首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

We report syntheses of new amide-linked (di-penta)nucleoside analogues of antisense oligonucleotide components. Solution-phase coupling of 3′-(carboxymethyl)-3′-deoxy- and 5′-amino-5′-deoxynucleoside derivatives provides amide dimers. Activated [3′-(carboxymethyl)-3′-deoxy] units with a 5′-azido-5′-deoxy function provide “masked” 5′-amino-5′-deoxy residues for chain extension, and a 5′-O-DMT-protected unit provides the 5′-terminus for attachment to a phosphodiester linkage.  相似文献   

2.
Three triazole-linked nonionic xylo-nucleoside dimers TL-t-TxL, TL-t-ABzxL and TL-t-CBzxL have been synthesized for the first time by Cu(I) catalyzed azide-alkyne [3 + 2] cycloaddition reaction (CuAAC) of 1-(3′-azido-3′-deoxy-2′-O,4′-C-methylene-β-D-ribo-furanosyl)thymine with different alkynes, i.e., 1-(5′-deoxy-5′-C-ethynyl-2′-O,4′-C-methylene-β-D-xylofuranosyl)thymine, 9-(5′-deoxy-5′-C-ethynyl-2′-O,4′-C-methylene-β-D-xylo-furanosyl)-N6-benzoyladenine and 1-(5′-deoxy-5′-C-ethynyl-2′-O,4′-C-methylene-β-D-xylofuranosyl)-N4-benzoylcytosine in 90%–92% yields. Among the two Cu(I) reagents, CuSO4.5H2O-sodium ascorbate in THF:tBuOH:H2O (1:1:1) and CuBr.SMe2 in THF used for cycloaddition (click) reaction, the former one was found to be better yielding than the latter one.  相似文献   

3.
The formation of (4R)-4-carbamoyl-4-[(4R)-3-O-benzyl-1,2-O-isopropylidene-β-l-threofuranos-4-C-yl]-oxazolidin-2-one instead of expected imidazolidin-2,4-dione (hydantoin) derivative from 5-amino-5-cyano-5-deoxy-3-O-benzyl-1,2-O-isopropylidene-α-d-glucofuranose or 3-O-benzyl-1,2-O-isopropylidene-α-d-xylo-hexofuranos-5-ulose under Bucherer-Bergs reaction conditions is reported. Single crystal X-ray diffraction data revealed that 3T4 is the prefered conformation for the furanose ring, while E2 and 2T1 conformations are adopted by the 1,3-dioxolane and 2-oxazolidinone five-membered rings, respectively.  相似文献   

4.
Abstract

5-O-tert-Butyldimethylsilyl-1,2-O-isopropylidene-3(R)-(nicotinamid-2-ylmethyl)-α-D-ribofuranose (11a) and ?3(R)-(nicotinamid-6-ylmethyl)-α-D-ribofuranose (11b) were prepared by condensation of 5-O-tert-butyldimethylsilyl-1,2-O-isopropylidene-α-D-erythro-3-pentulofuranose (10) with lithiated (LDA) 2-methylnicotinamide and 6-methylnicotinamide, respectively, and then deprotected to give 1,2-O-isopropylidene-3-(R)-(nicotinamid-2-ylmethyl)-α-D-ribofuranose(12a) and 1,2-O-isopropylidene-3(R)-(nicotinamid-6-ylmethyl)-α-D-ribofuranose (12b). Benzoylation as well as phosphorylation of compounds 12 afforded the corresponding 5-O-benzoate (13b) and 5-O-monophosphates (14a and 14b). Treatment of 13b with CF3COOH/H2O caused 1,2-de-O-isopropylidenation with simultaneous cyclization to the corresponding methylene-bridged cyclic nucleoside - 3′,6-methylene-1-(5-O-benzoyl-β-D-ribofuranose)-3-carboxamidopyridinium trifluoro-acetate (8b) - restricted to the “anti” conformation. In a similar manner compounds 14a and 14b were converted into conformationally restricted 2,3′-methylene-1-(β-D-ribofuranose)-3-carboxamidopyridinium-5′-monophosphate (9a - “syn”) and 3′,6-methylene-1-(β-D-ribofuranose)-3-carboxamido -pyridinium-5′monophosphate (9b - “anti”) respectively. Coupling of derivatives 12a and 12b with the adenosine 5′-methylenediphosphonate (16) afforded the corresponding dinucleotides 17. Upon acidic 1,2-de-O-isopropylidenation of 17b, the conformationally restricted P1-[6,3′-methylene-1-(β-D-ribofuranos-5-yl)-3-carboxamidopyridinium]-P2-(adenosin-5′-yl)methylenediphosphonate 18b -“anti” was formed. Compound 18b was found to be unstable. Upon addition of water 18b was converted into the anomeric mixture of acyclic dinucleotides, i. e. P1-[3(R)-nicotinamid-6-ylmethyl-D-ribofuranos-5-yl]-P2-(adenosin-5′-yl)-methylenediphosphonate (19b). In a similar manner, treatment of 17a with CF3COOH/H2O and HPLC purification afforded the corresponding dinucleotide 19a.

  相似文献   

5.
The 3-deoxy-3-fluoro-6-S-(2-S-pyridyl)-6-thio-β-d-glucopyranosyl nucleoside analogs 7 were prepared via two facile synthetic routes. Their precursors, 3-fluoro-6-thio-glucopyranosyl nucleosides 5a-e, were obtained by the sequence of deacetylation of 3-deoxy-3-fluoro-β-d-glucopyranosyl nucleosides 2a-e, selective tosylation of the primary OH of 3 and finally treatment with potassium thioacetate. The desired thiolpyridine protected analogs 7a-c,f,g were obtained by the sequence of deacetylation of 5a-c followed by thiopyridinylation and/or condensation of the corresponding heterocyclic bases with the newly synthesized peracetylated 6-S-(2-S-pyridyl) sugar precursor 13, which was obtained via a novel synthetic route from glycosyl donor 12. None of the compounds 6 and 7 showed antiviral activity, but the 5-fluorouracil derivative 7c and particularly the uracil derivative 7b were endowed with an interesting and selective cytostatic action against a variety of murine and human tumor cell cultures.  相似文献   

6.
ABSTRACT

The protected analogue of 2-amnio-6-chloropurine arabinoside (3b) was subjected to reaction with diethylaminosulfur trifluoride (DAST) and subsequently treated with NaOAc in Ac2O/AcOH to give N 2,O 3′,O 5′-triacetyl-2′-deoxy-2′-fluoroguanosine (5a). After deacetylation of the sugar moiety and protection of 5′-OH by a 4,4′-dimethoxytrityl group, this nucleoside component was converted to 2′-deoxy-2′-fluoroguanyl-(3′,5′)-guanosine (6c, GfpG).  相似文献   

7.

3-Amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) was synthesized via an N-N bond formation strategy by a mononuclear heterocyclic rearrangement (MHR). A series of 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl-4-(1,2,4-oxadiazol-3-yl)imidaz-oles (6a-d), with different substituents at the 5-position of the 1,2,4-oxadiazole, were synthesized from 5-amino-1-(β-D-ribofuranosyl)imidazole-4-carboxamide (AICA Ribose, 3). It was found that 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl)-4-(5-methyl-1,2,4-oxadiazol-3-yl)imidazole (6a) underwent the MHR with sodium hydride in DMF or DMSO to afford the corresponding 3-acetamidoimidazo[4,5-c]pyrazole nucleoside(s) (7b and/or 7a) in good yields. A direct removal of the acetyl group from 3-acetamidoimidazo[4,5-c]pyrazoles under numerous conditions was unsuccessful. Subsequent protecting group manipulations afforded the desired 3-amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) as a 5:5 fused analog of adenosine (1).  相似文献   

8.
Abstract

A group of unnatural 1-(2-deoxy-β-D-ribofuranosyl)-2,4-difluorobenzenes possessing a 5-I or 5-CF3 substituent, that were originally designed as thymidine mimics, were coupled via their 5′-OH group to a cyclosaligenyl (cycloSal) ring system having a variety of C-3 substituents (Me, OMe, H). The 5′-O-cycloSal-pronucleotide concept was designed to effect a thymidine kinase-bypass, thereby providing a method for the intracellular delivery and generation of the 5′-O-monophosphate for nucleosides that are poorly phosphorylated. The 5′-O-cycloSal pronucleotide phosphotriesters synthesized in this study were obtained as a 1:1 mixture of two diastereomers that differ in configuration (S P or R P) at the asymmetric phosphorous center. The (S P)- and (R P)-diastereomers for the 5′-O-3-methylcycloSal- and 5′-O-3-methoxycycloSal derivatives of 1-(2-deoxy-β-D-ribofuranosyl)-2,4-difluoro-5-iodobenzene were separated by silica gel flash column chromatography. This class of cycloSal pronucleotide compounds generally exhibited weak cytotoxic activities in a MTT assay (CC50 values in the 10?3 to 10?4 M range), against a number of cancer cell lines (143B, 143B-LTK, EMT-6, Hela, 293), except for cyclosaligenyl-5′-O-[1′-(2,4-difluoro-5-iodophenyl)-2′-deoxy-β-D-ribofuranosyl]phosphate that was more potent (CC50 values in the 10?5 to 10?6 M range), than the reference drug 5-iodo-2′-deoxyuridine (IUDR) which showed CC50 values in the 10?3 to 10?5 M range.  相似文献   

9.
2-Acetamido-5-amino-2,5-dideoxy- -xylopyranosyl hydrogensulfite (11) has been synthesized from benzyl 2-(benzyloxycarbonylamino)-2-deoxy-5,6-O-isopro-pylidene-β- -glucofuranoside (1). O-Deisopropylidenation of 1 gave the triol 2, which was converted, via oxidative cleavage at C-5-C-6 and subsequent reduction, into the related benzyl β- -xylofuranoside derivative (3). Catalytic reduction of benzyl 2-(benzyloxycarbonylamino)-2-deoxy-5-O-tosyl-β- -xylofuranoside, derived from 3 by selective tosylation, and subsequent N-acetylation, afforded benzyl 2-acetamido-2-deoxy-5-O-tosyl-β- -xylofuranoside, which was treated with sodium azide to give the corresponding 5-azido derivative (6). (Tetrahydropyran-2-yl)ation of the product formed by hydrolysis of 6 gave 2-acetamido-5-azido-2,5-dideoxy-1,3- di-O-(tetrahydropyran-2-yl)- -xylofuranose (9). Treatment of 2-acetamido-5-amino-2,5-dideoxy-1,3-di-O-(tetrahydropyran-2-yl)- -xylofuranose, derived from 9 by reduction, with sulfur dioxide in water gave 11. Hydrogenation of 6 and subsequent acetylation yielded 3-acetamido-4,5-diacetoxy-1-acetyl-xylo-piperidine. Evidence in support of the structures assigned to the new derivatives is presented.  相似文献   

10.
Abstract

5-(2-Thienyl)-1-(2-deoxy-3,5-di-O-p-toluoyl-β-D-erythro-pentofuranosyl)-6-azauracil [VIII] and 5-cyclopropyl-1-(2-deoxy-3,5-di-O-p-toluoyl-β-D-erythro-pentofuranosyl)-6-azauracil [X] were obtained in high yields (93.5% and 81.3% respectively) exclusively as β anomers, by condensation of the corresponding silylated triazine bases with 2-deoxyu-3,5-di-O-p-toluoyl-D-erythro-pentosyl chloride in chloroform. After deblocking both nucleosides with sodium methoxide in methanol, 5-(2-thienyl)-6-aza-2′-deoxyuridine [IX] and 5-cyclopropyl-6-aza-2′-deoxyuridine [XI] were obtained. The nucleoside IX was further acetylated, brominated with Br2/CCl4 and deblocked with methanolic ammonia to give 6-aza-5[2-(5-bromothienyl)]-2′-deoxyuridine[XIV].  相似文献   

11.
Condensation of 6-O-benzyl-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranose with methyl 2,3,4-tri-O-benzyl-6-deoxy-β-d-galacto-heptodialdo-1,5-pyranoside afforded a 2:1 mixture of the 1S and 1R isomers (1a and 1b) of 3-[6(R)-O-benzyl-1,2:3,4-di-O-isopropylidene-α-d-galactopyranos-6-yl]-1-hydroxy-1-(methyl 2,3,4-tri-O-benzyl-6-deoxy-β-d-galactopyranosid-6-yl)propyne. A single crystal of the 1-O-acetyl derivative (1c) of 1a was investigated by X-ray diffraction methods in a four-circle diffractometer. Compound 1c crystallises in the monoclinic system, space group P21 (Z = 2) with cell dimensions a = 14.896(2), b = 8.295(1), c = 20.547(3) Å, and β = 102.66(1)°. The structure was solved by direct methods and refined by a full-matrix, least-squares procedure against 3839 unique reflections (F > 2σF), resulting in a final R = 0.045 (unit weights). The configuration at the new chiral center (C-1) was established as S(d). The galactopyranose rings have conformations 4C1 (tri-O-benzylated moiety) and °S5 + °T2 (di-O-isopropylidenated moiety). The 1,2- and 3,4-O-isopropylidene rings have 3T2 and 2E conformations, respectively.  相似文献   

12.
Abstract

Reaction of 02,3′-anhydro-5′-0-trityl-2′-deoxycytidine (1) with LiN3s in DMF resulted in the formation of 1-(3-azido-2,3-dideoxy-5-0-trityl-β-D-erythro-pentofuranosyl) cytosine (2) and 3-0-(4-amino-1,3-pyrimidin-2-yl)-5-0-trityl-2-deoxy-α-D-threo-pentofuranosyl azide (3) (2:3 = 1:1) in 88% yield. Compound 3 was deprotected with 80% aqueous AcOH yielding 4  相似文献   

13.
6-S-[2-[(2-ethylhexyl)oxycarbonyl]ethyl)}-3′,5′-O-bis(tert-butyldimethylsilyl)-2′-deoxy-6-thiogua nosine (2) was synthesized in high yield from the corresponding 6-O-mesitylenesulfonyl derivative by the reaction with 2-ethylhexyl 3-mercapto-propionate. The phosphoramidite precursor derived from 2 was successfully applied to an automated DNA synthesizer to produce 2′-deoxy-6-thioguanosine containing ODN. The results showed that 2-ethylhexyl 3-mercaptopropionate is useful as an odor less reagent and also as an S-protecting group of 2′-deoxy-6-thioguanosine.  相似文献   

14.
Abstract

The intramolecular glycosylation of a 6-O-(4-methoxypyrimidin-2-yl) derivative of phenyl 2,3-didehydrohex-2-eno-1-thiopyranoside afforded 3-deoxy-3-(4-methoxypyrimidin-2-on-1-y1)glycal as the major product in a stereoselective manner. The isolated 3′-deoxyglycal nucleoside was characterized by X-ray and NMR spectral analyses.  相似文献   

15.
Abstract

Reverse nucleoside derivatives of 2-(methylsulfanyl)uracils 6a-d were prepared by treating of the sodium salt of 2-(methylsulfanyl)uracils (5a-d) with methyl 2,3-O-isopropylidene-5-O-p-toluenesulfonyl-β-D-ribofuranoside (2). The alkylation of 2-thiouracils 4a-d with methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-D-ribofuranoside (3) afforded the corresponding S-ribofuranoside derivatives 8a-d. Deisopropylidenation of 6a-d and 8a-d afforded the corresponding deprotected derivatives 7a-d and 9a-d, respectively. The Anti-HBV activity of selected compounds was studied.  相似文献   

16.
Abstract

Synthesis of (1S,3R,4R,7R)-7-hydroxy-1-hydroxymethyl-3-(6-N-benzoyl-adenin-9-yl)-2,5-dioxabicyclo[2.2.1]heptane (2), a base-protected xylo-LNA adenine nucleoside, has been accomplished using a convergent synthetic strategy starting from 1,2-di-O-acetylfuranose 3.  相似文献   

17.
Abstract

Efficient syntheses of 2′-bromo-2′-deoxy-3′,5′-O-TPDS-uridine (5a) and 1-(2-bromo-3,5-O-TPDS-β-D-ribofuranosyl)thymine (5b) from uridine and 1-(β-D-ribofuranosyl)thymine are described, respectively. The key step is a treatment of 3′,5′-O-TPDS-O2,2′-anhydro-1-(β-D-ardbinofuranosyl)uracil (4a) and -thymine (4b) with LiBr in the presence of BF3-OEt2 in 1,4-dioxane at 60°C to give 5a and 5b in 98%, and 96% yield, respectively.

  相似文献   

18.
Abstract

The synthesis of new 3′-deoxy-3′-[4-(pyrimidin-1-yl)methyl-1,2,3-triazol-1-yl]thymidine 6a–f, from 3′-azido-3′-deoxy-5′-O-monomethoxytrityl-thymidine is described. The key step is the 1,3-dipolar cycloaddition between the azido group of the protected AZT 3 and N-1-propargylpyrimidine derivatives 2a–f. All new derivatives 6a–f were evaluated for their inhibitory effects against the replication of HIV-1 (IIIB), HIV-2 (ROD). No marked activity was found.  相似文献   

19.
Derivatives of (S)-2-fluoro- -daunosamine and (S)-2-fluoro- -ristosamine were synthesized, starting ultimately from 2-amino-2-deoxy- -glucose which was converted, according to the literature, into methyl 2-benzamido-4,6-O-benzylidene-2-deoxy-3-O-(methylsulfonyl)-α- -glucopyranoside (2). Treatment of 2 with tetrabutylammonium fluoride gave a 63% yield of (known) methyl 3-benzamido-4,6-O-benzylidene-2,3-dideoxy-2-fluoro-α- -altropyranoside (4), together with a 6% yield of its 2-benzamido-2,3-dideoxy-3-fluoro-α- -gluco isomer. From 4, the corresponding 6-bromo-2,3,6-trideoxyglycoside 4-benzoate (6) was obtained by Hanessian-Hullar reaction. Dehydrobromination of 6, followed by catalytic hydrogenation of the resulting 5-enoside, and subsequent debenzoylation and N-trifluoroacetylation, afforded the fluorodaunosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido-β- -galactopyranoside. Reductive debromination of 6, followed by debenzoylation and N-trifluoroacetylation, gave the fluororistosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido-α- -altropyranoside. The 1H-n.m.r. spectra of the new aminofluoro sugars are discussed with respect to the effects of neighboring amino and acylamido substituents on geminal and vicinal 1H–19F coupling constants, in comparison with the reported effects of oxyge substituents.  相似文献   

20.
Abstract

2′,3′-Dibromo-2′,3′-dideoxy-5′-O-trityl-2′,3′-secouridine (8) with sdKF gave the 3′,4′-didehydro-2,2′-anhydro nucleoside 9, which was deprotected to 10. Hydrolysis of 9 gave 3′,4′-didehydro-3′-deoxy-5′-O-trityl-2′,3′-secouridine (11a). Similarly, compound 9 with pyridinium halides gave the corresponding 2′-deoxy-2′-halo nucleosides (11b-d). Compound 11d with azide ion gave 2′-azido analogue 11e. Compound 9 with an excess amount of azide ion gave the 2′-azido triazole (13).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号