首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titanium (IV) and vanadium (V) complexes are highly potent anticancer agents. A challenge in their synthesis refers to their hydrolytic instability; therefore their preparation should be conducted under an inert atmosphere. Evaluation of the anticancer activity of these complexes can be achieved by the MTT assay.The MTT assay is a colorimetric viability assay based on enzymatic reduction of the MTT molecule to formazan when it is exposed to viable cells. The outcome of the reduction is a color change of the MTT molecule. Absorbance measurements relative to a control determine the percentage of remaining viable cancer cells following their treatment with varying concentrations of a tested compound, which is translated to the compound anticancer activity and its IC50 values. The MTT assay is widely common in cytotoxicity studies due to its accuracy, rapidity, and relative simplicity.Herein we present a detailed protocol for the synthesis of air sensitive metal based drugs and cell viability measurements, including preparation of the cell plates, incubation of the compounds with the cells, viability measurements using the MTT assay, and determination of IC50 values.  相似文献   

2.
Complexes of Zn(II), Cu(II) and Co(II) with either N-(2-methylpyridyl)-3-thienyl-alkyl-carboxamide or N-(2-pyridyl)-3-thienylalkyl-carboxamide groups have been prepared and characterized. Crystal structures of ten new complexes are reported and discussed. N-(2-Methylpyridyl)-3-thienyl-alkyl-carboxamide exhibits both uni- and bidentate behavior. With all ligands, bidentate complexation is through the carbonyl oxygen and pyridine nitrogen atoms (O, N) and the amide nitrogen atom remains protonated. The electrochemical behavior and the infrared spectra of selected complexes are discussed.  相似文献   

3.
Using limited proteolytic analyses, we show that gE present in soluble herpes simplex virus type 1 gE-gI complexes is cleaved into a C-terminal (CgE) and an N-terminal (NgE) domain. The domain boundary is in the vicinity of residue 188 of mature gE. NgE, but not CgE, forms a stable complex with soluble gI.  相似文献   

4.
The human immunodeficiency virus type I (HIV-1) Vpu protein is 81 residues long and has two cytoplasmic and one transmembrane (TM) helical domains. The TM domain oligomerizes to form a monovalent cation selective ion channel and facilitates viral release from host cells. Exactly how many TM domains oligomerize to form the pore is still not understood, with experimental studies indicating the existence of a variety of oligomerization states. In this study, molecular dynamics (MD) simulations were performed to investigate the propensity of the Vpu TM domain to exist in tetrameric, pentameric, and hexameric forms. Starting with an idealized α-helical representation of the TM domain, a thorough search for the possible orientations of the monomer units within each oligomeric form was carried out using replica-exchange MD simulations in an implicit membrane environment. Extensive simulations in a fully hydrated lipid bilayer environment on representative structures obtained from the above approach showed the pentamer to be the most stable oligomeric state, with interhelical van der Waals interactions being critical for stability of the pentamer. Atomic details of the factors responsible for stable pentamer structures are presented. The structural features of the pentamer models are consistent with existing experimental information on the ion channel activity, existence of a kink around the Ile17, and the location of tetherin binding residues. Ser23 is proposed to play an important role in ion channel activity of Vpu and possibly in virus propagation.  相似文献   

5.
We studied the effects of aluminum salts on the degradation of human neurofilament subunits (NF-H, NF-M, and NF-L, the high, middle, and low molecular weight subunits, respectively) and other cytoskeletal proteins using calcium-activated neutral proteinase (calpain) purified from human brain. Calpain-mediated proteolysis of NF-L, tubulin, and glial fibrillary acidic protein (GFAP), three substrates that displayed constant digestion rates in vitro, was inhibited by AlCl3 (IC50 = 200 microM) and by aluminum lactate (IC50 = 400 microM). Aluminum salts inhibited proteolysis principally by affecting the substrates directly. After exposure to 400 microM aluminum lactate and removal of unbound aluminum, human cytoskeletal proteins were degraded two- to threefold more slowly by calpain. When cytoskeleton preparations were exposed to aluminum salt concentrations of 100 microM or higher, proportions of NF-M and NF-H formed urea-insoluble complexes of high apparent molecular mass, which were also resistant to proteolysis by calpain. Complexes of tubulin and of GFAP were not observed under the same conditions. Aluminum salts irreversibly inactivated calpain but only at high aluminum concentrations (IC50 = 1.2 and 2.1 mM for aluminum lactate and AlCl3, respectively), although longer exposure to the ion reduced by twofold the levels required for protease inhibition. These interactions of aluminum with neurofilament proteins and the effects on proteolysis suggest possible mechanisms for the impaired axoplasmic transport of neurofilaments and their accumulation in neuronal perikarya after aluminum administration in vivo.  相似文献   

6.
This paper focuses on the molecular modelling of a number of calixarene ester and phosphine oxide metal ion complexes. Monte Carlo conformational searches, in conjunction with the Merck Molecular Force Field, were carried out using Spartan SGI Version 5.0.1. running on Silicon Graphics O2 workstations. In the case of the calix[4]arene tetraesters, the optimised models strongly suggest that the selectivity of these ligands is strongly related to the eight-fold nature of the coordination with the Na+ ion, while coordination with the Li+ ion, for example, is merely three-fold. This feature of eight-fold coordination is also observed in the models of the complexes formed by the calix[4]arene tetraphosphine oxides with calcium. However, whereas the eight-fold coordination is unique to the model of the TPOL:Ca2+ complex among the ions modelled, this mode of coordination occurs for TPOS with sodium and potassium, in addition to calcium. This concurs with the observation that calcium selectivity is obtained with ion selective electrodes based on TPOL but not TPOS. Though the cavity in the calix[5]arenes PPOL and PPOLx and the calix[6]arene HPOL, in their uncomplexed form, are much larger than that of the corresponding calix[4]arenes, the pattern of selectivity is the same – the ligands are selective for calcium. The models of the complexes of these larger calixarenes, such as PPOL:Ca2+, strongly suggest that the reason for this similarity is that four of the available phosphine oxide groups complex with the calcium ion, and the others are forced away from the cavity region for steric reasons. The resulting eight-fold coordination, is therefore, similar to that of the calix[4]arenes studied.Electronic Supplementary Material available.  相似文献   

7.
The vacuum residue fraction of heavy crudes contributes to the viscosity of these oils. Specific microbial cleavage of C—S bonds in alkylsulfide bridges that form linkages in this fraction may result in dramatic viscosity reduction. To date, no bacterial strains have been shown conclusively to cleave C—S bonds within alkyl chains. Screening for microbes that can perform this activity was greatly facilitated by the use of a newly synthesized compound, bis-(3-pentafluorophenylpropyl)-sulfide (PFPS), as a novel sulfur source. The terminal pentafluorinated aromatic rings of PFPS preclude growth of aromatic ring-degrading bacteria but allow for selective enrichment of strains capable of cleaving C—S bonds. A unique bacterial strain, Rhodococcus sp. strain JVH1, that used PFPS as a sole sulfur source was isolated from an oil-contaminated environment. Gas chromatography-mass spectrometry analysis revealed that JVH1 oxidized PFPS to a sulfoxide and then a sulfone prior to cleaving the C—S bond to form an alcohol and, presumably, a sulfinate from which sulfur could be extracted for growth. Four known dibenzothiophene-desulfurizing strains, including Rhodococcus sp. strain IGTS8, were all unable to cleave the C—S bond in PFPS but could oxidize PFPS to the sulfone via the sulfoxide. Conversely, JVH1 was unable to oxidize dibenzothiophene but was able to use a variety of alkyl sulfides, in addition to PFPS, as sole sulfur sources. Overall, PFPS is an excellent tool for isolating bacteria capable of cleaving subterminal C—S bonds within alkyl chains. The type of desulfurization displayed by JVH1 differs significantly from previously described reaction results.  相似文献   

8.
Shaitan  K. V. 《Biophysics》2018,63(5):675-682
Biophysics - Abstract—The entropic effects for the energy landscapes of macromolecules are considered. We use the ideas and methods of multidimensional geometry and topology, expansion into a...  相似文献   

9.
Papain is a proteolytic enzyme with restricted applications due to its limited stability. Cyclodextrins are widely used in pharmaceutical formulations once they are able to form complexes with other molecules, improving their stability and bioavailability. The purpose of the present paper was to analyze complexes formed by papain/hydroxypropyl-β-cyclodextrin and papain/β-cyclodextrin by thermal analysis and cytotoxicity tests to verify their possible interactions and toxicological behavior. Complex solutions were prepared at different molar ratios and collected as a function of time to be lyophilized and analyzed. Results showed changes in endothermic events and cytotoxicity profiles. A complex formation for both complexes is observed; nevertheless, β-cyclodextrin was able to change the enzyme characteristics more efficiently.  相似文献   

10.
11.
Cytochrome b-559 in photosystem II can be characteristicallyconverted from a high- to a low-potential form. Taking thisresponse of Cyt b-559 as evidence for the denaturation of proteinmolecules, the sizes of the structures that stabilize the high-potentialform of Cyt b-559 in PS II membranes and thylakoids from spinachwere determined by radiation inactivation. When a target of26 kDa was inactivated in PS II membranes, Cyt b-559 was convertedto the low-potential form. The size was consistent with a molecularweight of Cyt b-559 in a proposed tetrameric structure thatconsists of two sets of 9.2-kDa and 4.3-kDa subunits [Widgeret al. (1985) FEBS Lett. 191: 186–190]. In contrast tothe functional size of 26 kDa in the PS II membranes, the functionalsize was 116 kDa in thylakoid membranes. The results suggestthe presence of an extra 90-kDa electron carrier between a redoxtitrator outside the membranes and the Cyt b-559, which maynot expose its active site to the surface of the thylakoids. (Received March 9, 1989; Accepted June 23, 1989)  相似文献   

12.
Two new zinc complexes, Zn(HL1)2 (1) and [Zn2(H2L2)(OAc)2]2 (2) [H2L1 = Schiff base derived from o-vanillin and (R)-(+)-2-amino-3-phenyl-1-propanol, H3L2 = Schiff base derived from o-vanillin and 2-amino-2-ethyl-1,3-propanediol], have been synthesized and characterized by single crystal X-ray diffraction, elemental analyses, TG analyses, solid fluorescence, IR, UV-Vis and circular dichroism spectra. The structural analysis shows that complex 1 has a right-handed double helical chain along the crystallographic b axis. A homochiral 3D supramolecular architecture has been further constructed by intermolecular C-H··· π, O-H···O and C-H···O interactions. Complex 2 includes two crystallographically independent binuclear zinc molecules. The two binuclear zinc molecules are isostructural. The 2-D sheet supramolecular structure was formed by intermolecular hydrogen bonding interaction. The fluorescence of ligands and complexes in DMF at room temperature are studied. The interactions of two complexes with calf thymus DNA (CT-DNA) are investigated using UV-Vis, CD and fluorescence spectroscopy. The results show that complex 1 exhibits higher interaction with CT-DNA than complex 2. In addition, in vitro cytotoxicity of the complexes towards four kinds of cancerous cell lines (A549, HeLa, HL-60 and K562) were assayed by the MTT method. Investigations on the structures indicated that the chirality and nuclearity of zinc complexes play an important role on cytotoxic activity.  相似文献   

13.
Many ruthenium(II) complexes show high antitumor activities, and the in vitro antitumor activities are usually related to DNA binding. We designed and synthesized two RuII polypyridyl complexes, [Ru(dmp)2(fpp)]2+ (dmp=2,9‐dimethyl‐1,10‐phenanthroline; fpp=2‐[3,4‐(difluoromethylenedioxy)phenyl]imidazo[4,5‐f] [1,10]phenanthroline and [Ru(phen)2(fpp)]2+ (phen=1,10‐phenanthroline). The DNA‐binding properties of these complexes have been investigated by spectroscopic titration, DNA melting experiments, viscosity measurements, and photoactivated cleavage. The mechanism studies of photocleavage revealed that singlet oxygen (1O2) and superoxide anion radical (O$\rm{{_{2}^{{^\cdot} -}}}$ ) may play an important role in the photocleavage. The cytotoxicity of complexes 1 and 2 have been evaluated by MTT (3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide) method; complex 2 shows slightly higher anticancer potency than 1 does against all the cell lines screened.  相似文献   

14.
Single domain antibodies are the small recombinant variable domains derived from camelid heavy-chain-only antibodies. They are renowned for their stability, in large part due to their ability to refold following thermal or chemical denaturation. In addition to refolding after heat denaturation, A3, a high affinity anti-Staphylococcal Enterotoxin B single domain antibody, possesses a melting temperature of ∼84°C, among the highest reported for a single domain antibody. In this work we utilized the recently described crystal structure of A3 to select locations for the insertion of a second disulfide bond and evaluated the impact that the addition of this second bond had on the melting temperature. Four double-disulfide versions of A3 were constructed and each was found to improve the melting temperature relative to the native structure without reducing affinity. Placement of the disulfide bond at a previously published position between framework regions 2 and 3 yielded the largest improvement (>6°C), suggesting this location is optimal, and seemingly provides a universal route to raise the melting temperature of single domain antibodies. This study further demonstrates that even single domain antibodies with extremely high melting points can be further stabilized by addition of disulfide bonds.  相似文献   

15.
Since dual specificity at the antibody active-site level involves new principles relative to monospecific antigen-antibody interactions and may be a general property of autoantibodies, it was important to further characterize such antibodies. Four lupus derived autoantibodies were studied to understand parameters and mechanisms involved in the participation of dual-specific antibody molecules in the formation of highly stable immune complexes. Because the dual-specific binding properties of selected lupus-related murine autoantibodies had been previously described using a solid-phase polystyrene-based ELISA, a conformational sensitive membrane based assay (CSI) was used on a comparative basis to further characterize NZB/NZW F1 murine monoclonal anti-DNA autoantibodies BV 04–01 (anti-ssDNA), BV 16–19 (anti-ssDNA), BV 17–45 (anti-dsDNA), and BV 16–13 (anti-dsDNA). All four monoclonal autoantibodies exhibited anti-IgG binding in the solid-phase ELISA. However in the CSI assay, only anti-dsDNA monoclonal autoantibodies BV 17-45 and BV 16-13 demonstrated anti-IgG binding, while anti-ssDNA autoantibodies BV 04–01 and BV 16–19 did not. Upon subjection to time-dependent thermal denaturation, with and without thiol reduction at 100°C in the CSI, the self-binding activities of BV 17–45 and BV 16–13 were abrogated demonstrating that the recognized IgG autoepitope(s) possessed conformational or discontinuous three-dimensional properties. The immunological implications of dual specificity are discussed on a structure–function basis and its correlation with formation of pathogenic immune complexes. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
We have reported previously that tyrosine hydroxylase in the crude extract from rat striatum exists in the inactive form showing almost no activity at the physiological pH and that the inactive form is produced by the action of the end products of the enzyme, such as dopamine. The incubation of the enzyme with the end products resulted in not only the inactivation but also a remarkable stabilization of the enzyme. Catechols possessing amino groups but no negatively charged groups on the side chains (catecholamine-type catechols) were effective at a concentration as low as 10(-7) M in both the inactivation and stabilization of the enzyme. In contrast, catechols not possessing positively or negatively charged side chains (3,4-dihydroxyphenylethyleneglycol-type catechols) were ineffective at a concentration of 10(-7) M but effective at a concentration of 10(-6) M for both the inactivation and stabilization. Catechols possessing negatively charged groups (3,4-dihydroxyphenylacetic acid-type catechols) were ineffective even at a concentration of 10(-6) M. Thus, the end products of tyrosine hydroxylase appear to serve to keep the enzyme inactive and stable. The reaction mechanism of the conversion of the enzyme from the active/labile form to the inactive/stable form by dopamine was also investigated.  相似文献   

17.
18.
Combinatorial chemistry has increased the number of compounds available for efficacy and safety assessment by several orders of magnitude and has made high throughput assays essential. To test whether higher throughput toxicity assays could be of utility in screening compounds in early development, a selected set of combinatorial chemistry compounds was screened for induction of 70-Kd heat shock protein (HSP70) and 45-Kd growth arrest and DNA damage protein (GADD45) mRNA levels as well as cytotoxicity, in HepG2 cells, using a 96-well microtiter plate format. Both assays, the branched DNA (Quantigene) assay for mRNA levels and MTT for cytotoxicity, were robust enough to be incorporated into a screening format using a single replicate and a single concentration of compound. Significantly, a structure/toxicity correlation was established with this set of compounds with cytotoxicity and gene induction patterns linked to compound structure. Therefore, this type of early screening may be useful in identifying toxic substituents, enabling the design of libraries with less potential for toxicity. While structure/toxicity correlations were observed, no relationship was observed between GADD45 gene induction and mutagenesis as measured by the Ames bacterial reverse mutation assay.  相似文献   

19.
The histidine-containing peptide L5C (PAWRHAFHWAWHMLHKAA) is a histidine-rich lytic peptide. Interactions of some divalent metal ions with peptide L5C and their effects on the cell lysis activity of the peptide were studied. The presence of Cu2+ caused a secondary structure change (from random coil to α-helix) which resulted in the loss of cell lysis activity in peptide L5C. Binding of Zn2+ to peptide L5C also reduced the lytic activity of the peptide but Zn2+ did not affect the secondary structure of the peptides. Instead, Zn2+ induced peptide L5C aggregation. Unlike Zn2+ and Cu2+, Mg2+ had no significant effect on the activity of peptide L5C. Further experiments revealed that formed ion-peptide L5C complexes were sensitive to pH and dissociated in acidic solutions. Peptide L5C demonstrated improved pH-selectivity in the presence of trace amount of Zn2+. This property of histidine-containing lytic peptides can be used to improve their therapeutic effectiveness in the treatment of cancers.  相似文献   

20.
干扰素调节因子3(IRF-3)是一种转录因子,它能对干扰素(IFN)的基因表达进行调控。它的激活是通过一系列位点的磷酸化来完成。近年来,人们对IRF-3的磷酸化调节进行了大量的研究,本文就以上研究进展作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号