共查询到20条相似文献,搜索用时 39 毫秒
1.
The porphyrin, meso-5-(pentafluorophenyl)-10, 15, 20-tris(4-pyridyl)porphyrin has been used to synthesize two new metalloporphyrin complexes. Insertion of copper(II) into the porphyrin center gives the copper(II) porphyrin. Coordination of three [Ru(bipy)2Cl]+ moieties (where bipy = 2,2′-bipyridine) to the pyridyl nitrogens of the copper(II) porphyrin gives the target complex. Electronic transitions associated with the copper(II) porphyrin and the triruthenium copper(II) porphyrin include an intense Soret band and a less intense Q-band in the visible region of the spectrum. An intense π-π∗ transition in the UV region associated with the bipyridyl groups and a metal to ligand charge transfer (MLCT) band appearing as a shoulder to the Soret band are observed for the ruthenated copper(II) porphyrin. Electrochemical properties associated with the multimetallic complex include a redox couple in the cathodic region with E1/2 = −0.86 V versus Ag/AgCl attributed to the porphyrin and a redox couple in the anodic region E1/2 = 0.88 V versus Ag/AgCl due to the RuIII/II couple. DNA titrations indicate the triruthenium copper(II) porphyrin interacts with DNA potentially through a groove binding mechanism. Irradiation of aqueous solutions of the target complex and supercoiled DNA at a 10:1 base pair to complex ratio with visible light above 400 nm indicates that the complex causes nicking of the DNA helix. 相似文献
2.
Yi Sun Qian-Xiong Zhou Yuan-Jun Hou Xue-Song Wang Bao-Wen Zhang 《Journal of inorganic biochemistry》2009,103(12):1658-1665
Four cobalt(III) polypyridyl complexes, [Co(phen)3−n(dpq)n]3+ (phen = 1,10-phenanthroline, dpq = dipyrido[3,2-f:2′,3′-h]-quinoxaline) (n = 0, 1, 2, and 3) were synthesized and the influences of the dpq ligand on the photophysical properties, electrochemical properties, DNA binding affinities, as well as photonuclease activities of the complexes, were examined in detail. The presence of dpq ligand increases the DNA binding affinities of the corresponding complexes remarkably with respect to [Co(phen)3]3+. With the sequential substitution of phen ligand by dpq ligand, the 1O2 quantum yields of the corresponding complexes are enhanced greatly. As a result, the photonuclease activities follow the order of [Co(dpq)3]3+ > [Co(phen)(dpq)2]3+ > [Co(phen)2(dpq)]3+ ? [Co(phen)3]3+. It was found all the examined complexes can generate OH upon UV irradiation, and OH is also involved in DNA photocleavage as reactive oxygen species. 相似文献
3.
Two new ruthenium complexes [Ru(bpy)2(mitatp)](ClO4)21 and [Ru(bpy)2(nitatp)](ClO4)22 (bpy = 2,2′-bipyridine, mitatp = 5-methoxy-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene, nitatp = 5-nitro-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene) have been synthesized and characterized by elemental analysis, 1H NMR, mass spectrometry and cyclic voltammetry. Spectroscopic and viscosity measurements proved that the two Ru(II) complexes intercalate DNA with larger binding constants than that of [Ru(bpy)2(dppz)]2+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine) and possess the excited lifetime of microsecond scale upon binding to DNA. Both complexes can efficiently photocleave pBR322 DNA in vitro under irradiation. Singlet oxygen (1O2) was proved to contribute to the DNA photocleavage process, the 1O2 quantum yields was determined to be 0.43 and 0.36 for 1 and 2, respectively. Moreover, a photoinduced electron transfer mechanism was also found to be involved in the DNA cleavage process. 相似文献
4.
Chen GJ Qiao X Qiao PQ Xu GJ Xu JY Tian JL Gu W Liu X Yan SP 《Journal of inorganic biochemistry》2011,105(2):119-126
Two new Cu(II) complexes, [Cu(acac)(dpq)Cl] () and [Cu(acac)(dppz)Cl] () (acac = acetylacetonate, dpq = dipyrido[3,2-d:20,30-f]quinoxaline, dppz = dipyrido[3,2-a:20,30-c] phenazine), have been synthesized and their DNA binding, photo-induced DNA cleavage activity and cell cytotoxicity are studied. The complexes show good binding propensity to calf thymus DNA in the order: 2(dppz) > 1(dpq). Furthermore, two complexes exhibit efficient DNA cleavage activity on natural light or UV-A (365 nm) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The photo-induced DNA cleavage activity of the dppz complex 2 is found to be more efficient than its dpq analogue. In vitro study of the photocytotoxicity of two complexes on HeLa cells indicate that both of them have the potential to act as effective anticancer drugs, with IC50 values of 5.25 ± 0.83 μM (1) and 4.40 ± 0.52 μM (2) in the natural light, and 2.57 ± 0.92 μM (1) and 2.18 ± 0.52 μM (2) in UV-A light. In addition, to detect an apoptotic HeLa body, cells were stained with Hoechst 33342 dye. 相似文献
5.
Ternary oxovanadium(IV) complexes [VO(salmdtc)(B)] (1-3), where salmdtc is dianionic N-salicylidene-S-methyldithiocarbazate and B is N,N-donor phenanthroline bases like 1,10-phenanthroline (phen, 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 3), are prepared, characterized and their DNA binding and DNA cleavage activity studied. Complex 3 is structurally characterized by single-crystal X-ray crystallography. The molecular structure shows the presence of a vanadyl group in six-coordinate VN3O2S coordination geometry. The S-methyldithiocarbazate Schiff base acts as a tridentate NSO-donor ligand in a meridional binding mode. The N,N-donor heterocyclic base displays a chelating mode of binding with an N-donor site trans to the vanadyl oxo-group. The complexes show a d-d band in the range of 675-707 nm in DMF. They exhibit an irreversible oxidative cyclic voltammetric response near 0.9 V due to the V(V)/V(IV) couple and a quasi-reversible reductive V(IV)/V(III) redox couple near −1.0 V vs. SCE in DMF-0.1 M TBAP. The complexes show good binding propensity to calf thymus DNA giving binding constant values in the range of 7.4 × 104-2.3 × 105 M−1. The thermal denaturation and viscosity binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor chemical nuclease activity in dark in the presence of 3-mercaptopropionic acid (MPA) or hydrogen peroxide. The dpq and dppz complexes show efficient DNA cleavage activity in UV-A light of 365 nm via a type-II mechanistic pathway involving formation of singlet oxygen (1O2) as the reactive species. 相似文献
6.
Four related ruthenium(III) complexes, with the formula mer-[RuCl3(dmso)(N−N)] (dmso = dimethyl sulfoxide; N−N = 2,2′-bipyridine (1), 1,10-phenantroline (2), dipyrido[3,2-f:2′,3′-h]quinoxaline (3) and dipyrido[3,2-a:2′,3′-c]phenazine (4)), have been reported. Complexes 3 and 4 are newly synthesized and characterized by X-ray diffraction. The hydrolysis process of 1-4 has been studied by UV-vis measurement, and it has been found that the extension of the N−N ligands can increase the stability of the complexes. The binding of these complexes with DNA has been investigated by plasmid cleavage assay, competitive binding with ethidium bromide (EB), DNA melting experiments and viscosity measurements. The DNA binding affinity is increased with the extension of the planar area of the N−N ligands, and complex 4 shows an intercalative mode of interaction with DNA. The in vitro anticancer activities of these compounds are moderate on the five human cancer cell lines screened. 相似文献
7.
Surender Kumar Sukhvinder Vinod Kumar Girish Kumar Gupta Vikas Beniwal Fatma Abdmouleh 《Nucleosides, nucleotides & nucleic acids》2017,36(8):543-551
In order to explore the biological potential, some synthesized triazolylnucleosides were evaluated for their antibacterial, tyrosinase and DNA photocleavage activities. Triazolylnucleosides (5–12) were screened against Staphylococcus aureus (ATCC 6538), gram-positive and Escherichia coli (ATCC 10536), gram-negative bacterial strains. Among the series, compound 9 exhibited a significant level of antibacterial activity against both strains at higher concentration in reference to the standard drug, Levofloxacin. Tyrosinase activity and inhibition of these compounds were also studied, and it has been found that compounds 8 and 11 displayed more than 50% inhibitory activity. In addition, six compounds (7–12) were evaluated for their DNA photocleavage activity. The compounds 8 and 12 exhibited excellent DNA photocleavage activity at a concentration of 10 μg and may be used as template for antitumor drugs in the future. 相似文献
8.
Tamal Ghosh Bhaskar G. Maiya Anunay Samanta Atindra D. Shukla D. Amilan Jose D. Krishna Kumar Amitava Das 《Journal of biological inorganic chemistry》2005,10(5):496-508
Mixed-ligand ruthenium(II) complexes of three photoactive ligands, viz., (E)-1-[2-(4-methyl-2-pyridyl)-4-pyridyl]-2-(1-naphthyl)-1-ethene (mppne), (E)-1-(9-anthryl)-2-[2-(4-methyl-2-pyridyl)-4-pyridyl]-1-ethene (mppae) and (E)-1-[2-(4-methyl-2-pyridyl)-4-pyridyl]-2-(1-pyrenyl)-1-ethene (mpppe), in which a 2,2′-bipyridyl unit is linked via an ethylinic linkage to either a naphthalene, an anthracene or a pyrene chromophore and three electroactive ligands, viz., 4-(4-pyridyl)-1,2-benzenediol (catpy), 5,6-dihydroxy-1,10-phenanthroline (catphen) and 1,2-benzenediol (cat), were synthesized in good to moderate yields. Complexes [Ru(bpy)2(mppne)]2+ (bpy is 2, 2′–bipyridyl), [Ru(bpy)2(mppae)]2+, [Ru(bpy)2(mpppe)]2+, [Ru(bpy)2(sq-py)]+, [Ru(bpy)2(sq-phen)]+ and [Ru(phen)2(bsq)]+ (phen is 1,10-phenanthroline) were fully characterized by elemental analysis, IR, 1H NMR, fast-atom bombardment or electron-impact mass, UV–vis and cyclic voltammetric methods. In the latter three complexes, the ligands catpy, catphen and cat are actually bound to the metal center as the corresponding semiquinone species, viz., 4-(4-pyridyl)-1,2-benzenedioleto(+I) (sq-py), 1,10-phenanthroline-5,6-dioleto(+I) (sq-phen) and 1,2-benzenedioleto(+I) (bsq), thus making the overall charge of the complexes formally equal to + 1 in each case. These three complexes are electron paramagnetic resonance active and exhibit an intense absorption band between 941 and 958 nm owing to metal-to-ligand charge transfer (MLCT, d
Ru→π*sq) transitions. The other three ruthenium(II) complexes containing three photoactive ligands, mppne, mppae and mpppe, exhibit MLCT (d
Ru→π*bpy ) bands in the 454–461-nm region and are diamagnetic. These can be characterized by the 1H NMR method. [Ru(bpy)2(mppne)]2+, [Ru(bpy)2(mppae)]2+ and [Ru(bpy)2(mpppe)]2+ exhibit redox waves corresponding to the RuIII/RuII couple along with the expected ligand (bpy and substituted bpy) based ones in their cyclic and differential pulse voltammograms (CH3CN, 0.1 M tetrabutylammonium hexafluorophosphate)—corresponding voltammograms of [Ru(bpy)2(sq-py)]+, [Ru(bpy)2(sq-phen)]+ and [Ru(phen)2(bsq)]+ are mainly characterized by waves corresponding to the quinone/semiquinone (q/sq) and semiquinone/1,2-diol (sq/cat) redox processes. The results of absorption and fluorescence titration as well as thermal denaturation studies reveal that [Ru(bpy)2(mppne)]2+ and [Ru(bpy)2(mppae)]2+ are moderate-to-strong binders of calf thymus DNA with binding constants ranging from 105 to 106 M−1. Under the identical conditions of drug and light dose, the DNA (supercoiled pBR 322) photocleavage activities of these two complexes follow the order:[Ru(bpy)2(mppne)]2+>[Ru(bpy)2(mppae)]2+, although the emission quantum yields follow the reverse order. The other ruthenium(II) complexes containing the semiquinone-based ligands are found to be nonluminescent and inefficient photocleavage agents of DNA. However, experiments shows that [Ru(bpy)2(sq)]+-based complexes oxidize the sugar unit and could be used as mild oxidants for the sugar moiety of DNA. Possible explanations for these observations are presented.Electronic Supplementary Material Supplementary material is available for this article at . 相似文献
9.
Chittanahalli N. Sudhamani Kalligundi R. Sangeetha Gowda Dugganna Girija Manju Giridhar 《Nucleosides, nucleotides & nucleic acids》2013,32(10):546-562
AbstractThe chemistry of Co(II) complexes showing efficient light induced DNA cleavage activity, binding propensity to calf thymus DNA and antibacterial PDT is summarized in this article. Complexes of formulation [Co(mqt)(B)2]ClO4 1–3 where mqt is 4-methylquinoline-2-thiol and B is N,N-donor heterocyclic base, viz. 1,10-phenanthroline (phen 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz 3) have been prepared and characterized. The DNA-binding behaviors of these three complexes were explored by absorption spectra, viscosity measurements and thermal denaturation studies. The DNA binding constants for complexes 1, 2 and 3 were determined to be 1.6?×?103?M?1, 1.1?×?104?M?1 and 6.4?×?104?M?1 respectively. The experimental results suggest that these complexes interact with DNA through groove binding mode. The complexes show significant photocleavage of supercoiled (SC) DNA proceeds via a type-II process forming singlet oxygen as the reactive species. Antimicrobial photodynamic therapy was studied using photodynamic antimicrobial chemotherapy (PACT) assay against E. coli and all complexes exhibited significant reduction in bacterial growth on photoirradiation. 相似文献
10.
Muralikrishna Narra 《Inorganica chimica acta》2006,359(7):2256-2262
A new porphyrin 5,15-(4-pyridyl)-10,20-(pentafluorophenyl)porphyrin (H2DPDPFPP) and its diruthenium(II) analog ([trans-H2(DPDPFPP)Ru2(bipy)4Cl2(PF6)2]) have been synthesized and characterized. Electronic transitions associated with the porphyrin consist of an intense Soret band near 400 nm and four Q-bands from 500 nm to 650 nm. Coordination of two [Ru(bipy)2Cl]+ groups, where bipy = 2,2′-bipyridine, to the pyridyl nitrogens of the porphyrin give additional electronic transitions associated with the bipy orbitals and metal to ligand charge transfer (MLCT) transitions associated with the Ru(II) and bipy orbitals. Reversible redox couples in the cathodic region occur at E1/2 = −0.74 V and −1.21 V versus Ag/AgCl reference which are shifted to more positive potentials when the porphyrin is coordinated to the Ru(II) groups. Gel electrophoresis studies with linearized pUC18 indicate an interaction between the metallated porphyrin and DNA which is confirmed by UV/Vis titrations with calf thymus (CT) DNA giving a binding constant of ca. 105 M−1. When buffered, pH 7, solutions of circular plasmid DNA containing the ruthenium porphyrin are irradiated with a 50 W tungsten lamp cleavage of the DNA is observed. 相似文献
11.
New mixed polypyridyl {NMIP = 2′-(2″-nitro-3″,4″-methylenedioxyphenyl)imidazo-[4′,5′-f][1,10]-phenanthroline, dmb = 4,4′-dimethyl-2,2′-bipyridine, bpy = 2,2′-bipyridine} ruthenium(II) complexes [Ru(dmb)2(NMIP)]2+ (1) and [Ru(bpy)2(NMIP)]2+ (2) have been synthesized and characterized. The binding of these complexes to calf thymus DNA (CT-DNA) has been investigated with spectroscopic methods, viscosity and electrophoresis measurements. The experimental results indicate that both complexes could bind to DNA via partial intercalation from the minor/major groove. In addition, both complexes have been found to promote the single-stranded cleavage of plasmid pBR 322 DNA upon irradiation. Under comparable experimental conditions compared with [Ru(phen)2(NMIP)]2+, during the course of the dialysis at intervals of time, the CD signals of both complexes started from none, increased to the maximum magnitude, then no longer changed, and the activity of effective DNA cleavage dependence upon concentration degree lies in the following order: [Ru(phen)2NMIP]2+ > complex 2 > complex 1. 相似文献
12.
Ternary S-methyl-L-cysteine (SMe-l-cys) copper(II) complexes [Cu(SMe-L-cys)(B)(H(2)O)](X) (1-4), where the heterocyclic base B is 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyridoquinoxaline (dpq, 3) and dipyridophenazine (dppz, 4), and X is ClO(4)(-) (1-3) or NO(3)(-) (4), are prepared and their DNA binding and cleavage properties studied. Complexes 2 and 4 are structurally characterized by X-ray crystallography. Both the crystal structures show distorted square-pyramidal (4+1) CuN(3)O(2) coordination geometry of the complexes in which the N,O-donor S-methyl-L-cysteine and N,N-donor heterocyclic base bind at the basal plane with a water molecule as the axial ligand. In addition, the dppz structure shows the presence of a 1D-chain formed due to covalent linkage of the carboxylate oxygen atom belonging to another molecule at the elongated axial site. The crystal structures show chemically significant non-covalent interactions like hydrogen bonding involving the axial aqua ligand and pi-pi interactions between dppz ligands. The complexes display a d-d band in the range of 605-654 nm in aqueous dimethylformamide (DMF) solution (9:1 v/v). The redox active complexes show quasireversible cyclic voltammetric response near 0.1 V in DMF assignable to the Cu(II)/Cu(I) couple. The complexes show good binding affinity to calf thymus (CT) DNA giving the order: 4 (dppz)>3 (dpq)>2 (phen)>1 (bpy). The intrinsic binding constants, obtained from UV-visible spectroscopic studies, are 1.3x10(4) and 2.15 x 10(4) M(-1) for 3 and 4, respectively. Control DNA cleavage experiments using pUC19 supercoiled (SC) DNA and minor groove binder distamycin suggest major groove binding propensity for the dppz complex, while the phen and dpq complexes bind at the minor groove of DNA. Complexes 2-4 show DNA cleavage activity in dark in the presence of a reducing agent 3-mercaptopropionic acid (MPA) via a mechanistic pathway involving formation of hydroxyl radical as the reactive species. The complexes also show efficient photo-induced DNA cleavage activity on irradiation with a monochromatic UV light of 365 nm in absence of any external reagent. The cleavage efficiency follows the order: 3>4>2. The complexes exhibit significant DNA cleavage activity on irradiation with visible light of 633 nm. Control experiments show inhibition of cleavage in presence of singlet oxygen quenchers like sodium azide, histidine and enhancement of cleavage in D(2)O, suggesting formation of singlet oxygen as a reactive species in a type-II process. The photosensitizing effect of the thiomethyl group of the amino acid is evidenced from the observation of significant DNA photocleavage activity of the phen complex 2 as the phen ligand itself is not a photosensitizer. 相似文献
13.
A novel complex, [Ru(phen)2pzip]2+1 (phen = 1,10-phenanthroline; pzip = 2-(pyrazine-2-yl)imidazo-[4,5-f][1,10]phenanthroline]), has been synthesized and characterized by elemental analysis, ES-MS, 1H NMR. The DNA-binding behaviors of this complex were studied by spectroscopic methods and viscosity measurements. The results indicate that the complex can bind to CT-DNA in an intercalative mode. When irradiated at 365 nm, complex 1 can promote the cleavage of plasmid pBR322DNA. Furthermore, Zn2+ can trigger the DNA cleavage of complex 1 without irradiation. The mechanism studies revealed that the DNA cleavage by complex 1 in the presence of Zn2+ is likely to proceed via a hydrolytic cleavage process. 相似文献
14.
New chiral Ru(II) complexes delta and lambda-[Ru(bpy)(2)(pyip)](PF(6))(2) [(bpy = 2,2'-bipyridine; pyip = (2-(1-pyrenyl)-1H-imidazo[4,5-f] [1,10]phenanthroline] were synthesized and characterized by elemental analysis, (1)H NMR, ESI-MS, IR, and CD spectra. Their DNA-binding properties were studied by means of UV-vis, emission spectra, CD spectra and viscosity measurements. A subtle but detectable difference was observed in the interaction of both enantiomer with CT-DNA. Spectroscopy experiments indicated that each of these complexes could interact with the DNA. The DNA-binding of the Delta-enantiomer was stronger than that of Lambda-enantiomer. DNA-viscosity experiments provided evidence that both Delta- and Lambda-[Ru(bpy)(2)(pyip)](PF(6))(2) bound to DNA by intercalation. At the same time, the DNA-photocleavage properties of the complexes were investigated too. Under irradiation with UV light, Ru(II) complexes showed different efficiency of cleaving DNA. 相似文献
15.
Devappa S. Lamani S. G. Badiger K. R. Venugopala Reddy H. S. Bhojya Naik 《Nucleosides, nucleotides & nucleic acids》2013,32(9):498-517
AbstractThe present paper deals with the synthesis of novel macrocyclic complexes of the type [MLX]X, where [(M?=?Co(II) (1), and Ni(II) (2) X?=?(Cl2)]. The complexes are synthesized by the reaction of ligand(L)diquinolineno[1,3,7,9]tetraazacyclododecine-7,15-ethane(14H,16H)-benzene with the corresponding metal salts. The synthesized complexes are thoroughly characterized by elemental analysis, FT-IR, 1H-NMR, Mass and electronic spectra. The complexes (1) and (2) were evaluated for in vitro cytotoxicity against human breast adenocarcinoma cell (MCF-7). MTT cytotoxicity studies shows both the complexes are most effective. The binding properties of these complexes with calf thymus-DNA were studied by absorption, emission spectra, viscosity measurements, and thermal denaturation studies. On binding to CT-DNA, the absorption spectrum undergoes bathochromic and hypochromic shifts. The absorption spectral results indicate that the intrinsic binding constant (Kb) are 4.8?×?105?M?1 for (1) and 3.9?×?105?M?1 for (2) respectively, suggesting that complex (1) binds more strongly to CT-DNA than complex (2). The viscosity measurement results revealed the viscosity of sonicated rod like DNA fragments increased when the complex was added to the solution of CT-DNA. The synthesized ligand and its metal complexes are screened for antibacterial and antifungal activities. 相似文献
16.
The heteroleptic complexes, [(MePhtpy)RuCl(dpp)](PF6) and [(tpy)RuCl(dpp)](PF6), have been synthesized, characterized, and investigated with respect to their photophysical, redox, and DNA photocleavage properties (where MePhtpy = 4′-(4-methylphenyl)-2,2′:6′,2′′-terpyridine and dpp = 2,3-bis(2-pyridyl)pyrazine, tpy = 2,2′:6′,2′′-terpyridine). The X-ray crystal structure confirms the identity of the new [(MePhtpy)RuCl(dpp)](PF6) complex. These heteroleptic complexes were found to photocleave DNA in the presence of oxygen, unlike the previously studied complex, [Ru(tpy)2](PF6)2. The photophysical, redox, and DNA photocleavage properties of the heteroleptic complexes were compared with those of the homoleptic complexes, [Ru(MePhtpy)2](PF6)2 and [Ru(tpy)2](PF6)2. The heteroleptic complexes showed intense metal to ligand charge transfer (MLCT) transition at lower energy ([(MePhtpy)RuCl(dpp)](PF6), 522 nm; [(tpy)RuCl(dpp)](PF6), 516 nm) and longer excited state lifetimes as compared to the homoleptic complexes. The [Ru(MePhtpy)2]2+ complex was found to photocleave DNA in contrast to [Ru(tpy)2]2+. The introduction of a methylphenyl group on the tepyridine ligand not only enhances the 3MLCT excited state lifetime but also increases the lipophilicity and thereby the DNA binding ability of the molecule. An increase in lipophilicity upon addition of a methylphenyl group on the 2,2′:6′,2′′-terpyridine ligand was confirmed by determination of the partition coefficient ([(MePhtpy)RuCl(dpp)](PF6), log P = +1.16; [(tpy)RuCl(dpp)](PF6), log P = −1.27). The heteroleptic complexes photocleave DNA more efficiently than the homoleptic complexes, with the greatest activity being observed for the newly prepared [(MePhtpy)RuCl(dpp)](PF6) complex. 相似文献
17.
Two ruthenium (II) complexes [Ru(dmb)2(APIP)](ClO4)2 (APIP=2-(2-aminophenyl)imidazo[4,5-f?][1,10]phenanthroline, dmb=4,4'-dimethyl-2,2'-bipyridine; 1) and [Ru(dmb)2(HAPIP)](ClO4)2 (HAPIP=2-(2-hydroxyl-4-aminophenyl)imidazo[4,5-f?][1,10]phenanthroline; 2) were synthesized and characterized. DNA binding was investigated by electronic absorption titration, luminescence spectra, thermal denaturation, viscosity measurements, and photocleavage. The DNA binding constants for complexes 1 and 2 were 4.20 (±0.14)×10(4) and 5.45 (±0.15)×10(4) M(-1). The results suggest that these complexes partially intercalate between the base pairs. The cytotoxicity of complexes 1 and 2 was evaluated by MTT assay. Cellular uptake was observed under fluorescence microscopy; complexes 1 and 2 can enter into the cytoplasm and accumulate in the nuclei. Apoptosis and the antioxidant activity against hydroxyl radicals (?OH) were also explored. 相似文献
18.
The new chiral macrocyclic complexes [1,2-bis(1H-benzimidazol-2-yl)-1-(1,8-dihydro-1,3,5,8,10,12-hexaazacyclotetradecane)-2-hydroxyethanolate] copper(II) and -nickel(II) perchlorate, 3 and 4, respectively, were synthesized by the reaction of 1,2-bis(1H-benzimidazol-2-yl)ethane-1,2-diol (L) and (1,8-dihydro-1,3,5,8,10,12-hexaazacyclotetradecane)copper(II) and -nickel(II) diperchlorate complexes, 1 and 2, respectively. All complexes were characterized by various spectroscopic techniques. Molar-conductance measurements showed that all of the complexes are ionic in nature. In complexes 3 and 4, the metal center is encapsulated by the ligand L in a pentacoordinated environment. The optical-rotation values ([alpha](D)) of 3 and 4 at 25 degrees indicate that the complexes are chiral. Absorption- and fluorescence-spectral studies, cyclic voltammetry, and viscosity measurements have been carried out to assess the comparative binding of complexes 1 and 3 with calf thymus (CT)-DNA. Analysis of the results suggests that the new chiral complex 3 binds to CT-DNA through a partial intercalation mode that is different from the binding mode of parent achiral complex 1. The complexes 1 and 3 bind to CT-DNA with binding constants K(b) of 2.7 x 10(4) and 6.6 x 10(4) M(-1), respectively. Circular-dichroism (CD) studies have been further employed to ascertain the binding mode of complex 3, which is consistent with the other spectral studies. 相似文献
19.
The interaction of ruthenium(II)-polypyridyl complexes with DNA has attracted considerable interests during the past two decades. This paper presents some recent progresses in our laboratory on the interaction of Ru(II)-polypyridyl complexes with DNA. The first part describes the effect of modulating the intercalative ligand on the DNA-binding behaviors of the complexes, such as DNA-binding affinity, DNA-binding enantioselectivity, DNA molecular 'light switch' effect, and DNA sequence selectivity. The second part focuses on the DNA photocleavage by the complexes and its mechanism. In the final part, we discuss the topoisomerase inhibition and its mechanism, as well as the antitumor activity of the Ru(II)-polypyridyl complexes. 相似文献
20.
The macrocyclic symmetrical and a series of unsymmetrical binuclear copper(II) complexes have been synthesized by using mononuclear complex [CuL] [3,3′-((1E,7E)-3,6-dioxa-2,7-diazaocta-1,7-diene-1,8-diyl)bis(3-formyl-5-methyl-2-diolato)copper(II)]. Another compartment of the [CuL] have been condensed with various diamines like 1,2-bis(aminooxy)ethane (L1), 1,2-diamino ethane(L2a), 1,3-diamino propane(L2b), 1,4-diamino butane(L2c), 1,2-diamino benzene(L2d), 1,8-diamino naphthalene(L2e) and characterized by elemental, spectroscopic, and X-ray crystallographic methods. The influence of the coordination geometry and the ring size of the binucleating ligands on the electronic, redox, magnetic, catecholase activity, DNA binding and cleavage properties have been studied. The molecular structures of the symmetrical binuclear complex [Cu2L1(H2O)2](ClO4)2 (1) and unsymmetrical binuclear complex [Cu2L2b(ClO4)(H2O)]ClO4 (2b) were determined by X-ray crystallography. Both of them were discrete binuclear species in which each Cu(II) ions are in distorted square pyramid. The Cu?Cu distances vary from 3.0308 (2b) to 3.0361 Å (1). Electrochemical studies evidenced that two quasi-reversible one electron-transfer reduction waves −0.91 to −1.01 V, −1.26 to −1.55 V) for binuclear complexes are obtained in the cathodic region. Cryomagnetic investigation of the binuclear complexes reveals a weak antiferromagnetic spin exchange interaction between the Cu(II) ions within the complexes (−2J = 104.4-127.5 cm−1). The initial rate (Vin) for the oxidation of 3,5-di-tert-butylcatechol to o-quinone by the binuclear Cu(II)complexes are in the range 3.6 × 10−5 to 7.3 × 10−5 Ms−1. The binuclear Cu(II) complexes are avid binders to calf thymus DNA. The complexes display significant oxidative cleavage of circular plasmid pBR322 DNA in the presence of mercaptoethanol using the singlet oxygen as a reactive species. The aromatic diamine condensed macrocyclic ligands of copper(II) complexes display better DNA interaction and significant chemical nuclease activity than the aliphatic diamine condensed macrocyclic Cu(II) complexes. 相似文献