首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of metal complexes of La(III) and Th(IV) have been synthesized with newly derived biologically active ligands. These ligands were synthesized by the condensation of 3-substituted-4-amino-5-hydrazino-1,2,4-triazole with 8-formyl-7-hydroxy- 4-methylcoumarin. The structure of the complexes has been proposed by elemental analyses, spectroscopic data i.e. i.r., 1H nmr, Uv-Vis, FAB-mass and thermal studies. The elemental analyses of the complexes conform to the stoichiometry of the type [La(L)·3H2O]·2H2O and [Th(L)(NO3)·2H2O]·2H2O where (L = LI-LIV). All the complexes are soluble in DMF and DMSO and are non-electrolytes in DMF and DMSO. All these ligands and their complexes have also been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Staphylococcus pyogenes and Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Aspergillus flavus and cladosporium) by the MIC method. The brine shrimp bioassay was also carried out to study their invitro cytotoxic properties.  相似文献   

2.
Three new water soluble titanocene–aminoacid complexes have been synthesized via the reaction of Cp2TiCl2 and two equivalents of aminoacid (L) in methanol, affording [Cp2TiL2]Cl2, L=L-cysteine (2), D-penicillamine (3) and L-methionine (4). These complexes have been characterized by 1H, IR and UV-Vis spectroscopies, elemental analysis and cyclic voltammetry. Kinetic studies of ligand hydrolysis have been monitored at low pH using UV-Vis and 1H NMR spectroscopies to assess their stability in aqueous solution. At low pH, aminoacid ligands are lost one order of magnitude faster than cyclopentadienyl. However, at physiological pH, in Tris buffer solution, the complexes decompose rapidly to form an insoluble titanium compound. The affinity of these complexes to apo-transferrin was also investigated to elucidate how the ancillary aminoacid ligands affect the titanium intake by apo-transferrin.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

3.
Herein, we report synthesis, characterization, antimicrobial and antimalarial activities of azines Schiff base ligands (L1−L4) and their palladium (II) complexes ( C1−C4 ) of [Pd(L)(OAc)2] type. The azine ligands (L1−L4) were prepared by condensation of carbonyl compounds with hydrazine hydrate and their complexes by the reaction of palladium acetate with L1−L4 ligands in 1 : 1 molar ratio. The prepared ligands and their complexes were characterized by spectral characterization using 1H &13C-NMR, FT-IR and mass spectral studies, which revealed that the ligands coordinates via azomethine nitrogen and heteroatom or aryl carbon with palladium. Moreover, Schiff bases and their palladium (II) complexes have been screened for their antibacterial (S. aureus, B. subtillis, and S. typhi, P. aeruginosa), antifungal (C. albicans, A. niger, and A. clavatus) and antimalarial (P. falciparum) activities. The Schiff base L4 showed good results for antibacterial against S. aureus (MIC, 50 μg/mL) and antimalarial against P. falciparum (IC50, 0.83 μg/mL). The complex C1 showed best antibacterial activity (MIC, 62.5 μg/mL) against S. typhi and the complex C4 exhibited remarkable antimalarial activity (IC50, 0.42 μg/mL) among the tested compounds. Thus, azines based ligands and their Pd complexes can be good antimicrobial and antimalarial agents if explored further.  相似文献   

4.
Abstract

A new series of anti-bacterial and anti-fungal mono- and di-substituted triazoles (L1)–(L6) have been synthesized and characterized on the basis of their physical, spectral and analytical data. The ligands (L1)–(L6) on reaction with vanadyl(IV) sulphate led to the formation of vanadyl(IV) metal complexes (1)–(4). The structure of the complexes has been established on the basis of their physical, spectral and elemental analyses data. The synthesized ligands and their vanadyl(IV) complexes have been screened in vitro for anti-bacterial activity against six bacterial species such as, Escherichia coli (ATCC 25922), Shigella flexneri (ATCC 12022), Pseudomonas aeruginosa (ATCC 27853), Salmonella typhi (ATCC 14028), Staphylococcus aureus (ATCC 25923) and Bacillus subtilis (ATCC 6051) and for in vitro anti-fungal activity against six fungal strains, Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata. The screening results showed the vanadyl complexes to be more bactericidal/fungicidal against one or more bacterial/fungal species. The synthesized compounds were also subjected to brine shrimp bioassay for scrutinizing their cytotoxicity.  相似文献   

5.
A series of metal complexes of cobalt(II), nickel(II), and copper(II) have been synthesized with newly derived biologically active ligands. These ligands were synthesized by the condensation of 2-amino-4-phenyl-1,3-thiazole with 8-formyl-7-hydroxy- 4-methylcoumarin. The probable structure of the complexes has been proposed on the basis of analytical and spectroscopic data (IR, UV-Vis, ESR, FAB-mass, and thermoanalytical). Electrochemical study of the complexes is also reported. Elemental analysis of the complexes confined them to stoichiometry of the type ML2.2H2O [M = Co(II), Ni(II), and Cu(II)]. The Schiff base and its metal(II) complexes have been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Staphylococcus pyogenes, and Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Aspergillus flavus, and Cladosporium) by the MIC method. The brine shrimp bioassay was carried out to study their in vitro cytotoxic properties, and also the Schiff base and its metal(II) complexes have been studied for DNA cleavage.  相似文献   

6.
Few nickel(II) and copper(II) complexes have been prepared with three new indolecarboxamide ligands (H4L3, H4L4 and H4L5) offering two Namide and two Nindole donor sites to the metal center. The ligands carry electron-donating (-CH3); -H; and electron-withdrawing (-Cl) substituents on the phenylene backbone to evaluate their effect on the structure and redox properties of the metal complexes. One of the representative nickel complexes has been structurally characterized and reveals that the ligand create a distorted square-planar geometry around the metal center. The electrochemical results suggest that the Ni3+/2+ and Cu3+/2+ redox couple primarily depends on the tetra-anionic N4 donors; however, the electronic substituents shift the redox potentials by 285 mV. The observed M3+/2+ redox potentials (0.007-0.30 V versus SCE) for these complexes are considerably on lower side due to strong σ-donation from the tetra-deprotonated form of the indolecarboxamide ligands. Based on the redox investigations, the transient M3+ species were generated electrochemically and characterized by the absorption spectroscopy.  相似文献   

7.
Two new sulfurated triazoline ligands have been synthesized by functionalization of glycine and l-alanine (HL1 and HL2, respectively) at the carboxylate site with retention of chirality in the latter case. The ligands and their copper(II) complexes have been characterized by spectroscopic methods and their structures were determined by X-ray diffraction. The compound [Cu(H2L2)2](H5O2)(SO4)2(HSO4) presents a very disordered structure with regard to the anionic counterion and a very unusual elongated crystal cell. In all the complexes the ligands are (N,S) coordinated to copper(II), while the amino groups remain protonated and uncoordinated. The ligands have also been studied in solution and their dissociation constants were determined both by potentiometry and 1H NMR titrations. Potentiometric studies on the complex [Cu(H2L2)2](H5O2)(SO4)2(HSO4) were performed to determine the dissociation constants of the ligand once coordinated to the metal. The complex [CuCl2(H2L1)]Cl was studied also by magnetic susceptibility measurements, showing an interesting antiferromagnetic behavior at low temperature which has been interpreted on the basis of its crystal packing.  相似文献   

8.
The present work shows three new amide-based ligands H2L1, H2L2 and H2L3 and their nickel and copper complexes. The X-ray structural analysis substantiate that the ligands constitute a square-based basal plane around the metal center. The crystal structures also show interesting solid state packing due to hydrogen-bonding and various weak C?H interactions. The solution-based spectral studies support the solid-state geometry observed for these complexes. The electrochemical results show that the Ni3+/2+ and Cu3+/2+ redox couple primarily depends on the N4 donors composed of Namide and Namine atoms. It was observed that the ligands H2L1 and H2L2 are better suited to stabilize the Cu(III) species whereas ligand H2L3 is ideal for the stabilization of Ni(III) species. On the basis of electrochemical findings, transient Ni3+ species were generated and characterized by the absorption spectroscopy.  相似文献   

9.
The square planar Pt(II) complexes of the type [Pt(Ln)(Cl2)] (where Ln = L1?3 = thiophene-2-carboxamide derivatives and L4?6 = thiophene-2-carbothioamide derivatives) have been synthesized and characterized by physicochemical and various spectroscopic studies. MIC method was employed to inference the antibacterial potency of complexes in reference to free ligands and metal salt. Characteristic binding constant (Kb) and binding mode of complexes with calf thymus DNA (CT-DNA) were determined using absorption titration (0.76–1.61 × 105 M?1), hydrodynamic chain length assay and fluorescence quenching analysis, deducing the partial intercalative mode of binding. Molecular docking calculation displayed free energy of binding in the range of –260.06 to –219.63 kJmol?1. The nuclease profile of complexes towards pUC19 DNA shows that the complexes cleave DNA more efficiently compared to their respective metal salt. Cytotoxicity profile of the complexes on the brine shrimp shows that all the complex exhibit noteworthy cytotoxic activity with LC50 values ranging from 7.87 to 15.94 μg/mL. The complexes have been evaluated for cell proliferation potential in human colon carcinoma cells (HCT 116) and IC50 value of complexes by MTT assay (IC50 = 125–1000 μg/mL).  相似文献   

10.
Abstract

A series of three bioactive thiourea (carboxamide) derivatives, N-(dipropylcarbamothioyl)-thiophene-2-carboxamide (L1), N-(dipropylcarbamothioyl)-5-methylthiophene-2-carboxamide (L2) and 5-bromo-N-(dipropylcarbamothioyl)furan-2-carboxamide (L3) and their cobalt(II), copper(II), nickel(II) and zinc(II) complexes (1)–(12) have been synthesized and characterized by their IR,1H-NMR spectroscopy, mass spectrometry and elemental analysis data. The Crystal structure of one of the ligand, N-(dipropylcarbamothioyl)thiophene-2-carboxamide (L1) and its nickel(II) and copper(II) complexes were determined from single crystal X-ray diffraction data. All the ligands and metal(II) complexes have been subjected to in vitro antibacterial and antifungal activity against six bacterial species (Escherichia coli. Shigella flexneri. Pseudomonas aeruginosa. Salmonella typhi. Staphylococcus aureus and Bacillus subtilis) and for antifungal activity against six fungal strains (Trichophyton longifusus. Candida albicans. Aspergillus flavus. Microsporum canis. Fusarium solani and Candida glabrata). The in vitro antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent than the parent ligands against one or more bacterial and fungal strains.  相似文献   

11.
Two new ruthenium(II) complexes of Schiff base ligands (L) derived from cinnamaldehyde and ethylenediamine formulated as [Ru(L)(bpy)2](ClO4)2, where L1 = N,N’-bis(4-nitrocinnamald-ehyde)ethylenediamine and L2 = N,N’-bis(2-nitrocinnamaldehyde)-ethylenediamine for complex 1 and 2, respectively, were isolated in pure form. The complexes were characterized by physicochemical and spectroscopic methods. The electrochemical behavior of the complexes showed the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of the complexes with calf thymus DNA (CT-DNA) using absorption, emission spectral studies and electrochemical techniques have been used to determine the binding constant, Kb and the linear Stern–Volmer quenching constant, KSV. The results indicate that the ruthenium(II) complexes interact with CT-DNA strongly in a groove binding mode. The interactions of bovine serum albumin (BSA) with the complexes were also investigated with the help of absorption and fluorescence spectroscopy tools. Absorption spectroscopy proved the formation of a ground state BSA-[Ru(L)(bpy)2](ClO4)2 complex. The antibacterial study showed that the Ru(II) complexes (1 and 2) have better activity than the standard antibiotics but weak activity than the ligands.  相似文献   

12.
Twelve new heteroleptic nickel(II) and copper(II) complexes of the type [M(L1–6)(Pfx)2] ( 1 – 12 ), where L1–6=2-benzylidenehydrazinecarbothioamide (L1), 2-benzylidene-N-methylhydrazinecarbothioamide (L2), 2-benzylidene-N-phenylhydrazinecarbothioamide (L3), 2-(4-methylbenzylidene)hydrazinecarbothioamide (L4), 2-(4-methylbenzylidene)-N-methylhydrazinecarbothioamide (L5) and 2-(4-methylbenzylidene)-N-phenylhydrazinecarbothioamide (L6), Pfx=pefloxacin and M=Ni(II) or Cu(II) have been synthesised, and their structures were confirmed by different spectral techniques. The spectral data and density functional theory (DFT) calculations supported the bonding of pefloxacin drug molecule via one of the carboxylate oxygen atoms and the pyridone oxygen atom, and the thiosemicarbazone ligand via the imine nitrogen and the thione sulfur atoms with the metal(II) ion, forming distorted octahedral geometry. In vitro antiproliferative activity of the synthesized complexes was evaluated against three human breast cancer (T47D, estrogen negative (MDA-MB-231) and estrogen positive (MCF-7)) as well as non-tumorigenic human breast epithelial (MCF-10a) cell lines, which showed the higher activity for the copper(II) complexes. The interaction of the synthesized complexes with an oncogenic protein H-ras (121 p) was explored by in silico molecular docking studies. Further, in silico pharmacokinetics and ADMET parameters were also analysed to predict the drug-likeness as well as non-toxic and non-carcinogenic behavior, and safe oral administration of the complexes.  相似文献   

13.
A novel series of complexes of the type [M(C36H22N6)X]X2, where M = Cr(III), Mn(III), Fe(III); X = Cl?, NO3?, CH3COO?; and (C36H22N6) corresponds to the tetradentate macrocyclic ligand, have been synthesized by condensation of 1,8-diaminonaphthalene and isatin in the presence of trivalent metal salts in methanolic medium. The complexes have been characterized by elemental analysis, conductance and magnetic measurements, and UV/Vis, IR, and mass spectroscopy. On the basis of these studies, a five coordinate square pyramidal geometry for all of these complexes is proposed. All synthesized macrocyclic complexes have been tested for in vitro antimicrobial activities against some pathogenic bacterial strains, viz. Staphylococcus aureus, Bacillus subtilis (Gram-positive), Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and two fungal strains, viz. Aspergillus niger, Aspergillus flavus. The MICs shown by the complexes against these microbial strains have been compared with MICs shown by standard antibiotic ciprofloxacin and the antifungal drug amphotericin-B.  相似文献   

14.
A series of metal complexes of cobalt(II), nickel(II) and copper(II) have been synthesized with newly derived biologically active ligands. These ligands were synthesized by the condensation of 3-substituted-4-amino-5-hydrazino-1,2,4-triazole and 8-formyl-7-hydroxy-4-methylcoumarin. The probable structure of the complexes has been proposed on the basis of elemental analyses and spectral (IR, Uv-Vis, magnetic, ESR, FAB-mass and thermal studies) data. Electro chemical study of the complexes is also reported. All these complexes are non-electrolytes in DMF and DMSO. All the ligands and their Co(II), Ni(II) and Cu(II) complexes were screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Staphylococcus pyogenes and Pseudomonas aeruginosa) and antifungal (Aspergillus niger, Aspergillus flavus and cladosporium) activities by MIC method. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties.  相似文献   

15.
A series of hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(B)L n ] (n = 1–4; B = PPh3, AsPh3 or Py) have been synthesized by reacting dibasic quadridentate Schiff base ligands H2L n (n = 1–4) with starting complexes [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py). The synthesized complexes were characterized using elemental and various spectral studies including UV–Vis, FT-IR, NMR (1H, 13C and 31P) and mass spectroscopy. An octahedral geometry was tentatively proposed for all the complexes based on the spectral data obtained. The experiments on antioxidant activity showed that the ruthenium(II) S-methylisothiosemicarbazone Schiff base complexes exhibited good scavenging activity against various free radicals (DPPH, OH and NO). The in vitro cytotoxicity of these complexes has been evaluated by MTT assay. The results demonstrate that the complexes have good anticancer activities against selected cancer cell line, human breast cancer cell line (MCF-7) and human skin carcinoma cell line (A431). The DNA cleavage studies showed that the complexes have better cleavage of pBR 322 DNA.  相似文献   

16.
Three new ligands and their palladium(II) complexes of general formula [PdCl2(R2-S,S-eddp)] (R = n-propyl, n-butyl and n-pentyl) have been synthesized and characterized by microanalysis, infrared and 1H and 13C NMR spectroscopy. Antimicrobial activity of these ligands and complexes was tested by microdilution method and both minimal inhibitory and microbicidal concentration were determined. These tested complexes demonstrated the significant antifungal activity against pathogenic fungi Aspergillus flavus and Aspergillus fumigatus. On the other hand, these complexes demonstrated moderate antibacterial activity.  相似文献   

17.
A new class of polydentate Mannich bases featuring an N2S2 donor system, bis((2-mercapto-N-phenylacetamido)methyl)phosphinic acid H3L1 and bis((2-mercapto-N-propylacetamido)methyl)phosphinic acid H3L2, has been synthesised from condensation of phosphinic acid and paraformaldehyde with 2-mercaptophenylacetamide W1 and 2-mercaptopropylacetamide W2, respectively. Monomeric complexes of these ligands, of general formula K2[CrIII(Ln)Cl2], K3[M′II(Ln)Cl2] and K[M(Ln)] (M′ = Mn(II) or Fe(II); M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) or Hg(II); n = 1, 2) are reported. The structures of new ligands, mode of bonding and overall geometry of the complexes were determined through IR, UV–Vis, NMR, and mass spectral studies, magnetic moment measurements, elemental analysis, metal content, and conductance. These studies revealed octahedral geometries for the Cr(III), Mn(II) and Fe(II) complexes, square planar for Ni(II) and Cu(II) complexes and tetrahedral for the Co(II), Zn(II), Cd(II) and Hg(II) complexes. Complex formation studies via molar ratio in DMF solution were consistent to those found in the solid complexes with a ratio of (M:L) as (1:1).  相似文献   

18.
A new series of four biologically active triazole derived Schiff base ligands (L1L4) and their cobalt(II), nickel(II), copper(II) and zinc(II) complexes (116) have been synthesized and characterized. The ligands were prepared by the condensation reaction of 3-amino-5-methylthio-1H-1,2,4-triazole with chloro-, bromo- and nitro-substituted 2-hydroxybenzaldehyde in an equimolar ratio. The antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal species.  相似文献   

19.
A series of heteroleptic terbium(III) complexes with fluorinated 2-thenoyltrifluoroacetone (TTFA) and other heteroaromatic units have been synthesized. The developed heteroleptic complexes were inspected via elemental study, cyclic voltammetry, thermal analysis and spectroscopic investigations. Optical band-gap data proposed the conducting property of prepared complexes. The photoluminescence emission profiles illustrated peaks based on terbium(III) cation (Tb3+) positioned at ~617, 586, 546 and 491 nm, imputed to 5D4 to 7FJ (J = 3,4,5,6) transitions separately. Most intense peak at 546 nm corresponding to 5D47F5 transition is accountable for the green emissive character of developed complexes. The luminous character of complexes reveals the sensitization of Tb3+ by ligands. Color parameters further corroborates the green emanation of Tb3+ complexes. The photometric characteristics of complexes recommended their usages in designing display devices.  相似文献   

20.
《Inorganica chimica acta》1987,133(1):157-160
A series of nine complexes of uranyl nitrate with some Schiff bases derived from 4-aminoantipyrine and certain carbonyl compounds, such as benzaldehyde, 2-nitrobenzaldehyde, 3-nitrobenzaldehyde, 4- methylbenzaldehyde, 4-N,N-dimethylaminobenzaldehyde, 2-hydroxybenzaldehyde, 2-hydroxy-1-naphthaldehyde, acetylacetone and benzoylacetone have been synthesized. These complexes have been characterized by elemental analysis, molecular weight determination and IR spectral, conductance and magnetic studies. From these studies they can be formulated as [UO2L2(NO3)2], in which the first five ligands (in the order given above) and nitrate ions are coordinated bidentately, while the last four ligands (which have either a phenolic hydroxyl group or a side-chain carbonyl group as an additional site) act as terdentate ligands, and nitrate ions are coordinated monodentately. Hence the proposed general formula for the complexes suggests that the uranyl ion has a coordination number of eight in addition to the two oxygen atoms which have already been bonded to the U(VI) species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号