首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria.  相似文献   

2.
Thymidine kinase type II is an important part of the pyrimidine salvage pathway. The thymidine kinase gene from the thermophilic eubacterium Rhodothermus marinus was cloned, sequenced and overexpressed. The gene is 639 bp and encodes a protein of 213 amino acids with a calculated molecular mass of 23.6 kDa. It shows homology to other thymidine kinase proteins from eukaryotic and prokaryotic organisms. The recombinant protein is inhibited by dNTPs but not by dNDPs. It is a tetramer in its native state. Its optimum temperature of activity is 65 degrees C and it has a half life of 15 min at 90 degrees C. This is the first thymidine kinase to be described from a thermophilic bacterium.  相似文献   

3.
Abstract: The development of the thymidine phosphorylating systems was studied in various regions of brain. Brain slices from cerebellum, brain stem, and forebrain of rabbits 2, 7, 14, 30, 90, 500, and 2500 days of age were incubated for various times in artificial CSF containing 3 nM-[3H]thymidine at 37°C under 95% O2-5% CO2. When slices from all brain regions of 2-day-old rabbits were incubated in [3H]thymidine for 30 min, tissue-to-medium ratios of 3H were between 2 and 4 and declined with age, and the percentages of the total 3H in perchloric acid homogenates of brain slices as [3H]DNA were 26–29%, declining to low levels with age. However, at all ages and in all regions studied, 41 -88% of the 3H within the slices was phosphorylated. After homogenization and subcellular fractionation of the brain slices incubated in [3H]thymidine for 30 min, the highest percentage of [3H]thymidine phosphates plus [3H]DNA was present in the nuclear (crude and purified) and mitochondrial fractions of all brain regions. The [3H]DNA content in the nuclear and mitochondrial fractions declined with age, but the percentage of [3H]thymidine phosphates did not. Thymidine phosphates were synthesized from thymidine in all brain regions tested throughout the entire life span.  相似文献   

4.
Thymidine Kinase Activity Is Reduced in the Developing Staggerer Cerebellum   总被引:2,自引:2,他引:0  
Abstract: In the mouse cerebellar mutant staggerer , thymidine kinase levels do not increase developmentally at ages when the wild-type level is high. Mixing experiments show that this effect is not due to an endogenous inhibitor of the enzyme. Both the K m and the susceptibility of the thymidine kinase to nucleotide inhibitors are unaltered in the mutant animals, suggesting that the enzyme is not induced in the mutant.  相似文献   

5.
The third domain of life, the Archaea (formerly Archaebacteria), is populated by a physiologically diverse set of microorganisms, many of which reside at the ecological extremes of our global environment. Although ostensibly prokaryotic in morphology, the Archaea share much closer evolutionary ties with the Eukarya than with the superficially more similar Bacteria. Initial genomic, proteomic, and biochemical analyses have revealed the presence of “eukaryotic” protein kinases and phosphatases and an intriguing set of serine-, threonine-, and tyrosine-phosphorylated proteins in the Archaea that may offer new insights into this important regulatory mechanism.  相似文献   

6.
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non ‐replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible toTK2 deficiency. The precise patho‐physiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.  相似文献   

7.
Mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) catalyze the initial phosphorylation of pyrimidine and purine deoxyribonucleosides, and are essential for maintaining mitochondrial dNTP pools for mitochondrial DNA replication. Here the expression of mitochondrial TK2 and dGK in relation to cell growth phases in cultured cells was investigated. TK2 and dGK protein levels in isolated mitochondria and TK2 activity in total cell extracts from U2OS and TK1 deficient L929 cells were determined. We found that TK2 levels were negatively correlated with cell growth rates and there was an exponential increase in TK2 levels in cells entering stationary phase. The expression of dGK did not change and appeared to be constitutive.  相似文献   

8.
Thymidine Transport in the Central Nervous System   总被引:1,自引:9,他引:1  
  相似文献   

9.
采用异硫氰酸胍(GuSCN)和硅藻从B95-8细胞中快速抽摸板DNA。根据EB病毒(EBV)B95-8株DNA全序列及编码EBV胸苷激酶(TK)的开放读框BXLF1的结构,设计合成一对引物,并在引物的5′一端分别引入EcoRI和PstI切点,用PCR技术扩增出一含完整的EBVTK基因的1.843KbDNA片段,NcoI酶切分析鉴定,EcoRI/PstI双酶切PCR产物和载体,使目的基因定向克隆至选  相似文献   

10.
Balanced deoxynucleotide pools are known to be important for correct DNA repair, and deficiency for some of the central enzymes in deoxynucleotide metabolism can cause imbalanced pools, which in turn can lead to mutagenesis and cell death. Here we show that cells deficient for the thymidine salvage enzyme thymidine kinase 1 (TK1) are more resistant to UV-induced DNA damage than TK1 positive cells although they have thymidine triphosphate (dTTP) levels of only half the size of control cells. Our results suggest that higher thymidine levels in the TK- cells caused by defect thymidine salvage to dTTP protects against UV irradiation.  相似文献   

11.
The enzyme activity of dephosphorylation of thymidine triphosphate was found in microsomal fraction of rat liver. The enzyme activity decreased at the time when [3H]thymidine incorporation into DNA of regenerating liver increased. When the [3H]thymidine incorporation was suppressed by 1,3-diaminopropane, the enzyme activity remained elevated. These results suggest that the enzyme activity appears to be closely linked to DNA synthesis.  相似文献   

12.
Abstract

Although cysteine (Cys) is beneficial to stabilize protein structures, it is not prevalent in ther-mophiles. For instance, the Cys contents in most thermophilic archaea are only around 0.7%. However, methanogenic archaea, no matter thermophilic or not, contain relatively abundant Cys, which remains elusive for a long time. Recently, Klipcan et al. correlated this intriguing property of methanogenic archaea with their unique tRNA-dependent Cys biosynthetic pathway. But, the deep reasons underlying the correlation are ambiguous. Considering the facts that free Cys is thermally labile and the tRNA-dependent Cys biosynthesis avoids the use of free Cys, we speculate that the unique Cys biosynthetic pathway represents a strategy to increase Cys contents by preventing it from thermal degradation, which may be relevant to the thermal adaptation of methanogenic archaeza ancestor.  相似文献   

13.
Protein-tyrosine dephosphorylation is a major mechanism in cellular regulation. A large number of protein-tyrosine phosphatases is known from Eukarya, and more recently bacterial homologues have also been identified. By employing conserved sequence patterns from both eukaryotic and bacterial protein-tyrosine phosphatases, we have identified three homologous sequences in two of the four complete archaeal genomes. Two hypothetical open reading frames in the genome of Methanococcus jannaschii (MJ0215 and MJECL20) and one in the genome of Pyrococcus horikoshii (PH1732) clearly bear all the conserved residues of this family. No homologues were found in the genomes of Archaeoglobus fulgidus and Methanobacterium thermoautotrophicum. This is the first report of protein-tyrosine phosphatase sequences in Archaea. Received: 29 April 1998 / Accepted: 27 November 1998  相似文献   

14.
为获得具有免疫原性的TK1重组蛋白。通过构建能够表达TK1蛋白的重组菌BL21-pET32a-TK1,采用大肠杆菌pET32a表达系统,优化IPTG浓度、诱导温度、诱导时间使BL21-pET32a-TK1重组菌表达目的蛋白的作用条件最佳。表达产物用镍离子亲和层析纯化获得TK1蛋白,并用SDS-PAGE和Western blot进行检测。用TK1重组蛋白免疫BALB/c小鼠制备单克隆抗体,检测蛋白质免疫原性。实验结果表明,成功构建能够表达TK1蛋白的重组菌BL21-pET32aTK1,在37℃条件下,IPTG浓度为0.2mmol/L、诱导6h时重组蛋白TK1表达量最高。镍离子亲和层析梯度洗脱在80mmol/L咪唑条件下TK1蛋白纯度最大,灰度分析为87.3%,浓缩后蛋白质浓度为5.96mg/ml。用该蛋白质制备杂交瘤共获得10株稳定分泌TK1抗体的阳性单克隆细胞株,表明TK1重组蛋白具有较好的免疫原性。成功获得可溶性、抗原活性高、免疫原性强的TK1重组蛋白,为肿瘤科学及临床应用研究提供物质支撑。  相似文献   

15.
Thymidine phosphorylase (TP) catalyzes the cleavage of thymidine into thymine and 2-deoxy-α-d-ribose-1-phosphate. Elevated activity of TP prevents apoptosis, and induces angiogenesis which ultimately leads to tumor growth and metastasis. Critical role of TP in cancer progression makes it a valid target in anti-cancer research. Discovery of small molecules as TP inhibitors is vigorously pursued in cancer therapy. In the present study, we functionalized thymidine as benzoyl ester to synthesize compounds 316. In vitro evaluation of thymidine esters for their thymidine phosphorylase inhibition activity was subsequently carried out. Compounds 4, 10, 14, and 15 showed good activities with lower IC50 values than the standard, 7-deazaxanthine (IC50 = 41.0 ± 1.63 μM). Among them, compound 14 showed five folds higher activity (IC50 = 7.5 ± 0.8 μM), while 4 (IC50 = 18.5 ± 1.0 μM) and 10 (IC50 = 18.8 ± 1.2 μM) showed two folds higher activity than the standard. Compound 15 showed slightly better activity (IC50 = 33.3 ± 1.5 μM) to the standard. Potent compounds were further subjected to kinetic and molecular docking studies to identify their mode of inhibition, and to study their interactions with the protein at atomic level, respectively. All active compounds were non-cytotoxic to mouse fibroblast 3T3 cell line. These results identify thymidine esters as substrate analogue (substrate-like) inhibitors of angiogenic enzyme thymidine phosphorylase for further studies.  相似文献   

16.
17.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by mutations in the gene encoding thymidine phosphorylase (TP). The disease is characterized clinically by impaired eye movements, gastrointestinal dysmotility, cachexia, peripheral neuropathy, myopathy, and leukoencephalopathy. Molecular genetic studies of MNGIE patients' tissues have revealed multiple deletions, depletion, and site‐specific point mutations of mitochondrial DNA. TP is a cytosolic enzyme required for nucleoside homeostasis. In MNGIE, TP activity is severely reduced and consequently levels of thymidine and deoxyuridine in plasma are dramatically elevated. We have hypothesized that the increased levels of intracellular thymidine and deoxyuridine cause imbalances of mitochondrial nucleotide pools that, in turn, lead to the mtDNA abnormalities. MNGIE was the first molecularly characterized genetic disorder caused by abnormal mitochondrial nucleoside/nucleotide metabolism. Future studies are likely to reveal further insight into this expanding group of diseases.  相似文献   

18.
Seven extremely halophilic strains were isolated from the Ayvalik Saltern in the north-eastern part of Turkey. Chemical analyses of the brine and salt samples were performed to measure their salt content, hardness and pH. Isolated strains were tested for their antibiotic sensitivities; cell and colony morphologies; hydrolysis of casein, starch, gelatin, Tween 20 and Tween 80; and oxidase and catalase activity. All strains were found to belong to the domain Archaea. Characterization of polar lipids by thin layer chromatography indicated that all isolates contained phytanyl diether derivatives of phosphatidylglycerol (PG), the methyl ester of phosphatidyl glycerophosphate (PGP-Me), and phosphatidylglycerosulphate (PGS). Four isolates had triglycosyl diether (TGD-2) as glycolipid, and the other three contained a sulphated diglycosyl diether instead. All isolates were examined for the presence of plasmids by agarose gel electrophoresis. Four strains were found to harbour plasmids ranging in size from 13.8 to 15.3 kbp. Correlation between the protein profiles in SDS–PAGE and the phenotypic properties of the strains was poor. The data presented here provide the first published account of the microbiota of the Ayvalik saltern, which provides a large part of the salt produced in Turkey.  相似文献   

19.
Caenorhabditis elegans has a single deoxynucleoside kinase-like gene. The sequence is similar to that of human TK1, but besides accepting thymidine as a substrate, the C. elegans TK1 (CeTK1) also phosphorylates deoxyguanosine. In contrast to human TK1, the CeTK1 exclusively exists as a dimer with a molecular mass of ~60 kDa, even if incubated with ATP. Incubation with ATP induces a transition into a more active enzyme with a higher kcat but unchanged Km. This activation only occurs at an enzyme concentration in the incubation buffer of 0.5 μg/ml (8.42 nM) or higher. C-terminal deletion of the enzyme results in lower catalytic efficiency and stability.  相似文献   

20.
Using a polyphasic approach, we examined the presence of Archaea in the Gulf of Aqaba, a warm marine ecosystem, isolated from major ocean currents and subject to pronounced seasonal changes in hydrography. Catalyzed reported deposition FISH analyses showed that Archaea make up to >20% of the prokaryotic community in the Gulf. A spatial separation between the two major phyla of Archaea was observed during summer stratification. Euryarchaeota were found exclusively in the upper 200 m, whereas Crenarchaeota were present in greater numbers in layers below the summer thermocline. 16S rRNA gene-based denaturing gradient gel electrophoresis confirmed this depth partitioning and revealed further diversity of Crenarchaeota and Euryarchaeota populations along depth profiles. Phylogenetic analysis showed pelagic Crenarchaeota and Euryarchaeota to differ from coral-associated Archaea from the Gulf, forming distinct clusters within the Marine Archaea Groups I and II. Endsequencing of fosmid libraries of environmental DNA provided a tentative identification of some members of the archaeal community and their role in the microbial community of the Gulf. Incorporation studies of radiolabeled leucine and bicarbonate in the presence of different inhibitors suggest that the archaeal community participates in autotrophic CO2 uptake and contributes little to the heterotrophic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号