首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report here the design, synthesis, and anti-inflammatory activities of a series of perimidine derivatives containing triazole (5a–s). The chemical structures of the synthesized compounds have been assigned on the basis of IR, 1H NMR, 13C NMR, and HRMS spectral analyses. The anti-inflammatory properties of the synthesized perimidine derivatives were evaluated in a lipopolysaccharide (LPS)-stimulated inflammation model. Among the tested compounds, compound 7-(3-methylbenzyl)-7H-[1,2,4]triazolo[4,3-a]perimidine (hereafter referred to as 5h) and compound 7-(2-fluorobenzyl)-7H-[1,2,4]triazolo[4,3-a]perimidine (hereafter referred to as 5n) caused a reduction in the levels of the pro-inflammatory cytokines—tumor necrosis factor (TNF)-α and interleukin (IL)-6—in RAW264.7 cells. The anti-inflammatory potential of compounds 5h and 5n was also evaluated in vivo in a xylene-induced ear inflammation model. Compound 5n showed the most potent anti-inflammatory activity with an inhibition of 49.26% at a dose of 50 mg/kg. This activity is more potent than that of the reference drug ibuprofen (28.13%), and slightly less than that of indometacin (49.36%). To further elucidate the mechanisms underlying these inhibitory effects, LPS-induced nuclear factor-κB (NF-κB) activation and mitogen-activated protein kinase (MAPK) phosphorylation were studied. The results of western blotting showed that the extract obtained from compound 5n inhibited NF-κB (p65) activation and MAPK (extracellular signal-regulated kinase (ERK) and p38) phosphorylation in a dose-dependent manner. Moreover, the results of a docking study of compound 5n into the COX-2 binding site revealed that its mechanism was possibly similar to that of naproxen, a COX-2 inhibitor. The effect of compound 5n on COX-2 antibody was showed it could significantly inhibit COX-2 activity.  相似文献   

2.
A virtual screening strategy, through molecular docking, for the elaboration of an electronic library of Pontin inhibitors has resulted in the identification of two original scaffolds. The chemical synthesis of four candidates allowed extensive biological evaluations for their anticancer activity. Two compounds displayed an effect on Pontin ATPase activity, and one of them also exhibited a noticeable effect on cell growth. Further biological studies revealed that the most active compound induced apoptotic cell death together with necrosis, this latter effect being likely related to the cellular balance of ATP regulation.  相似文献   

3.
Ursolic acid derivatives containing oxadiazole, triazolone, and piperazine moieties were synthesized in an attempt to develop potent anti-inflammatory agents. Structures of the synthesized compounds were elucidated by 1H NMR, 13C NMR, and HRMS. Most of the synthesized compounds showed pronounced anti-inflammatory effects at 100?mg/kg. In particular, compound 11b, which displayed the most potent anti-inflammatory activity of all of the compounds prepared, with 69.76% inhibition after intraperitoneal administration, was more potent than the reference drugs indomethacin and ibuprofen. The cytotoxicity of the compounds was also assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and no compounds showed any appreciable cytotoxic activity (IC50 >100?μmol/L). Furthermore, molecular docking studies of the synthesized compounds were performed to rationalize the obtained biological results. Overall, the results indicate that compound 11b could be a therapeutic candidate for the treatment of inflammation.  相似文献   

4.
A series of new cannabidiol (CBD) derivatives were synthesized by employing hydrogenation reaction and click chemistry. Then, the cytotoxicity and anti-inflammatory activities of cannabinoid derivatives were determined. Compound 14 was found to have low cytotoxicity and high anti-inflammatory activity, and the anti-inflammatory mechanism of compound 14 was preliminarily explored, which inhibited the synthesis and release of the pro-inflammatory cytokine TNF-α. The experimental results were confirmed by docking analysis. The water solubility of compound 14 was determined. Based on the results, the structure-activity relationships (SARs) of the CBD derivatives were discussed for exploring novel anti-inflammatory drugs.  相似文献   

5.
The interaction of calf thymus DNA with nevirapine at physiological pH was studied by using absorption, circular dichroism, viscosity, differential pulse voltammetry, fluorescence techniques, salt effect studies and computational methods. The drug binds to ct-DNA in a groove binding mode, as shown by slight variation in the viscosity of ct-DNA. Furthermore, competitive fluorimetric studies with Hoechst 33258 indicate that nevirapine binds to DNA via groove binding. Moreover, the structure of nevirapine was optimized by DFT calculations and was used for the molecular docking calculations. The molecular docking results suggested that nevirapine prefers to bind on the minor groove of ct-DNA.  相似文献   

6.
Abstract

In this paper, we have studied the in vitro binding of neotame (NTM), an artificial sweetener, with native calf thymus DNA using different methods including spectrophotometric, spectrofluorometric, competition experiment, circular dichroism (CD), and viscosimetric techniques. From the spectrophotometric studies, the binding constant (Kb) of NTM-DNA was calculated to be 2?×?103 M?1. The quenching of the intrinsic fluorescence of NTM in the presence of DNA at different temperatures was also used to calculate binding constants (Kb) as well as corresponding number of binding sites (n). Moreover, the obtained results indicated that the quenching mechanism involves static quenching. By comparing the competitive fluorimetric studies with Hoechst 33258, as a known groove probe, and methylene blue, as a known intercalation probe, and iodide quenching experiments it was revealed that NTM strongly binds in the grooves of the DNA helix, which was further confirmed by CD and viscosimetric studies. In addition, a molecular docking method was employed to further investigate the binding interactions between NTM and DNA, and confirm the obtained results.  相似文献   

7.
Herein, we have reported the synthesis of 18 novel 8-substituted tryptanthrin analogues based on our earlier work. All these tryptanthrin analogues were well characterized by 1H & 13C NMR, FT-IR, Mass Spectrometry and Elemental Analysis. All these 8-substituted analogues were screened for their anti-oxidant activity by DPPH radical scavenging assay. Out of all the tested compounds, T11, T12, T17 and T18 showed potent anti-oxidant activity. The anti-cancer activity have been performed by using MTT assay protocol and their results depicts that compounds having the 4-pyridyl or 4-carboxyphenyl substituents at the 8th position of the tryptanthrin framework are found to be the most promising cytotoxic agent against A549, MCF-7 and HeLa human cancer cell lines compared to others as well as with the standard drug cisplatin. Moreover, the comparative molecular docking studies against the three protein receptors IDO1, EGFR and HER2 strongly suggested that IDO1 is the best target protein, which exhibits lowest binding energies of ?11.73 and ?11.61 kcal mol?1 for T11 and T12 scaffolds, respectively towards the in vitro anti-cancer activity.  相似文献   

8.
A new series of pyrazole derivatives was prepared in this work, including pyrazolopyrimidines, pyrazolotriazines, pyrazolylthienopyridines, and 2-(pyrazolylamino)thiazol-4-ones, utilizing 3-amino-5-methyl-1H-pyrazole as a synthetic precursor. Their in vitro anticancer activity was tested on hepatocellular carcinoma cell line, HepG2. The results revealed that the pyrazolylhydrazonoyl cyanide 8, the pyrazolopyrimidine 3, and the pyrazolylaminothiazolone 17 were the most active with IC50 values of 2, 7, and 7 µM respectively in comparison with 5.5 µM for cisplatin as a reference drug. Interestingly, all the synthesized compounds showed higher selectivity index than cisplatin. DNA binding assay was also carried out for the synthesized compounds to rationalize their mechanism of action. Molecular modeling studies, including docking into DNA minor groove, flexible alignment, and surface mapping, were conducted. Results obtained proved the superior DNA-binding affinity of the most active anticancer compounds.  相似文献   

9.
A series of 3-Benzylchroman-4-ones were synthesized and screened for anticancer activity by MTT assay. The compounds were evaluated against two cancerous cell lines BT549 (human breast carcinoma), HeLa (human cervical carcinoma), and one noncancerous cell line vero (normal kidney epithelial cells). 3b was found to be the most active molecule against BT549 cells (IC50?=?20.1?µM) and 3h against HeLa cells (IC50?=?20.45?µM). 3b also exhibited moderate activity against HeLa cells (IC50?=?42.8?µM). The molecular structures of 3h and 3i were solved by single crystal X-ray crystallographic technique. Additionally, the molecular docking studies between the tumour suppressor protein p53 with the lead compound 3h, which exhibited better anticancer activity against HeLa cells was examined.  相似文献   

10.
On the basis of the active site of lanosterol 14α-demethylase from Candida albicans (CACYP51), a series of 1-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)-1H-1,2,4-triazol-5(4H)-one derivatives were synthesized as fluconazole analogs. Results of the preliminary antifungal tests against eight human pathogenic fungi in vitro showed that these compounds exhibited activities to some extent, and some displayed excellent antifungal activities against C. albicans than reference drug fluconazole. Flexible molecular docking was used to analyze the structure-activity relationships (SARs) of the target compounds. The designed compounds interact with CACYP51 through hydrophobic, van der Waals and hydrogen-bonding interactions.  相似文献   

11.
Design, synthesis and pharmacological activities of a group of 1,3,5-trisubstituted pyrazolines were reported. The chemical structures of the synthesized compounds have been assigned on the basis of IR, MS, 1H NMR, and 13C NMR spectral analyses. The synthesized 1,3,5-trisubstituted pyrazoline derivatives were evaluated in vivo for anti-inflammatory, analgesic activities and in vitro for COX-1/2 inhibition assay. Among the tested compounds, derivatives 4h, 6e, 7a, 7e, and 9 showed more potent anti-inflammatory and analgesic activities than the reference drug celecoxib. On the basis of their higher activities in the in vivo studies compared with celecoxib, the five compounds 4h, 6e, 7a, 7e and 9 were selected to test their inhibitory activities against ovine COX-1/2 using an in vitro cyclooxygenase inhibition assay. Docking study of compounds 7a, 7e and 9 into the COX-2 binding site revealed a similar binding mode to SC-558, a selective COX-2 inhibitor.  相似文献   

12.
Abstract

A novel tryptophan-derived Schiff base ligand (potassium (E)-2-((4-chloro-3-nitrobenzylidene)amino)-3-(1H-indol-3-yl)propanoate) and a series of its transition metal complexes of the types [ML2] and [ML(1,10-phen)2]Cl where M?=?Cu(II), Co(II), Ni(II) and Zn(II) were prepared. They were analyzed by various spectral and physicochemical studies. The XRD data were also used to determine the average lattice parameters and crystalline size of the compounds. All the synthesized compounds were tested against a series of five bacterial and fungal strains. The obtained results showed that the biological activity of free ligand was increased on complexation. PASS online software predicts the various biological activities of ligand such as enzyme inhibitor, antiviral, analgesic and antituberculosis. The in silico theoretical prediction of synthesized compounds is also deliberated by Swiss ADME predictor which gives the properties of molecular hydrophobicity (log P), topological polar surface area (TPSA) and oral bioavailability score. The binding energy of the docked molecule with macromolecules 1BNA and 3EQM is also determined by using Hex 8.0 software. The ligand has the least binding energy score which signifies that the potential of binding is greater in the receptor. Moreover, the interactions of complexes with DNA have been explored by electronic absorption titration, fluorescence emission titration, viscosity measurements and gel electrophoresis.
  • Highlights
  • Synthesis and characterization of novel indole-derived compounds.

  • X-ray diffraction studies demonstrate average crystalline size of the compounds.

  • Metal complexes act as good metallointercalators.

  • Metal complexes show higher antimicrobial activity compared to ligand.

  • Prediction of biological activities of the ligand by PASS online software.

  • Drug-like nature and bioavailability of synthesized compounds predicted by Swiss ADME predictor

  • Docking of the synthesized compounds with 1BNA and 3EQM using HEX 8.0 software.

Communicated by Ramaswamy H. Sarma  相似文献   

13.
A number of 2-methyl-4-(2-oxo-2-phenyl-ethyl)-5-phenyl-furan-3-carboxylic acid alkyl ester derivatives (3aj) were synthesized and evaluated for their in vitro inhibitory activity on soybean lipoxygenase enzyme. Among the screened compounds, 5-(4-bromo-phenyl)-4-[2-(4-bromo-phenyl)-2-oxo-ethyl]-2-methyl-furan-3-carboxylic acid methyl ester (3g) has been found to exhibit potent inhibitory activity with IC5012.8 μM using nordihydroguaiaretic acid (NDGA) as standard. Molecular modeling was employed for better understanding of the binding between compounds and soybean lipoxygenase enzyme. The predicted binding energy values correlated well with the observed in vitro data.  相似文献   

14.
New chromeno carbamodithioates (7a-i), have been synthesized from 2, 3-dimethyl-7-(oxiran-2-ylmethoxy)-4H-chromen-4-one (5), carbondisulphide and commercially available acyclic and cyclic secondary amines in acetonitrile with good to excellent yields. The free radical scavenging activity of novel chromone-carbamodithioate analogues was quantitatively estimated by spectrophotometric method. Whereas, molecular docking studies were performed with the active site of cyclooxygenase-2 to identify hydrogen bonding, hydrophobic and ionic interactions between protein and ligands. The compounds 7g and 7h demonstrated potent antioxidant activity with IC50 of 1.405 ± 0.019 mM and 1.382 ± 0.35 mM respectively compared to Ascorbic acid.  相似文献   

15.
Hyperpigmentation disorders are difficult to treat without causing permanent depigmentation or irritation. The most effective hypopigmenting agents are tyrosinase inhibitors, however some of those currently used have shown serious side effects. As several classes of flavonoids have already demonstrated ability to inhibit tyrosinase, a library of natural polymethoxyflavones isolated (17) from the bud exudate of Gardenia oudiepe and semi-synthetic derivatives (8,9) were evaluated. IC50 of the most active compounds were in the micromolar range. The strongest inhibitors 1, 2 and 3 all shared a 3′,4′-dimethoxy-5′-hydroxy trisubstituted B ring. These SAR conclusions were confirmed by molecular docking studies. The mode of interaction with the enzyme was elucidated, and important interactions between the most active compounds and catalytic residues of tyrosinase were observed. All of these data provided a library of compounds as potential leaders for the design of new depigmenting agents and formulations.  相似文献   

16.
A series of piperazinyl-1,2-dihydroquinoline carboxylates were synthesized by the reaction of ethyl 4-chloro-1-methyl-2-oxo-1,2-dihydroquinoline-3-carboxylates with various piperazines and their structures were confirmed by 1H NMR, 13C NMR, IR and mass spectral analysis. All the synthesized compounds were screened for their in vitro antimicrobial activities. Further, the in silico molecular docking studies of the active compounds was performed to explore the binding interactions between piperazinyl-1,2-dihydroquinoline carboxylate derivatives and the active site of the Staphylococcus aureus (CrtM) dehydrosqualene synthase (PDB ID: 2ZCQ). The docking studies revealed that the synthesized derivatives showed high binding energies and strong H-bond interactions with the dehydrosqualene synthase validating the observed antimicrobial activity data. Based on antimicrobial activity and docking studies, the compounds 9b and 10c were identified as promising antimicrobial lead molecules. This study might provide insights to identify new drug candidates that target the S. aureus virulence factor, dehydrosqualene synthase.  相似文献   

17.
The interaction mechanism and binding mode of capecitabine with ctDNA was extensively investigated using docking and molecular dynamics simulations, fluorescence and circular dichroism (CD) spectroscopy, DNA thermal denaturation studies, and viscosity measurements. The possible binding mode and acting forces on the combination between capecitabine and DNA had been predicted through molecular simulation. Results indicated that capecitabine could relatively locate stably in the G-C base-pairs-rich DNA minor groove by hydrogen bond and several weaker nonbonding forces. Fluorescence spectroscopy and fluorescence lifetime measurements confirmed that the quenching was static caused by ground state complex formation. This phenomenon indicated the formation of a complex between capecitabine and ctDNA. Fluorescence data showed that the binding constants of the complex were approximately 2 × 104 M?1. Calculated thermodynamic parameters suggested that hydrogen bond was the main force during binding, which were consistent with theoretical results. Moreover, CD spectroscopy, DNA melting studies, and viscosity measurements corroborated a groove binding mode of capecitabine with ctDNA. This binding had no effect on B-DNA conformation.  相似文献   

18.
Dicoumarol derivatives were synthesized in the InCl3 catalyzed pseudo three-component reactions of 4-hydroxycoumarin with aromatic aldehydes in excellent yields. The reactions were performed in water under microwave irradiation. All synthesized compounds were characterized using NMR, IR, and UV–Vis spectroscopy, as well as with TD-DFT. Obtained dicoumarols were subjected to evaluation of their in vitro lipid peroxidation and soybean lipoxygenase inhibition activities. It was shown that five of ten examined compounds (3e, 3h, 3b, 3d, 3f) possess significant potential of antilipid peroxidation (84–97%), and that compounds 3b, 3e, 3h provided the highest soybean lipoxygenase (LOX-Ib) inhibition (IC50 = 52.5 µM) and 3i somewhat lower activity (IC50 = 55.5 µM). The bioactive conformations of the best LOX-Ib inhibitors were obtained by means of molecular docking and molecular dynamics. It was shown that, within the bioactive conformations interior to LOX-Ib active site, the most active compounds form the pyramidal structure made of two 4-hydroxycoumarin cores and a central phenyl substituent. This form serves as a spatial barrier which prevents LOX-Ib Fe2+/Fe3+ ion activity to generate the coordinative bond with the C13 hydroxyl group of the α-linoleate. It is worth pointing out that the most active compounds 3b, 3e, 3h and 3i can be candidates for further examination of their in vitro and in vivo anti-inflammatory activity and that molecular modeling study results provide possibility to screen bioactive conformations and elucidate the mechanism of dicoumarols anti-LOX activity.  相似文献   

19.
A series of new urea derivatives (3a-p) have been synthesized from readily available isocyanates and amines in good to high yields. All synthesized compounds were fully characterized using 1H NMR, 13C NMR, IR, and mass spectrometry. Additionally, the structure of the compound (3n) was confirmed by single-crystal X-ray diffraction. Furthermore, all compounds were evaluated for antimicrobial activity against five bacteria and two fungi. Last but not the least, molecular docking studies with Candida albicans dihydropteroate synthetase were performed and the results are presented herein.  相似文献   

20.
A series of new 1,2,4-triazole and 1,3,4-oxadiazole derivatives was obtained via several steps sequential reactions of phenyl piperazine. Then, these compounds were converted to the corresponding fluoroquinolone hybrids via one pot three component Mannich reaction. All the reactions were examined under conventional and microwave mediated conditions, and optimum conditions were determined. The effect of different solvents and microwave power on microwave prompted reactions was investigated as well. All the newly synthesized compounds were characterized by FTIR, 1H NMR, 13C NMR and EI MS spectral techniques. The antimicrobial activity, DNA gyrase and Topoisomerase IV inhibition potentials were performed. The results obtained showed that fluoroquinolone hybrids possess good antimicrobial activity. Moreover, Fluoroquinolone-azole-piperazine hybrids synthesized in the present study displayed excellent DNA gyrase inhibition. To unveil the interaction mode of compounds to receptor, a molecular docking study was performed. With an average least binding energy of −9.5 kcal/mol, all compounds were found to have remarkable inhibitory potentials against DNA gyrase (E. coli).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号