首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two tiny hairpin DNAs, CORE (dAGGCTTCGGCCT) and AP2 (dAGGCTXCGGCCT; X: abasic nucleotide), fold into almost the same tetraloop hairpin structure with one exception, that is, the sixth thymine (T6) of CORE is exposed to the solvent water (Kawakami, J. et al., Chem. Lett. 2001, 258-259). In the present study, we selected small peptides that bind to CORE or AP2 from a combinatorial pentapeptide library with 2.5 x 10(6) variants. On the basis of the structural information, the selected peptide sequences should indicate the essential qualifications for recognition of the hairpin loop DNA with and without a flipped base. In the selected DNA binding peptides, aromatic amino acids such as histidine for CORE and glutamine/aspartic acid for AP2 were found to be abundant amino acids. This amino acid preference suggests that CORE-binding peptides use pi-pi stacking to recognize the target while hydrogen bonding is dominant for AP2-binding peptides. To investigate the binding properties of the selected peptide to the target, surface plasmon resonance was used. The binding constant of the interaction between CORE and a CORE-binding peptide (HWHHE) was about 1.1 x 10(6) M(-1) at 25 degrees C and the resulting binding free energy change at 25 degrees C (DeltaG degrees (25)) was -8.2 kcal mol(-1). The binding of the peptide to AP2 was also analyzed and the resulting binding constant and DeltaG degrees (25) were about 4.2 x 10(4) M(-1) and -6.3 kcal mol(-1), respectively. The difference in the binding free energy changes (DeltaDeltaG degrees (25)) of 1.9 kcal mol(-1) was comparable to the values reported in other systems and was considered a consequence of the loss of pi-pi stacking. Moreover, the stabilization effect by stacking affected the dissociation step as well as the association step. Our results suggest that the existence of an aromatic ring (T6 base) produces new dominant interactions between peptides and nucleic acids, although hydrogen bonding is the preferable mode of interaction in the absence of the flipping base. These findings regarding CORE and AP2 recognition are expected to give useful information in the design of novel artificial DNA binding peptides.  相似文献   

2.
In this study, fluorescence emission spectra, UV–vis absorption spectra, ethidium bromide (EB)-competition experiment, and iodide quenching experiment were used for the interaction study of the Fish salmon DNA (FS-DNA) with [Pr(dmp)2Cl3(OH2)] where dmp is 2,9-dimethyl 1,10-phenanthroline. The binding constant and the number of binding sites of the complex with FS-DNA were 6.09?±?0.04 M?1 and 1.18, respectively. The free energy, enthalpy, and entropy changes (ΔG°, ΔH°, and ΔS°) in the binding process of the Pr(III) complex with FS-DNA were –8.02?kcal mol?1, +39.44?kcal mol?1, and +159.56?cal mol?1 K?1, respectively. Based on these results, the interaction process between FS-DNA with [Pr(dmp)2Cl3(OH2)] was spontaneous and the main binding interaction force was groove binding mode. Also, Fluorescence and electronic absorption spectroscopy were used in order to evaluate the binding characteristics, stoichiometry, and interaction mode of praseodymium(III) (Pr(III)) complex with bovine serum albumin (BSA). Title complex showed good binding propensity to BSA presenting moderately high Kb values. The fluorescence quenching of BSA by Pr(III) complex has been observed to be the static process. The positive ΔH° and ΔS° values showed that the hydrophobic interaction is the main force in the binding of Pr(III) complex and BSA. Eventually, the average aggregation number, <J>, of BSA potentially induced by title complex confirmed the 1:1 stoichiometry for title complex-BSA adducts. In vitro, antimicrobial activity of title complex was indicated that the complex is more active against both Escherichia coli and Enterococcus faecalis bacterial strains than Staphylococcus aureus, and Pseudomonas aeruginosa.

Communicated by Ramaswamy H. Sarma  相似文献   


3.
The unfolding at pH 8 of chicken cardiac aquometmyoglobin was examined as a function of temperature and concentration of guanidinium chloride using the two-state model. The isothermal unfolding data at 25°C were fitted to Tanford's transfer model and the binding model of Aune and Tanford. The estimates obtained for ΔGD) were virtually identical, viz., 8.3 ±0.3 kcal mol?1. The chicken metmyoglobin is thus some 5.3 kcal mol?1 less stable than that of sperm whale metmyoglobin. The unfolding parameters α and Δn were decreased 20% from those of mammalian myoglobins thus far examined, suggesting nonidentity of native conformations. The apparent enthalpy change on unfolding was dependent on both temperature and denaturant concentration. The decreases in the isothermal unfolding parameters from those of sperm whale are principally assigned to three of the 46 sequence changes.  相似文献   

4.
We have measured the thermodynamic parameters of the slow-fast tail-fiber reorientation transition on T2L bateriophage. Proportions of the virus in each form were determined from peak-height measurements in sedimention-velocity runs and from average diffusion coefficients obtained by quasielastic laser light scattering. Computer simulation of sedimentation confirmed that there were no undetected intermediates in the transition, which was analyzed as a two-state process. Van't Hoff-type plots of the apparent equilibrium constant and of the pH midpoint of the transition as function of reciprocal temperature led to the following estimates of the thermodynamic parameters for the transition at pH 6.0 and 20°C: ΔH° = ?139 ± 18Kcal mol?1, ΔS° = ?247 ± 46 cal K?1 mol?1, and ΔG° = ?66 ± 22 kcal mol?1. Per mole of protons taken up in the transition, the analogous quantities were ?15.9 ± 1.7 kcal mol?1, ?26.3 ± 2.2 cal K?1 mol?1, and ?8.22 ± 1.8 kcal mol?1. The net number of protons taken up was about 8.5 ± 1.5. The large values of the thermodynamic functions are consistent with a highly cooperative reaction and with multiple interactions between the fibres and the remainder of the phage. The negative entropy of the transition is probably due to immobilization of the fibres.  相似文献   

5.
The thermodynamics of the hairpin helix-single strand transition of A6C6U6 has been analyzed by a staggering zipper model with consideration of single strand stacking. This analysis yields an enthalpy change of +11 kcal/mole for the formation of a first, isolated base pair. The stability constant of a first (intramolecular) base pair in A6C6U6 is around 2 × 1O?5 at 25°C, whereas a first (intermoleciilar) base pair in an A6 · U6 helix is characterised by a stability constant of about 4 × 10?3M?1 (25°C, extrapolated from An · Vn oligomer measurements). These data indicate a destabilizing effect of the C6 loop.The rate constant of hairpin helix formation is 2 to 3 × 104 sec?1 associated with an activation enthalpy of +2.5 kcal/mote. The rate of helix dissociation of the A6C6U6 hairpin is in the range of 103 to lO5 sec?1 with an activation enthalpy of 21 kcalmole. A comparison with the kinetic parameters obtained for A · U oligomer helices shows a specific influence of the C6 loop due to the stacking tendency of the cytosine residues. This intluence is preferentially reflected in the relatively low value of the rate constant of helix formation.  相似文献   

6.
The interaction of the Trp–Sm(III) complex with herring sperm DNA (hs‐DNA) was investigated with the use of acridine orange (AO) dye as a spectral probe for UV‐vis spectrophotometry and fluorescence spectroscopy. The results showed that the both the Trp–Sm(III) complex and the AO molecule could intercalate into the double helix of the DNA. The Sm(III)–(Trp)3 complex was stabilized by intercalation into the DNA with binding constants: K?25°C = 7.14 × 105 L·mol?1 and K?37°C = 5.28 × 104 L·mol?1, and it could displace the AO dye from the AO–DNA complex in a competitive reaction. Computation of the thermodynamic functions demonstrates that ΔrHm? is the primary driving power of the interaction between the Sm(III)(Trp)3 complex and the DNA. The results from Scatchard and viscometry methods suggested that the interaction mode between the Sm(III)(Trp)3 complex and the hs‐DNA is groove binding and weak intercalation binding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Protein‐nucleic acids binding driven by electrostatic interactions typically are characterized by the release of counter ions, and the salt‐inhibited binding association constant (Ka) and the magnitude of exothermic binding enthalpy (ΔH). Here, we report a non‐classical thermodynamics of streptavidin (SA)–aptamer binding in NaCl (140–350 mM) solutions near room temperatures (23–27 °C). By using isothermal titration calorimetry (ITC) and circular dichroism (CD)/fluorescence spectroscopy, we found that the binding was enthalpy driven with a large entropy cost (ΔH ?20.58 kcal mol?1, TΔS ?10.99 kcal mol?1, and Ka 1.08 × 107 M?1 at 140 mM NaCl 25 °C). With the raise of salt concentrations, the ΔH became more exothermic, yet the Ka was almost unchanged (ΔH ?26.29 kcal mol?1 and Ka 1.50 × 107 M?1 at 350 mM NaCl 25 °C). The data suggest that no counter Na+ was released in the binding. Spectroscopy data suggest that the binding, with a stoichiometry of 2, was accompanied with substantial conformational changes on SA, and the changes were insensitive to the variation of salt concentrations. To account for the non‐classical results, we propose a salt bridge exchange model. The intramolecular binding‐site salt bridge(s) of the free SA and the charged phosphate group of aptamers re‐organize to form the binding complex by forming a new intermolecular salt bridge(s). The salt bridge exchange binding process requires minimum amount of counter ions releasing but dehydration of the contacting surface of SA and the aptamer. The energy required for dehydration is reduced in the case of binding solution with higher salt concentration and account for the higher binding exothermic mainly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

This research is focussed on kinetic, thermodynamic and thermal inactivation of a novel thermostable recombinant α-amylase (Tp-AmyS) from Thermotoga petrophila. The amylase gene was cloned in pHIS-parallel1 expression vector and overexpressed in Escherichia coli. The steady-state kinetic parameters (Vmax, Km, kcat and kcat/Km) for the hydrolysis of amylose (1.39?mg/min, 0.57?mg, 148.6?s?1, 260.7), amylopectin (2.3?mg/min, 1.09?mg, 247.1?s?1, 226.7), soluble starch (2.67?mg/min, 2.98?mg, 284.2?s?1, 95.4) and raw starch (2.1?mg/min, 3.6?mg, 224.7?s?1, 61.9) were determined. The activation energy (Ea), free energy (ΔG), enthalpy (ΔH) and entropy of activation (ΔS) at 98?°C were 42.9?kJ mol?1, 74?kJ mol?1, 39.9?kJ mol?1 and ?92.3 J mol?1 K?1, respectively, for soluble starch hydrolysis. While ΔG of substrate binding (ΔGE-S) and ΔG of transition state binding (ΔGE-T) were 3.38 and ?14.1?kJ mol?1, respectively. Whereas, EaD, Gibbs free energy (ΔG*), increase in the enthalpy (ΔH*) and activation entropy (ΔS*) for activation of the unfolding of transition state were 108, 107, 105?kJ mol?1 and ?4.1 J mol?1 K?1. The thermodynamics of irreversible thermal inactivation of Tp-AmyS revealed that at high temperature the process involves the aggregation of the protein.  相似文献   

9.
Steady-state inhibitory kinetic studies on almond β-glucosidase-catalyzed reactions were done to elucidate the binding subsite of several monosaccharides on this enzyme.

Glucono-1,5-Iactone (a transition-state analog), glucose, 2-deoxy glucose, fucose, and methyl α-glucoside showed mixed-type inhibition, but galactose, galactosamine, mannose, N-acetyl glucosamine, and glucosamine showed pure competitive inhibition on the hydrolysis of P-nitrophenyl β-glucoside.

These results are reasonably accounted for by assuming that the former monosaccharides (the mixed type inhibitors) bind to subsite 1 (the nonreducing-end side subsite to which the nonreducing-end glucose residue of a substrate binds in a productive binding mode), and that the latter (the competitive inhibitors) bind to subsite 2, the adjacent subsite to subsite 1.

The binding affinity ( — ΔG°) of glucono-1,5-lactone (— ΔG° = 6.7 kcal mol 1 at pH 5.0, 25°C) was significantly greater than those of the others (0.3 ~ 1.6 kcal mol-1).  相似文献   

10.
The collagen-like peptides (L -Pro-L -Pro-Gly)n and (L -Pro-L -Hyp-Gly)n with n = 5 and 10, were examined in terms of their triple helix ? coil transitions in aqueous and nonaqueous solvents. The peptides were soluble in 1,2-propanediol containing 3% acetic acid and they were found to form triple-helical structures in this solvent system. The water content of the solvent system and the amount of water bound to the peptides were assayed by equilibrating the solvent with molecular sieves and carrying out Karl Fischer titrations on the solvent phase. After the solvent was dehydrated, much less than one molecule of water per tripeptide unit was bound to the peptides. Since the peptides remained in a triple-helical conformation, the results indicated that water was not an essential component of the triple-helical structure. Comparison of peptides with the same chain length demonstrated that the presence of hydroxyproline increased the thermal stability of the triple helix even under anhydrous conditions. The results, therefore, did not support recent hypotheses that hydroxyproline stabilizes the triple helix of collagen and collagen-like peptides by a specific interaction with water molecules. Analysis of the thermal transition curves in several solvent systems showed that although the peptides containing hydroxyproline had tm values which were 18.6° to 32.7°C higher, the effect of hydroxyproline on ΔG was only 0.1 to 0.3 kcal per tripeptide unit at 25°C. The results suggested, therefore, that the influence of hydroxyproline on helical stability may be explained by intrinsic effects such as dipole–dipole interactions or by changes in the solvation of the peptides by alcohol, acetic acid, and water. A direct calorimetric measurement of the transition enthalpy for (L -Pro-L -Pro-Gly)n in 3% or 10% acetic acid gave a value of ?1.84 kcal per tripeptide unit for the coil-to-helix transition. From the value for enthalpy and from data on the effects of different chain lengths on the thermal transition, it was calculated that the apparent free energy for nucleation was +5 kcal/mol at 25°C (apparent nucleation parameter = 2 × 10?4 M?2). The value was dependent on solvent and on chemical modification of end groups.  相似文献   

11.
SUMMARY. 1. The influence of temperature on in vivo photosynthetic and in vitro respiratory electron transport system (ETS) activity was determined over the season for the 3 m (warm-water) and a 20m (cold-water) phytoplankton communities in Castle Lake. The optimum temperature of photosynthesis at 3 m (X?=20.8°C) was significantly higher than the average optimum at 20 m (X?=14.8°C). 2. Seasonally, the photosynthetic temperature optimum increased when the blue-green alga Chroococcus limneticus Lemm. was present. The temperature characteristics of this organism were maintained even after it had settled into the cold water of the hypolimnion. 3. Temperature optima were not significantly different in experiments conducted under limiting or saturating photosynthetic photon flux densities (PPFD). 4. Short-term (1 h) preincubations with dissolved inorganic nitrogen (DIN) (?80 μg NH4NO3-N l?1) had little effect on the temperature characteristics of photosynthesis while the longer (>24 h) incubations provided by a whole-lake epilimnetic DIN addition (?75 μg NH4NO3- N l?1) significantly lowered the photosynthetic temperature optimum to 12.5°C. Once this epilimnetic DIN was depleted the optimum roseto25°C, a value higher than that present before the enrichment, which coincided with the growth of C limneticus. 5. Respiratory ETS activity usually began to inactivate between 19 and 20°C. However, when C. limneticus was abundant the inactivation temperature was often greater ihan 25°C. 6. The average energy of activation (E) and Q10 value for the 3 m community (15.9 kcal mol?1 and 2.6 respectively) were significantly higher than those at 20 m (14.2 kcal mol?1 and 2.4 respectively). Seasonally, the highest E and Q10 values of ETS activity occurred during the late-summer bloom of C. limneticus. 7. These results demonstrate that the epilimnetic and hypolimnetic phytoplankton communities in Castle Lake are physiologically distinct with regards to their temperature characteristics.  相似文献   

12.
Pivaloyl-L -Pro-Aib-N-methylamide has been shown to possess one intramolecular hydrogen bond in (CD3)2SO solution, by 1H-nmr methods, suggesting the existence of β-turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II β-turn conformations are about 2 kcal mol?1 more stable than Type III structures. A crystallographic study has established the Type II β-turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 Å, b = 11.421 Å, c = 12.966 Å, β = 97.55°, and Z = 2. The structure has been refined to a final R value of 0.061. The Type II β-turn conformation is stabilized by an intramolecular 4 → 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are ?Pro = ?57.8°, ψPro = 139.3°, ?Aib = 61.4°, and ψAib = 25.1°. The Type II β-turn conformation for Pro-Aib in this peptide is compared with the Type III structures observed for the same segment in larger peptides.  相似文献   

13.
pKa1 values of 3-methoxy-N-desmethyldiazepam in acetonitrile and methanol containing various acid concentrations were determined by spectrophotometry to be 3.5 and 1.3, respectively. Temperature-dependent racemization of enantiomeric 3-methoxy-N-desmethyldiazepam in methanol containing 0.5 M H2SO4 was studied by circular dichroism spectropolorimetry and the racemization reactions were found to follow apparent first-order kinetics. Thermodynamic parameters of the racemization reaction were found to be: Eact = 18.8 kcal/mol, and at 25°C: ΔH? = 18.3 kcal/mol, ΔS? = ?14.8 entropy unit, and ΔG? = 22.7 kcal/mol, respectively. The racemization had an isotope effect (kH/kD) of 1.6 at 42°C. Based on the results of this report and those of earlier reports by other investigators, a nucleophilically solvated C3 carbocation intermediate resulting from either a P (plus) or an M (minus) conformation is proposed to be an intermediate and responsible for the stereoselective nucleophilic substitution and the subsequent racemization of 3-methoxy-N-desmethyldiazepam enantiomers. © 1993 Wiley-Liss, Inc.  相似文献   

14.
15.
Many macromolecular interactions, including protein‐nucleic acid interactions, are accompanied by a substantial negative heat capacity change, the molecular origins of which have generated substantial interest. We have shown previously that temperature‐dependent unstacking of the bases within oligo(dA) upon binding to the Escherichia coli SSB tetramer dominates the binding enthalpy, ΔHobs, and accounts for as much as a half of the observed heat capacity change, ΔCp. However, there is still a substantial ΔCp associated with SSB binding to ssDNA, such as oligo(dT), that does not undergo substantial base stacking. In an attempt to determine the origins of this heat capacity change, we have examined by isothermal titration calorimetry (ITC) the equilibrium binding of dT(pT)34 to SSB over a broad pH range (pH 5.0–10.0) at 0.02 M, 0.2 M NaCl and 1 M NaCl (25°C), and as a function of temperature at pH 8.1. A net protonation of the SSB protein occurs upon dT(pT)34 binding over this entire pH range, with contributions from at least three sets of protonation sites (pKa1 = 5.9–6.6, pKa2 = 8.2–8.4, and pKa3 = 10.2–10.3) and these protonation equilibria contribute substantially to the observed ΔH and ΔCp for the SSB‐dT(pT)34 interaction. The contribution of this coupled protonation (∼ −260 to −320 cal mol−1 K−1) accounts for as much as half of the total ΔCp. The values of the “intrinsic” ΔCp,0 range from −210 ± 33 cal mol−1 °K−1 to −237 ± 36 cal mol−1K−1, independent of [NaCl]. These results indicate that the coupling of a temperature‐dependent protonation equilibria to a macromolecular interaction can result in a large negative ΔCp, and this finding needs to be considered in interpretations of the molecular origins of heat capacity changes associated with ligand‐macromolecular interactions, as well as protein folding. Proteins 2000;Suppl 4:8–22. © 2000 Wiley‐Liss, Inc.  相似文献   

16.
Drug and protein interaction provides a structural guideline in the rational drug designing and in the synthesis of new and improved drugs with greater efficacy. We have examined here the interaction tendency and mechanism of nintedanib (NTB), an anticancer drug (tyrosine kinase inhibitor) with bovine serum albumin (BSA), by spectroscopic techniques. The decline in Stern–Volmer quenching constants and binding constant with the temperature rise suggests that BSA forms a complex with NTB. Binding constant obtained by modified Stern–Volmer equation at 3 temperatures was realized to be of the order of ~104?M?1. Negative ΔG (~?5.93?kcal?mol?1), ΔH (?3.74?kcal?mol?1), and ΔS (?1.50?kcal?mol?1) values exhibited a spontaneous and exothermic reaction between BSA and NTB. NTB molecule interacts with BSA by forming hydrogen bonds, as elucidated by fluorescence results. Moreover, a minor increment in the helical conformation of BSA upon its binding to NTB was observed by circular dichroism spectroscopy. The modification in protein’s symmetry and a decline in hydrodynamic radii were observed in the presence of NTB (from ~3.6 to ~3?nm) as obtained by the dynamic light scattering measurement results.  相似文献   

17.
The antidepressant drug tetramezine [1,2‐bis‐(3,3‐dimethyldiaziridin‐1‐yl)ethane] consists of two bridged diaziridine moieties with four stereogenic nitrogen centers, which are stereolabile and, therefore, are prone to interconversion. The adjacent substituents at the nitrogen atoms of the diaziridines moieties exist only in an antiperiplanar conformation, which results in a coupled interconversion. Therefore, three stereoisomers exist (meso form and two enantiomeric forms), which epimerize when the diaziridine moieties are regarded as stereogenic units due to the coupled interconversion. Here, we have investigated the epimerization between the meso and enantiomeric forms by dynamic gas chromatography. Temperature‐dependent measurements were performed, and reaction rate constants were determined using the unified equation of chromatography implemented in the software DCXplorer. The activation barriers of the epimerization were found to be ΔG = 100.7 kJ mol?1 at 25°C and ΔG = 104.5 kJ mol?1 at 37°C, respectively. The activation enthalpy and entropy were determined to be ΔH = 70.3 ± 0.4 kJ mol?1 and ΔS = ?102 ± 2 J mol?1 K?1. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
The thermal triple helix–coil transition of covalently bridged collagenlike peptides with repeating sequences of (Ala-Gly-Pro)n, n = 5–15, was studied optically. The peptides were soluble in water/acetic acid (99:1) and were found to form triple-helical structures in this solvent system beginning with n = 8. The thermodynamic analysis of the transition equilibrium curves for n = 9–13 yielded the parameters ΔH°s = ?7.0 kJ per tripeptide unit, ΔS°s = ?23.1 J deg?1 mol?1 per tripeptide unit for the coil-to-helix transition, and the apparent nucleation parameter σ ? 5 × 10?2. It was suggested through double-jump temperature experiments that the rate-limiting step during refolding is not only influenced by the difficulties of nucleation, but also by cistrans isomerization of the Gly-Pro peptide bond.  相似文献   

19.
20.
The thermodynamics of ethidium ion binding to the double strands formed by the ribooligonucleotides rCA5G + rCU5G and the analogous deoxyribo-oligonucleotides dCA5G + dCT5G were determined by monitoring the absorbance versus temperature at 260 and 283 nm at several concentrations of oligonucleotides and ethidium bromide. A maximum of three ethidium ions bind to the oligonucleotides, which is consistent with intercalation and nearest-neighbor exclusion. For the ribo-oligonucleotide the binding mechanism is complex. Either two sites (assumed to be the intercalation sites at the two ends of the oligonucleotide) bind more strongly by a factor of 140 than the third site, or all sites are identical, but there is strong anticooperativity on binding (cooperativity parameter, 0.1). In sharp contrast, the binding to the same sequence (with thymine substituted for uracil) in the deoxyribo-oligonucleotide showed all sites equivalent and no cooperativity. For the ribo-oligonucleotides the enthalpy for ethidium binding is ?14 kcal/mol. The equilibrium constants at 25°C depend on the model; either K = 6 × 105M?1 for the two strong sites (4 × 103M?1 for the weak site) or K = 2.5 × 105M?1 for the intrinsic constant of the anticooperative model. For the equivalent deoxyribo-oligonucleotide the enthalpy of binding is -9 kcal/mol and the equilibrium constant at 25°C is a factor of 10 smaller (K = 2.5 × 104M?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号