首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Purines and pyrimidines form the backbone of DNA and RNA. Hence, modification of purine and pyrimidine metabolism can have serious effects on normal functioning of a subject. These aspects formed the main topics for an International and a European Series of meetings, dedicated to the metabolism in man. In order to streamline the organization of these meetings the European Society was transformed to an International society: the Purine and Pyrimidine Society (www.ppsociety.org). This special issue of Nucleosides, Nucleotides, and, Nucleic, Acids highlights the last European meeting in Prague, focusing on inborn errors, cardiac diseases, inflammatory diseases, rheumatology, haematology, cancer, virology, genetic polymorphism, specific methodology, and, of course, metabolism. The meeting in Chicago in 2007 will be the first meeting of the Purine and Pyrimidine Society.  相似文献   

4.
5.
Purine and pyrimidine disorders represent a heterogeneous group with variable clinical symptoms and low prevalence rate. In the last thirteen years, we have studied urine/plasma specimens from about 1600 patients and we have identified 35 patients: eight patients with adenylosuccinate lyase deficiency, eight patients with hypoxanthine-guanine phosphoribosyltransferase deficiency, one patient with purine nucleoside phosphorylase deficiency, ten patients with xanthine dehydrogenase deficiency, six patients with molybdenum cofactor deficiency and two patients with dihydropyrimidine dehydrogenase deficiency.

Despite low incidence of these diseases, our findings highlight the importance of including the purine and pyrimidine analysis in the selective screening for inborn errors of metabolism in specialized laboratories, where amino acid and organic acid disorders are simultaneously investigated.  相似文献   

6.
7.
8.
9.
Brains of paralysed rats with insulin-induced hypoglycemia were frozen in situ after spontaneous EEG activity had been absent for 5 or 15 min (“coma”). Recovery (30 min) was achieved in a different group of rats by administering glucose after a 30-min coma period. Purine and pyrimidine nucleotides, nucleosides and free bases were determined in the cortical extracts by high pressure liquid chromatography (HPLC). The ATP values obtained with the HPLC method were in excellent agreement with those obtained using standard enzymatic/fluorometric techniques, while values for ADP and AMP obtained with the HPLC method were significantly lower. Comatose animals showed a severe (40-80%) reduction in the concentrations of all nucleoside triphosphates (ATP. GTP, UTP and CTP) and a simultaneous increase in the concentrations of all nucleoside di- and monophosphates, including that of IMP. The adenine nucleotide pool size decreased to 50% of control level. The concentrations of the nucleosides adenosine, inosine, and uridine increased 50- to 250-fold, while the concentrations of the purine bases, xanthine and hypoxanthine, rose 2- and 30-fold, respectively. There were no increases in the concentrations of adenine, guanine, or xanthosine. Following glucose administration there was a partial (ATP, UTP and CTP) or almost complete (GTP) recovery of the nucleoside triphosphate levels. During recovery, the levels of nucleosidc di- and monophosphates and of adenosine decreased to values close to control; the rise in the inosine level was only partially reversed, and the concentrations of hypoxanthine and xanthine rose further. The adenine nucleotide pool size was only partially restored (to 67% of control value). The adenine nucleotide pool size was not increased by i.p. injection of adenosine or adenine under control condition, or during the posthypoglycemic recovery period.  相似文献   

10.
The biennial 15th symposium on Purine and Pyrimidine metabolism was held in Madrid, June 2013 (PP13). During the meeting, several novel developments on the diagnosis, pathophysiology, and treatment of several inborn errors of purine and pyrimidine metabolism were presented. These ranged from new drugs for gout to enzyme replacement therapies for mitochondrial diseases. A relatively novel aspect in this meeting was the interest in purine and pyrimidine metabolism in nonmammalian systems, such as parasites, mycoplasms, and bacteria. Development of novel analogs for parasite infections, cardiovascular diseases, inflammatory diseases, and cancer were also discussed.  相似文献   

11.
Purines and pyrimidines, regarded for a long time merely as building blocks for nucleic acid synthesis and intermediates in the transfer of metabolic energy, have attracted increasing attention after genetically determined aberrations in their metabolism were linked to a range of symptoms from hyperuricemia and immunodeficiency to neurological disorders. The pathogenesis of such disorders involves cell or mitochondrial damage, but the molecular mechanisms underlying symptoms is often unclear. H. Anne Simmonds made major contributions to the metabolic, clinical, and molecular aspects of these disorders and the Purine Research Laboratory, which she established in London, became the world center for clinical and experimental studies in the field. We owe her gratitude not only for this direct contribution but also for her enthusiasm for purine and pyrimidine research that she transmitted to generations of scientists. Our research in this field stemmed from expertise in pyridine metabolism and its connection with purines, and from clinical involvement with biochemical diagnosis of enzyme deficiencies. We joined H. Anne Simmonds in studying the biochemical basis of altered NAD content in erythrocytes of PNP- and HPRT-deficient patients, discovering some alterations in NAD synthesis and breakdown.  相似文献   

12.
Mitochondrial DNA depletion syndrome (MDS), a reduction of mitochondrial DNA copy number, often affects muscle or liver. Mutations in enzymes of deoxyribonucleotide metabolism give MDS, for example, the mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) genes. Sixteen TK2 and 22 dGK alterations are known. Their characteristics and symptoms are described. Levels of five key deoxynucleotide metabolizing enzymes in mouse tissues were measured. TK2 and dGK levels in muscles were 5- to 10-fold lower than other nonproliferating tissues and 100-fold lower compared to spleen. Each type of tissue apparently relies on de novo and salvage synthesis of DNA precursors to varying degrees.  相似文献   

13.
Rats ingesting high doses of caffeine reproduce the self-destructive behaviour observed in the Lesch Nyhan syndrome. This syndrome includes a deficit in hypoxanthine-guanine phosphoribosyltransferase. We have observed, however, that the activity of hypoxanthine-guanine phosphoribosyltransferase increases in direct proportion to the concentration of caffeine found in rat brain. It appears, therefore, that the caffeine model is not a true model for the Lesch-Nyhan syndrome, or alternatively, that the deficit in hypoxanthine-guanine phosphoribosyltransferase is coincidental and not a main key to the multifarious aspects of the syndrome, particularly the self-mutilation. The possibility that levels of dopamine are increased in the caffeine model are discussed as a basis for the destructive behaviour. We have found also that ingestion of large amounts of caffeine increases the activities in rat brain of adenosine deaminase, purine nucleoside phosphorylase, aspartate carbamoyltransferase, dihydroorotase, and dihydroorotate oxidase.  相似文献   

14.
Frick H 《Plant physiology》1978,61(6):989-992
Cytidine deoxyriboside (Cdr), uridine deoxyriboside (Udr), and guanosine deoxyriboside (Gdr), induce quantitative bleaching of the fronds of Lemna minor (duckweed) during growth in continuous light on photoheterotrophic medium. Cdr-induced bleaching is not accompanied by a reduction in frond multiplication rate, but Udr- and Gdr-induced bleaching is. Bleaching by Cdr is fully prevented by thymidine (Tdr), cytidine (Cr), or uridine (Ur), but not by orotic acid (OA) which itself inhibits growth. Bleaching by Udr is not antagonized by Tdr, Cdr, Cr, Ur, or OA. The ability of Cdr to induce phenocopies of chlorophyll-deficient mutants in the absence of effect on growth rate is interpreted as indicating a functional compartmentation of pyrimidine metabolism between chloroplast and whole cell. On the assumption that Cdr induces bleaching by regulating the biosynthesis of deoxynucleoside triphosphates, and in analogy with the antagonism of fluorodeoxyuridine effects on growth by Tdr, Cr, or Ur, the suggestion is made that deoxycytidine is converted to thymidylate by a step other than that utilizing thymidylate synthetase.  相似文献   

15.
Joe L. Key 《Plant physiology》1966,41(8):1257-1264
The effects of several base analogues and cycloheximide on RNA synthesis, protein synthesis, and cell elongation were studied in excised soybean hypocotyl. None of the pyrimidine analogues tested affected growth or protein synthesis; only 5-fluorouracil appreciably inhibited RNA synthesis. 8-Azaguanine and 6-methylpurine markedly inhibited RNA and protein synthesis and cell elongation. Cycloheximide effectively inhibited both cell elongation and protein synthesis.The results show that 5-fluorouracil selectively inhibited ribosomal and soluble RNA synthesis without affecting the synthesis of D-RNA. These results indicate that the requirement for RNA synthesis to support continued protein synthesis and cell elongation is restricted to the synthesis of D-RNA.5-Fluorouracil was incorporated into all classes of RNA in a form believed to be 5-fluorouridylic acid.Cycloheximide markedly inhibited the accumulation of ribosomal RNA, but the results indicate that CH did not inhibit, per se, the synthesis of ribosomal RNA. The accumulation of newly synthesized D-RNA was only slightly affected by cycloheximide. These results show that the inhibition of cell elongation by cycloheximide correlates with the inhibition of protein synthesis, but not with the effect on RNA metabolism.  相似文献   

16.
17.
Genetic mutations in the purine salvage enzyme, hypoxanthine-guanine phosphoribosyltransferase (HPRT), are known to cause Lesch–Nyhan syndrome and Kelley–Seegmiller syndrome. In patients, purine metabolism is different from that of normal persons. We have previously developed a method for simultaneously determining the concentration of purine and pyrimidine nucleosides and nucleotides. This system was applied to determine the concentrations of nucleosides and nucleotides in HPRT-deficient cell lines. The amount of inosine 5′-monophosphate (IMP) was different in Lesch–Nyhan syndrome, Kelley–Seegmiller syndrome, and control cell lines. The difference in the amount of IMP confirmed the mutation of the enzyme.  相似文献   

18.
SYNOPSIS. Purine and pyrimidine biosynthesis in the avian malaria parasite Plasmodium lophurae and its host cell, the duck erythrocyte, were investigated in vitro. Pyrimidine synthesis, as measured by the incorporation of C14-NaHCO3 into cytosine, uracil and thymine was slight in uninfected duck erythrocytes, whereas infected erythrocytes and erythrocyte-free parasites had high rates of incorporation of NaHCO3 into these bases. In addition, orotidine-5′-monophosphate pyrophosphorylase and thymidylate synthetase, 2 enzymes of the pyrimidine biosynthetic pathway, were found in cell-free extracts of the plasmodia. Purine synthesis was measured by determining the extent of incorporation of C14-Na-formate into adenine and guanine. Uninfected and infected erythrocytes had similar rates of Na-formate incroporation into adenine. whereas free parasites incorporated little of this compound into adenine, or guanine. On the other hand, the incorporation of Na-formate into guanine was 54% higher in infected erythrocytes than in uninfected erythrocytes. It is suggested that P. lophurae synthesizes purines to a limited extent, and derives most of its purines from the host erythrocyte. The greater incorporation of Na-formate into guanine by infected cells, and its low incorporation into free parasites may be accounted for by parasite conversion of host cell adenine (in the form of ATP) into guanine. Pyrimidine biosynthesis in infected cells can be accounted for by de novo synthesis by the parasite itself.  相似文献   

19.
以[8-14C]标记的腺嘌呤和黄嘌呤为底物,对两种可以合成少量咖啡碱和茶叶碱的木荷属和柃木属植物(Schima mertensiana,Eurya japonica)叶片的嘌呤代谢进行了检测研究。发现木荷属和柃木属植物中嘌呤代谢相似,14C标记的腺嘌呤可以整合到嘌呤核苷酸、RNA、酰脲(包括尿囊素和尿囊酸)、二氧化碳中。经过24 h培养,在叶片吸收的放射能中,仅有6%~7%用于甲基黄嘌呤类化合物的合成(3-甲基黄嘌呤、7-甲基黄嘌呤核苷、7-甲基黄嘌呤、茶叶碱)。和其他植物一样,绝大多数14C标记的黄嘌呤整合到嘌呤的分解代谢物中(二氧化碳和酰脲),少量的放射能分布在3-甲基黄嘌呤及茶叶碱中。根据结果可以推断木荷属和柃木属植物具有N-甲基转移酶活性,可以用来合成咖啡碱和茶叶碱,相对于茶树而言,活性不高。综上,本文对木荷属和柃木属植物的嘌呤代谢以及嘌呤碱合成进行了研究。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号