinflammatory (TNF-alpha, IL-1beta, IL-2) and immunoregulatory (IL-6, IL-10) cytokines from normal term and preeclamptic patients in human trophoblast cultures. METHODS: Eleven patients with preeclampsia and 11 patients with a normal pregnancy at term were included in the study. Trophoblast cells isolated from placentas were cultured up to 48 h under standard tissue culture conditions and cytokine release was determined by ELISA. IL-10 synthesis was significantly decreased in the third trimester in preeclamptic patients in comparison with the control group. RESULTS: There were no significant differences in IL-1beta, IL-2, IL-6 or TNF-alpha expression but a significant alteration in IL-10 release in trophoblast cultures in vitro in term placentas from preeclamptic patients compared with normal pregnancy. CONCLUSIONS: Because IL-10 is a potent regulator of anti-inflammatory immune response these abnormalities may be associated with the inadequate placental development in preeclampsia.  相似文献   

6.
Preeclampsia (PE) is a heterogeneous syndrome affecting 2% to 8% of all pregnancies and is the world’s leading cause of fetal and maternal morbidity and mortality. In many cases of PE, shallow trophoblast invasion results in inappropriate maternal spiral artery remodeling and impaired placental function. Multiple genes have been implicated in trophoblast invasion, among which are KiSS-1 and GPR54. The gene product of KiSS-1 is metastin, which is a ligand for the receptor GPR54. Both metastin and GPR54 are expressed in the placenta of normal pregnancy and have been implicated in modulating trophoblast invasion through inhibiting migration of trophoblast cells. We have previously reported that the expression level of KiSS-1 was higher in trophoblasts from women with preeclampsia as compared to normal controls. Here, using quantitative RT-PCR, Western blot analysis and immunohistochemistry, we extend our analysis to demonstrate that elevated KiSS-1 expression occurs only in early-onset preeclampsia (ePE) and not late-onset preeclampsia (lPE). However, no difference in the expression levels of GPR54 is observed between ePE, lPE, and normal controls. Further, we show that KiSS-1 expression is also increased in placenta of intrauterine death and birth asphyxia in comparison to normal newborns of ePE and lPE. Our findings suggest that aberrant upregulation of KiSS-1 expression may contribute to the underlying mechanism of ePE as well as birth asphyxia.  相似文献   

7.
Preeclampsia (PE) is an extremely serious condition in pregnant women and the leading cause of maternal and fetal morbidity and mortality. Despite active research, the etiological factors of this disorder remain elusive. The increased release of 15-hydroxyeicosatetraenoic acid (15-HETE) in the placenta of preeclamptic patients has been studied, but its exact role in PE pathogenesis remains unknown. Mounting evidence shows that PE is associated with placental hypoxia, impaired placental angiogenesis, and endothelial dysfunction. In this study, we confirmed the upregulated expression of hypoxia-inducible factor 1α (HIF-1α) and 15-lipoxygenase-1/2 (15-LO-1/2) in patients with PE. Production of the arachidonic acid metabolite, 15-HETE, also increased in the preeclamptic placenta, which suggests enhanced activation of the HIF-1α–15-LO–15-HETE axis. Furthermore, this study is the first to show that the umbilical cord of preeclamptic women contains significantly higher serum concentrations of 15-HETE than that of healthy pregnant women. The results also show that expression of 15-LO-1/2 is upregulated in both human umbilical vein endothelial cells (HUVECs) collected from preeclamptic women and in those cultured under hypoxic conditions. Exogenous 15-HETE promotes the migration of HUVECs and in vitro tube formation and promotes cell cycle progression from the G0/G1 phase to the G2/M + S phase, whereas the 15-LO inhibitor, NDGA, suppresses these effects. The HIF-1α/15-LO/15-HETE pathway is therefore significantly associated within the pathology of PE.  相似文献   

8.
9.
A deficiency of placental IL-10 in preeclampsia.   总被引:30,自引:0,他引:30  
Accommodation of the fetoplacental unit in human pregnancy requires maternal immune tolerance to this "semiallograft". Local antiplacental immunity is modified by synthesis of uncommon histocompatibility Ags (e.g., HLA-G), growth factors, and cytokines by the placenta. Placental interleukins have been identified in reproductive tissues, but their roles in adaptive maternal immunity and determining term pregnancy outcomes have not been fully clarified. This study examined the distribution of IL-10 and TNF-alpha staining in term placentas. Women with proteinuric hypertension (PE, n = 10) were compared with an age-matched group with normal pregnancy (NP, n = 14) and gestational hypertension (GH, n = 6). Using immunohistochemistry of parrafin-fixed tissues, trophoblast cells were identified by cytokeratin 7 and cytokeratin 18 staining. The cytokine binding of villous trophoblast cells was scored depending on the extent of circumferential cytoplasm staining (<25%; intermediate or >75%). The cytokine positive decidual cells were scored as a percentage of total extravillous trophoblast cells. There was a reduction in villous IL-10 immunostaining compared with normal term placenta (PE, 10.2 +/- 1.1, mean +/- SEM; NP, 14.07 +/- 1.16 Mann-Whitney U test; p = 0.02). In these patients, there was an increase in TNF-alpha immunostaining. Sparse endovascular extravillous trophoblast cells demonstrated nuclear IL-10 staining in 30% of patients with preeclampsia. Serum IL-10 was diminished in women with preeclampsia compared with normal pregnancy. In conclusion, villous trophoblast demonstrated diminished immunostaining of IL-10 in preeclampsia. This abnormality may be associated with heightened maternal antifetal immunity and therefore inadequate placental development in preeclampsia.  相似文献   

10.
In early pregnancy, trophoblasts and the fetus experience hypoxic and low-nutrient conditions; nevertheless, trophoblasts invade the uterine myometrium up to one third of its depth and migrate along the lumina of spiral arterioles, replacing the maternal endothelial lining. Here, we showed that autophagy, an intracellular bulk degradation system, occurred in extravillous trophoblast (EVT) cells under hypoxia in vitro and in vivo. An enhancement of autophagy was observed in EVTs in early placental tissues, which suffer from physiological hypoxia. The invasion and vascular remodeling under hypoxia were significantly reduced in autophagy-deficient EVT cells compared with wild-type EVT cells. Interestingly, soluble endoglin (sENG), which increased in sera in preeclamptic cases, suppressed EVT invasion by inhibiting autophagy. The sENG-inhibited EVT invasion was recovered by TGFB1 treatment in a dose-dependent manner. A high dose of sENG inhibited the vascular construction by EVT cells and human umbilical vein endothelial cells (HUVECs), meanwhile a low dose of sENG inhibited the replacement of HUVECs by EVT cells. A protein selectively degraded by autophagy, SQSTM1, accumulated in EVT cells in preeclamptic placental biopsy samples showing impaired autophagy. This is the first report showing that impaired autophagy in EVT contributes to the pathophysiology of preeclampsia.  相似文献   

11.
The proliferation of villous trophoblast in the human placenta was estimated throughout normal gestation and in term placentae from preeclamptic and smoking mothers by two different methods. These were: 1) labeling of DNA producing cells by bromodeoxyuridine (BrdU) followed by immunohistochemistry using a monoclonal anti-BrdU antibody, and 2) immunohistochemical identification of all proliferating cells by the monoclonal antibody Ki67. Both methods revealed comparable results. In uncomplicated pregnancies there was a remarkable decrease in the labeling indices from early gestation to term. This was the result of a diminution of the number of Langhans' cells, although the cell division rate within the Langhans' cell layer remained nearly constant throughout gestation. A prolongation of the cell cycle in the cytotrophoblast cells at term was indicated by an increase in the Ki67/BrdU ratio. Compared with normal term placentae, there was an increase in the trophoblast proliferation rate in preeclampsia, but not in placentae from smoking mothers. Moreover, the number of Langhans' cells was diminished in placentae from smokers. The results indicate that there are different pathogenetic mechanisms of placental impairment in preeclampsia and in maternal smoking. In preeclampsia an injury to the syncytiotrophoblast seems to lead to a repair hyperplasia of the cytotrophoblast, whereas in maternal smoking, there seems to be a direct toxic effect on the cytotrophoblastic cells.  相似文献   

12.
The purpose of this study was to examine alterations in placental expression of dipeptidyl peptidase IV (DPPIV). The localization of DPPIV was compared in control and preeclamptic placentas. Enzyme activity, mRNA, and protein expression were also measured. In term placentas, DPPIV was expressed preferentially in the fetal vascular endothelial cells within stem villi and only weakly in the villous stromal cells. DPPIV activity in control placentas showed no remarkable changes throughout gestation. Levels of activity in samples from normotensive control cases and women having preeclampsia with or without intrauterine growth restriction were 11.8 +/- 2.1, 13.4 +/- 1.1, and 15.3 +/- 0.62 pmol pNA/min/mg protein, respectively. The preeclamptic placentas with intrauterine growth restriction thus showed significantly higher levels of activity than the controls (p < 0.05). We propose that placental DPPIV influences fetal metabolism via the degradation of fetoplacental circulating bioactive peptides, including incretins, resulting in the regulation of fetal growth.  相似文献   

13.
Preeclampsia is a pregnancy specific hypertensive disease that confers significant maternal and fetal risks. While the exact pathophysiology of preeclampsia is unknown, it is widely accepted that placental dysfunction is mechanistically involved. Recent studies reported aberrant expression of placenta-specific microRNAs (miRNAs) in preeclampsia including miR-517a/b and miR-517c. Using placental biopsies from a preeclampsia case-control study, we found increased expression of miR-517a/b in term and preterm preeclampsia vs controls, while, miR-517c was increased only in preterm preeclampsia vs controls. To determine if miR-517a/b and miR-517c are regulated by hypoxia, we treated first trimester primary extravillous trophoblast cells (EVTs) with a hypoxia mimetic and found both were induced. To test for a mechanistic role in placental function, we overexpressed miR-517a/b or miR-517c in EVTs which resulted in decreased trophoblast invasion. Additionally, we found that miR-517a/b and miR-517c overexpression increased expression of the anti-angiogenic protein, sFLT1. The regulation of sFLT1 is mostly unknown, however, TNFSF15, a cytokine involved in FLT1 splicing, was also increased by miR-517a/b and miR-517c in EVTs. In summary, we demonstrate that miR-517a/b and miR-517c contribute to the development of preeclampsia and suggest that these miRNAs play a critical role in regulating trophoblast and placental function.  相似文献   

14.
Preeclampsia is a pregnancy-specific disorder characterised by hypertension and proteinuria occurring after the 20th week of gestation. Delivery of the placenta results in resolution of the condition, implicating the placenta as a central culprit in the pathogenesis of preeclampsia. In preeclampsia, an inadequate placental trophoblast invasion of the maternal uterine spiral arteries results in poor placental perfusion, leading to placental ischaemia. This could result in release of factors into the maternal circulation that cause widespread activation or dysfunction of the maternal endothelium. Factors in the maternal circulation might induce oxidative stress and/or elicit an inflammatory response in the maternal endothelium, resulting in the altered expression of several genes involved in the regulation of vascular tone. This review addresses the potential circulating factors and the molecular mechanisms involved in the alteration of vascular function that occurs in preeclampsia.  相似文献   

15.
16.
17.
The presence of pro-coagulant and anti-coagulant components of the placental vascular endothelium and syncytiotrophoblast are essential for homeostasis. Vascular endothelium prevents blood clot formation in vivo by involving a cell surface thrombin-binding glycoprotein, thrombomodulin (TM), that activates plasma anti-coagulant protein C. The TM levels increase during pregnancy, but the fibrinolytic capacity diminishes. Since vascular lesions with placental coagulation disorders can be associated with preeclampsia (PE), we hypothesized that TM expression in the stem villous vasculature and syncytiotrophoblast of the placenta are impaired in PE. Plasma and placental tissue samples were collected from PE (n=12) and normotensive pregnant patients (n=11). Patient's gestational age was 35.7+/-1.2 (normotensive) and 30.6+/-1.5 weeks (PE). Blood samples were drawn 30 min before delivery. Serum PAI-1 and PAI-2 antigens were determined by enzyme-linked immunoabsorbent assay (ELISA). A monoclonal antibody specific for TM was used for immunohistochemical tissue staining (ABC) and the staining was quantified by semi quantitative scores. Results show no intensity differences at the apical syncytiotrophoblast between the two groups. However, in preeclamptic placenta, TM expression diminished in the endothelium of the stem villi arteries and increased in the perivascular and stromal myofibroblats in cases of severe PE. TM changes were associated with an increased PAI-1/PAI-2 ratio. It is suggested that in severe PE, the decreased placental blood flow may be due to structural and functional impairment of the endothelium of the stem villi vessels and the surrounding perivascular and stromal myofibroblast, by increasing TM expression which may modulate fetal blow flow in the villous tree.  相似文献   

18.
The successful transformation of uterine spiral arteries by invasion trophoblasts is critical for the formation of the human hemochorial placenta. Placental trophoblast migration and invasion are well regulated by various autocrine/paracrine factors at maternal–fetal interface. Human placental multipotent mesenchymal stromal cells (hPMSCs) are a subpopulation of villous mesenchymal cells and have been shown to produce a wide array of soluble cytokines and growth factors including HGF (hepatocyte growth factor). The function of hPMSCs in placental villous microenvironment has not been explored. The interaction between hPMSCs and trophoblasts was proposed in vitro in a recent article. HGF produced by hPMSCs was able to engage c-Met receptor on trophoblast and induced the trophoblast cAMP expression. The cAMP activated PKA, which in turn, signaled to Rap1 and led to integrin β1 activation. The total integrin β1 protein expression by trophoblasts was not affected by HGF stimulation. Hypoxia downregulated HGF expression by hPMSCs. HGF and PKA activator 6-Bnz-cAMP increased trophoblast adhesion and migration that were inhibited by PKA inhibitor H89 or Rap1 siRNA. Thus, hPMSCs-derived paracrine HGF can regulate trophoblast migration during placentation. These findings provided insight revealing at least one mechanism by which hPMSCs implicated in the development of preeclampsia.  相似文献   

19.
IntroductionPreeclampsia is a maternal hypertensive disorder with uncertain etiology and a leading cause of maternal and fetal mortality worldwide, causing nearly 40% of premature births delivered before 35 weeks of gestation. The first stage of preeclampsia is characterized by reduction of utero-placental blood flow which is reflected in high blood pressure and proteinuria during the second half of pregnancy. In human placenta androgens derived from the maternal and fetal adrenal glands are converted into estrogens by the enzymatic action of placental aromatase. This implies that alterations in placental steroidogenesis and, subsequently, in the functionality or bioavailability of placental aromatase may be mechanistically involved in the pathophysiology of PE.MethodsSerum samples were collected at 32–36 weeks of gestation and placenta biopsies were collected at time of delivery from PE patients (n = 16) and pregnant controls (n = 32). The effect of oxygen tension on placental cells was assessed by incubation JEG–3 cells under 1% and 8% O2 for different time periods, Timed-mated, pregnant New Zealand white rabbits (n = 6) were used to establish an in vivo model of placental ischemia (achieved by ligature of uteroplacental vessels). Aromatase content and estrogens and androgens concentrations were measured.ResultsThe protein and mRNA content of placental aromatase significantly diminished in placentae obtained from preeclamptic patients compared to controls. Similarly, the circulating concentrations of 17-β-estradiol/testosterone and estrone/androstenedione were reduced in preeclamptic patients vs. controls. These data are consistent with a concomitant decrease in aromatase activity. Aromatase content was reduced in response to low oxygen tension in the choriocarcinoma JEG–3 cell line and in rabbit placentae in response to partial ligation of uterine spiral arteries, suggesting that reduced placental aromatase activity in preeclamptic patients may be associated with chronic placental ischemia and hypoxia later in gestation.ConclusionsPlacental aromatase expression and functionality are diminished in pregnancies complicated by preeclampsia in comparison with healthy pregnant controls.  相似文献   

20.
Preeclampsia is a pregnancy-specific disorder characterized by hypertension and excess protein excretion in the urine. It is an important cause of maternal and fetal morbidity and mortality worldwide. The disease is almost exclusive to humans and delivery of the pregnancy continues to be the only effective treatment. The disorder is probably multifactorial, although most cases of preeclampsia are characterized by abnormal maternal uterine vascular remodeling by fetally derived placental trophoblast cells. Numerous in vitro and animal models have been used to study aspects of preeclampsia, the most common being models of placental oxygen dysregulation, abnormal trophoblast invasion, inappropriate maternal vascular damage and anomalous maternal-fetal immune interactions. Investigations into the pathophysiology and treatment of preeclampsia continue to move the field forward, albeit at a frustratingly slow pace. There remains a pressing need for novel approaches, new disease models and innovative investigators to effectively tackle this complex and devastating disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号