首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The short-circuit photoresponse of model membranes containing bacteriorhodopsin to short (35 ms) and long (3.5 s) light pulses is described. It is shown that if the light pulse is short compared with the charging and discharging times of the model membrane, the temporal response of the light-driven proton pump can be measured. Photoactive planar model membranes were formed both from biomolecular lipid membranes and from solid 6-micrometers thick Teflon septa coated with lipid and bacteriorhodopsin. The kinetic response of the pump is independent of the planar model membrane system in which it is incorporated. Experimental evidence indicates that the shape of the leading and trailing edges of the photoresponse curve for the pump deviates from simple exponential behavior. The short-circuit photoresponse of spinach chloroplast in a planar model membrane was also studied for comparison purposes.  相似文献   

2.
Membrane vesicles from a red mutant of Halobacteriumhalobium R1 accumulate protons when illuminated causing the pH of the suspension to rise. Sodium is extruded from the vesicles and a membrane potential is formed. This potential and the proton uptake are abolished by valinomycin if K+ is present. In contrast, Na+-efflux is uninhibited by valinomycin even though no membrane potential is detectable and H+ influx does not occur. Bis (hexafluoracetonyl)acetone (1799) stimulates proton uptake but does not abolish membrane potential. We propose that a light-dependent sodium pump is present. Passive proton uptake occurs in response to the electrical gradient created by this light-driven Na+ pump in contrast to the active proton, and passive Na+ flux that occurs in response to the light-driven proton pump described in vesicles of the parent strain of H.halobium R1.  相似文献   

3.
The purple membrane of Halobacterium halobium acts as a light-driven proton pump, ejecting protons from the cell interior into the medium and generating electrochemical proton gradient across the cell membrane. However, the type response of cells to light as measured with a pH electrode in the medium consists of an initial net inflow of protons which subsides and is then replaced by a net outflow which exponentially approaches a new lower steady state pH level. When the light turned off a small transient acidification occurs before the pH returns to the original dark level. We present experiments suggesting that the initial inflow of protons is triggered by the beginning ejection of protons through the purple membrane and that the initial inflow rate is larger than the continuing light-driven outflow. When the initial inflow has decreased exponentially to a small value, the outflow dominates and causes the net acidification of the medium. The initial inflow is apparently driven by a pre-existing electrochemical gradient across the membrane, which the cells can maintain for extended times in the absence of light and oxygen. Treatments which collapse this gradient such as addition of small concentrations of uncouplers abolish the initial inflow. The triggered inflow occurs through the ATPase and is accompanied by ATP synthesis. Inhibitors of the ATPase such as N,N'-dicyclohexylcarbodiimide (DCCD) inhibit ATP synthesis and abolish the inflow. They also abolish the transient light-off acidification, which is apparently caused by a short burst of ATP hydrolysis before the enzyme is blocked by its endogenous inhibitor. Similar transient inflows and outflows of protons are also observed when anaerobic cells are exposed to short oxygen pulses.  相似文献   

4.
P R Maycox  T Deckwerth    R Jahn 《The EMBO journal》1990,9(5):1465-1469
Active accumulation of neurotransmitters by synaptic vesicles is an essential component of the synaptic transmission cycle. Isolated vesicles show energy-dependent uptake of several transmitters by processes which are apparently mediated by a proton electrochemical potential across the vesicle membrane. Although this energy gradient is probably generated by a proton ATPase, the functional separation of ATP cleavage and transmitter uptake activity has only been shown clearly for monoamine transport. We report here that the light-driven proton pump, bacteriorhodopsin, can replace the endogenous proton ATPase in proteoliposomes reconstituted from vesicular detergent extracts. The system shows light-dependent uptake of glutamate with properties very similar to those observed in intact vesicles, e.g. chloride dependence or stimulation by NH4+. Our experiments show that the proton pump and the glutamate transporter are separate entities and provide a powerful tool for further characterization of the glutamate carrier.  相似文献   

5.
The light-driven proton pump current generated by bacteriorhodopsin reconstituted in asymmetric planar bilayer membranes was investigated. The current-voltage dependence was found to be nonlinear and can be approximated by an exponential at least below +50 mV. The current changed e-fold when the membrane potential was changed by 80 mV. The voltage dependence was analyzed in terms of a barrier model. This analysis revealed an effective displacement of 0.63 elementary charges across the membrane during the rate-limiting step. Comparison of this value with the results from flash-induced photovoltage signals suggests that one proton is pumped per cycle.  相似文献   

6.
The purple membrane of Halobacterium halobium acts as a light-driven proton pump, ejecting protons from the cell interior into the medium and generating an electrochemical proton gradient across the cell membrane. However, the typical response of cells to light as measured with a pH electrode in the medium consists of an initial net inflow of protons which subsides and is then replaced by a net outflow which exponentially approaches a new lower steady state pH level. When the light is turned off a small transient acidification occurs before the pH returns to the original dark level. We present experiments suggesting that the initial inflow of protons is triggered by the beginning ejection of protons through the purple membrane and that the initial inflow rate is larger than the continuing light-driven outflow. When the initial inflow has decreased exponentially to a small value, the outflow dominates and causes the net acidification of the medium.The initial inflow is apparently driven by a pre-existing electrochemical gradient across the membrane, which the cells can maintain for extended times in the absence of light and oxygen. Treatments which collapse this gradient such as addition of small concentrations of uncouplers abolish the initial inflow.The triggered inflow occurs through the ATPase and is accompanied by ATP synthesis. Inhibitors of the ATPase such as N,N′-dicyclohexylcarbodiimide (DCCD) inhibit ATP synthesis and abolish the inflow. They also abolish the transient light-off acidification, which is apparently caused by a short burst of ATP hydrolysis before the enzyme is blocked by its endogenous inhibitor.Similar transient inflows and outflows of protons are also observed when anaerobic cells are exposed to short oxygen pulses.  相似文献   

7.
Bacteriorhodopsin (bR), a membrane protein that can generate a light-driven proton pump, was successfully reconstituted into vesicles composed of an artificial cyclic lipid that mimics archaeal membrane lipids. Unlike reconstituted bR in 1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles, the net topology and structure of bR molecules in cyclic lipid vesicles are identical to those in the native purple membrane of Halobacterium salinarum.  相似文献   

8.
1. Photoinduced generation of electric current by bacteriorhodopsin, incorporated into the planar phospholipid membrane, has been directly measured with conventional electrometer techniques. 2. Two methods for bacteriorhodopsin incorporation have been developed: (a) formation of planar membrane from a mixture of decane solution of phospholipids and of the fraction of violet fragments of the Halobacterium halobium membrane (bacteriorhodopsin sheets), and (b) adhesion of bacteriorhodopsin-containing reconstituted spherical membranes (proteoliposomes) to the planar membrane in the presence of Ca2+ or some other cations. In both cases, illumination was found to induce electric current generation directed across the planar membrane, an effect which was measured by macroelectrodes immersed into electrolyte solutions on both sides of the membrane. 3. The maximal values of the transmembrane electric potential were of about 150 mV at a current of about 10(-11) A. The electromotive force measured by means of counterbalancing the photoeffect by an external battery, was found to reach the value of 300 mV. 4. The action spectrum of the photoeffect coincides with the bacteriorhodopsin absorption spectrum (maximum about 570 nm). 5. Both components of the electrochemical potential of H+ ions (electric potential and delta pH) across the planar membrane affect the bacteriorhodopsin photoelectric response in a fashion which could be expected if bacteriorhodopsin were a light-dependent electrogenic proton pump. 6. La3+ ions were shown to inhibit operation of those bacteriorhodopsin which pump out H+ ions from the La3+-containing compartment. 7. The photoeffect, mediated by proteoliposomes associated with thick planar membrane, is decreased by gramicidin A at concentrations which do not influence the planar membrane resistance in the light. On the contrary, a protonophorous uncoupler, trichlorocarbonylcyanidephenylhydrazone, decreases the photoeffect only if it is added at a concentration lowering the light resistance. The dark resistance is shown to be higher than the light one, and decreases to the light level by gramicidin. 8. A simple equivalent electric scheme consistent with the above results has been proposed.  相似文献   

9.
We have studied the photoactivity of a system consisting of large, planar, essentially solvent free bilayers bearing adsorbed cell-envelope vesicles prepared from Halobacterium halobium (strain L 33). The system was made conductive by addition of a proton carrier (SF-6847). We observed photocurrents which were linearly dependent upon transmembrane voltage. Current-voltage curves were found to be well described by an equivalent circuit with the following significant parameters: planar bilayer conductance, planar bilayer-vesicle contact area conductance, cell-envelope vesicle conductance, and chloride pump equivalent voltage-generator potential. These parameters are uniquely obtained as a result of a few independent current measurements. The stationary photovoltage was dependent upon chloride concentration, and from this dependence an active transport (pump) affinity of the system for chloride was calculated to be about 50 mM.  相似文献   

10.
Fusion of multilamellar phospholipid vesicles with planar phospholipid bilayer membranes was monitored by the rate of appearance in the planar membrane of an intrinsic membrane protein present in the vesicle membranes. An essential requirement for fusion is an osmotic gradient across the planar membrane, with the cis side (the side containing the vesicles) hyperosmotic to the opposite (trans) side; for substantial fusion rates, divalent cation must also be present on the cis side. Thus, the low fusion rates obtained with 100 mM excess glucose in the cis compartment are enhanced orders of magnitude by the addition of 5-10 mM CaCl2 to the cis compartment. Conversely, the rapid fusion rates induced by 40 mM CaCl2 in the cis compartment are completely suppressed when the osmotic gradient (created by the 40 mM CaCl2) is abolished by addition of an equivalent amount of either CaCl2, NaCl, urea, or glucose to the trans compartment. We propose that fusion occurs by the osmotic swelling of vesicles in contact with the planar membrane, with subsequent rupture of the vesicular and planar membranes in the region of contact. Divalent cations catalyze this process by increasing the frequency and duration of vesicle-planar membrane contact. We argue that essentially this same osmotic mechanism drives biological fusion processes, such as exocytosis. Our fusion procedure provides a general method for incorporating and reconstituting transport proteins into planar phospholipid bilayer membranes.  相似文献   

11.
Proteorhodopsin (PR) genes are widely distributed among marine prokaryotes and functions as light-driven proton pump when expressed heterologously in Escherichia coli, suggesting that light energy passing through PR may be substantial in marine environment. However, there are no data on PR proton pump activities in native marine bacteria. Here, we demonstrate light-driven proton pump activity (c. 124 H(+) PR(-1) min(-1) ) in recently isolated marine Flavobacteria. Among 75 isolates, 38 possessed the PR gene. Illumination of cell suspensions from all eight tested strains in five genera triggered marked pH drops. The action spectrum of proton pump activity closely matched the spectral distribution of the sea surface green light field. Addition of hydroxylamine to a solubilized membrane fraction shifted the spectrum to a form characteristic of PR photobleached into retinal oxime, indicating that PRs in flavobacterial cell membranes transform the photon dose in incident radiation into energy in the form of membrane potential. Our results revealed that PR-mediated proton transport can create the sufficient membrane potential for the ATP synthesis in native flavobacterial cells.  相似文献   

12.
Calcium transport in membrane vesicles of Streptococcus cremoris   总被引:2,自引:0,他引:2  
Rightside-out membrane vesicles of Streptococcus cremoris were fused with proteoliposomes containing the light-driven proton pump bacteriorhodopsin by a low-pH fusion procedure reported earlier [Driessen, A.J.M., Hellingwerf, K.J. & Konings, W.N. (1985) Biochim. Biophys. Acta 808, 1-12]. In these fused membranes a proton motive force, interior positive and acid, can be generated in the light and this proton motive force can drive the uptake of Ca2+. Collapsing delta psi with a concomitant increase in delta pH stimulates Ca2+ uptake while dissipation of the delta pH results in a reduced rate of Ca2+ uptake. Also an artificially generated delta pH, interior acid, can drive Ca2+ uptake in S. cremoris membrane vesicles. Ca2+ uptake depends strongly on the presence of external phosphate while Ca2+-efflux-induced proton flux is independent of the presence of external phosphate. Ca2+ accumulation is abolished by the divalent cation ionophore A23187. Calcium extrusion from intact cells is accelerated by lactose. Collapse of the proton motive force by the uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone or inhibition of the membrane-bound ATPase by N,N'-dicyclohexylcarbodiimide strongly inhibits Ca2+ release. Further studies on Ca2+ efflux at different external pH values in the presence of either valinomycin or nigericin suggested that Ca2+ exit from intact cells is an electrogenic process. It is concluded that Ca2+ efflux in S. cremoris is mediated by a secondary transport system catalyzing exchange of calcium ions and protons.  相似文献   

13.
The fusion of individual influenza virions with a planar phospholipid membrane was detected by fluorescence video microscopy. Virion envelopes were loaded with the lipophilic fluorescent marker octadecylrhodamine B (R18) to a density at which the fluorescence of the probe was self-quenched. Labeled virions were ejected toward the planar membrane from a micropipette in a custom-built video fluorescence microscope. Once a virion fused with the planar membrane, the marker was free to diffuse, and its fluorescence became dequenched, producing a flash of light. This flash was detected as a transient spot of light which increased and then diminished in brightness. The diffusion constants calculated from the brightness profiles for the flashes are consistent with fusion of virus to the membrane with consequent free diffusion of probe within the planar membrane. Under conditions known to be fusigenic for influenza virus (low pH and 37 degrees C), flashes appeared at a high rate and the planar membrane quickly became fluorescent. To further establish that these flashes were due to fusion, we showed that red blood cells, which normally do not attach to planar membranes, were able to bind to membranes that had been exposed to virus under fusigenic conditions. The amount of binding correlated with the amount of flashing. This indicates that flashes signaled the reconstitution of the hemagglutinin glycoprotein (HA) of influenza virus, a well-known erythrocyte receptor, into the planar membrane, as would be expected in a fusion process. The flash rate on ganglioside-containing asolectin membranes increased as the pH was lowered. This is also consistent with the known fusion behavior of influenza virus with cell membranes and with phospholipid vesicles. We conclude that the flashes result from the fusion of individual virions to the planar membrane.  相似文献   

14.
Rapid, transient changes of the membrane potential upon lighttransitions are generally observed in microelectrode studies.In a patch-clamp study similar responses to light transitionswere found in current clamp. Corresponding with the changesof membrane potential, light-induced current changes in voltageclamp were observed. This paper evaluates the involvement ofoutward rectifying conductances and plasma membrane bound H+-ATpases(proton pump) to these light responses in mesophyll protoplastsof Nicotiana tabacum L. The contribution of K+-channels to theseresponses, could be minimized by variation of the holding potentialor addition of the K+-channel blocker verapamil. It was concludedthat light transitions modulate both proton pump and K+-channelactivity. Effects of light on membrane current were not observedin root cells and chlorophyll-deficient cells, suggesting thatthe response requires photosynthetic activity. However, blockersof photosystems I and II did not affect current changes. Key words: Light, patch-clamp, plasma membrane, tobacco, whole cell  相似文献   

15.
Vesicular trafficking and exocytosis are directed by the complementary interaction of membrane proteins that together form the SNARE complex. This complex is composed of proteins in the vesicle membrane (v-SNAREs) that intertwine with proteins of the target membrane (t-SNAREs). Here we show that modified synaptic vesicles (mSV), containing v-SNAREs, spontaneously fuse to planar membranes containing the t-SNARE, syntaxin 1A. Fusion was Ca(2+)-independent and did not occur with vesicles lacking v-SNAREs. Therefore, syntaxin alone forms a functional fusion complex with v-SNAREs. Our functional fusion assay uses synaptic vesicles that are modified, so each fusion event results in an observable transient current. The mSV do not fuse with protein-free membranes. Additionally, artificial vesicles lacking v-SNAREs do not fuse with membranes containing syntaxin. This technique can be adapted to measure fusion in other SNARE systems and should enable the identification of proteins critical to vesicle-membrane fusion. This will further our understanding of exocytosis and may improve targeting and delivery of therapeutic agents packaged in vesicles.  相似文献   

16.
In Halobacterium halobium strain R1 containing both bacteriorhodopsin (bR) and halorhodopsin (hR), the light-driven proton uptake has been experimentally resolved into three transient inflows which are superimposed on the larger proton outflow. Under anaerobic conditions the early proton uptake consists of two components: (i) an inflow which can be blocked using the ATPase inhibitor, Dio-9, and (ii) an inflow which can be abolished by low concentrations (less than 125 nM) of triphenyltin chloride (TPT) with no inhibition of ATP synthesis. At pH 6 these two inflows are approximately equal in magnitude and duration. Measurements of buffering capacity and internal pH indicate that Dio-9 does not alter the passive proton-hydroxyl permeability of the cell membrane and that TPT at these low concentrations slightly decreases it. At later times of illumination (iii) another transient light-driven proton inflow occurs. This inflow is most evident during the first illumination after cells have been stored for extended times in the dark. The internal potassium concentration is not changed by storage, but apparently sodium is taken up, and we attribute the third inflow to sodium extrusion in exchange for protons. These results demonstrate the existence of three distinct triggered secondary proton inflows through the cell membrane. The proton inflow, which can be inhibited by Dio-9, correlates with proton-dependent ATP synthesis. The second inflow, which disappears in the presence of low TPT concentrations, is a passive proton uptake through an otherwise unidentified channel in response to electrogenic chloride pumping by bacteriorhodopsin and/or halorhodopsin. The third system correlates with the Na+/H+ antiporter function that has been demonstrated in H. halobium cell envelope vesicles. In contrast to observations on hR-containing vesicles, which can develop substantial Cl- gradients, the electroneutral OH-/Cl- exchange function can be demonstrated in intact cells only at TPT concentrations greater than 500 nM.  相似文献   

17.
《The Journal of cell biology》1984,98(3):1063-1071
We demonstrate that there are two experimentally distinguishable steps in the fusion of phospholipid vesicles with planar bilayer membranes. In the first step, the vesicles form a stable, tightly bound pre-fusion state with the planar membrane; divalent cations (Ca++) are required for the formation of this state if the vesicular and/or planar membrane contain negatively charged lipids. In the second step, the actual fusion of vesicular and planar membranes occurs. The driving force for this step is the osmotic swelling of vesicles attached (in the pre- fusion state) to the planar membrane. We suggest that osmotic swelling of vesicles may also be crucial for biological fusion and exocytosis.  相似文献   

18.
The fusion of sea urchin egg secretory vesicles to planar phospholipid bilayer membranes was studied by differential interference contrast (DIC) and fluorescent microscopy, in combination with electrical recordings of membrane conductance. A strong binding of vesicles to protein-free planar membranes was observed in the absence of calcium. Calcium-induced fusion of vesicles was detected using two independent assays: loss of the contents of individual vesicles visible by DIC microscopy: and vesicle content discharge across the planar membrane detected by an increase in the fluorescence of a dye. In both cases, no increase in the membrane conductance was observed unless vesicles were incubated with either Amphotericin B or digitonin prior to applying them to the planar membrane, an indication that native vesicles are devoid of open channels. Pre-incubation of vesicles with n-ethylmaleimide (NEM) abolished calcium-induced fusion. Fusion was also detected when vesicles were osmotically swollen to the point of lysis. In contrast, no fusion of vesicles to planar bilayers was seen when vesicles on plasma membrane (native cortices) were applied to a phospholipid membrane, despite good binding of vesicles to the planar membrane and fusion of vesicles to plasma membrane. It is suggested that cortical vesicles (CVs) have sufficient calcium-sensitive proteins for fusion to lipid membranes, but in native cortices granular fusion sites are oriented toward the plasma membrane. Removal of vesicles from the plasma membrane may allow fusion sites on vesicles access to new membranes.  相似文献   

19.
The fusion of sea urchin egg secretory vesicles to planar phospholipid bilayer membranes was studied by differential interference contrast (DIC) and fluorescent microscopy, in combination with electrical recordings of membrane conductance. A strong binding of vesicles to protein-free planar membranes was observed in the absence of calcium. Calciuminduced fusion of vesicles was detected using two independent assays: loss of the contents of individual vesicles visible by DIC microscopy; and vesicle content discharge across the planar membrane detected by an increase in the fluorescence of a dye. In both cases, no increase in the membrane conductance was observed unless vesicles were incubated with either Amphotericin B or digitonin prior to applying them to the planar membrane, an indication that native vesicles are devoid of open channels. Pre-incubation of vesicles with n-ethylmaleimide (NEM) abolished calcium-induced fusion. Fusion was also detected when vesicles were osmotically swollen to the point of lysis. In contrast, no fusion of vesicles to planar bilayers was seen when vesicles on plasma membrane (native cortices) were applied to a phospholipid membrane, despite good binding of vesicles to the planar membrane and fusion of vesicles to plasma membrane. It is suggested that cortical vesicles (CVs) have sufficient calcium-sensitive proteins for fusion to lipid membranes, but in native cortices granular fusion sites are oriented toward the plasma membrane. Removal of vesicles from the plasma membrane may allow fusion sites on vesicles access to new membranes.  相似文献   

20.
Photoelectric properties of bacteriorhodopsin incorporated into a bimolecular lipid membrane were investigated with special regard to the mechanism of photoelectric field generation. It was shown that besides its proton pump and electric generator functions bacteriorhodopsin works as a possible molecular regulator of the light-induced membrane potential. When a bimolecular lipid membrane containing bacteriorhodopsin is continuously illuminated in its main visible absorption band, and afterwards by superimposed blue light matching the absorption band of the long-living photobleached bacteriorhodopsin (M412) as well, the latter either enhances or decreases the steady-state photoresponse, depending upon the intensity of the green light. Thus, the additional blue-light illumination tends to cause the resultant photoelectric membrane potential to become stabilized. Two alternative schemes are tentatively proposed for the photochemical cycle of bacteriorhodopsin whereby blue light can control photovoltage generation. A kinetic model of the proton pump and the regulation of the photoelectric membrane potential is presented. This model fits all the experimental findings, even quantitatively. From the model some kinetic and physical parameters of this light-driven pump could be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号