首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribose ring-constrained nucleosides and nucleotides to act at cell-surface purine recesptors have been designed and synthesized. At the P2Y1 nucleotide receptor and the A3 adenosine receptor (AR) the North envelope conformation of ribose is highly preferred. We have applied mutagenesis and rhodopsin-based homology modeling to the study of purine receptors and used the structural insights gained to assist in the design of novel ligands. Two subgroups of P2Y receptors have been defined, containing different sets of cationic residues for coordinating the phosphate groups. Modeling/mutagenesis of adenosine receptors has focused on determinants of intrinsic efficacy in adenosine derivatives and on a conserved Trp residue (6.48) which is involved in the activation process. The clinical use of adenosine agonists as cytoprotective agents has been limited by the widespread occurrence of ARs, thus, leading to undesirable side effects of exogenously administered adenosine derivatives. In order to overcome the inherent nonselectivity of activating the native receptors, we have introduced the concept of neoceptors. By this strategy, intended for eventual use in gene therapy, the putative ligand binding site of a G protein-coupled receptor is reengineered for activation by synthetic agonists (neoligands) built to have a structural complementarity. Using a rational design process we have identified neoceptor-neoligand pairs which are pharmacologically orthogonal with respect to the native species.  相似文献   

2.
An integrated approach to the study of drug-receptor interactions has been applied to adenosine receptors (ARs) and P2Y nucleotide receptors. This approach includes probing the receptor structure through site-directed mutagenesis and molecular modeling, in concert with altering the structure of the agonist ligands. Goals of this structural approach are to generate a testable hypothesis for location of the binding site and subsequently to enable the rational design of new agonists and antagonists. In this manner, receptor subtype selectivity has been increased, and agonists have been converted into partial agonists and antagonists. An approach to receptor engineering (neoceptors) has been explored, in which synthetic small molecule agonists (neoligands) are specifically tailored to activate only receptors in which the putative binding sites have been modified. This orthogonal approach to receptor activation, intended for eventual gene therapy, has been demonstrated for A3 and A2A ARs.  相似文献   

3.
Structural and functional evolution of the P2Y12-like receptor group   总被引:1,自引:0,他引:1  
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members.  相似文献   

4.
Adenosine receptor antagonists are generally based on heterocyclic core structures presenting substituents of various volumes and chemical-physical profiles. Adenine and purine-based adenosine receptor antagonists have been reported in literature. In this work we combined various substituents in the 2, 6, and 8-positions of 9-ethylpurine to depict a structure-affinity relationship analysis at the human adenosine receptors. Compounds were rationally designed trough molecular modeling analysis and then synthesized and evaluated at radioligand binding studies at human adenosine receptors. The new compounds showed affinity for the human adenosine receptors, with some derivatives endowed with low nanomolar Ki data, in particular at the A2AAR subtype. The purine core proves to be a versatile core structure for the development of novel adenosine receptor antagonists with nanomolar affinity for these membrane proteins.  相似文献   

5.
Molecular modeling of receptors for adenosine and nucleotide (P2) receptors with docked ligand, based on mutagenesis, was carried out. Adenosine 3′,5′-bisphosphate derivatives act as selective P2Y1 antagonists/partial agonists. The ribose moiety was replaced with carbocyclics, smaller and larger rings, conformationally constrained rings, and acyclics, producing compounds that retained receptor affinity. Conformational constraints were built into the ribose rings of nucleoside and nucleotide ligands using the methanocarba approach, i.e. fused cyclopropane and cyclopentane rings in place of ribose, suggesting a preference for the Northern (N) conformation among ligands for P2Y1 and A1 and A3ARs.  相似文献   

6.
Abstract

A variety of adenosine analogues have been recently evaluated in order Lo find more potent and selective agonists on adenosine receptors. The most potent adenosine analogues acting on A1 receptor, a high affinity receptor inhibitory to adenylate cyclase, are N6-substituted compounds. So 6-cyclohexyladenosine (CHA) and 6-L-phenylisopropyladenosine (L-PIA) are extremely potent agonists on A2 receptor, whereas they are relatively weak agonists on A receptor, a lower affinity receptor which is stirnulatory to cyclase, and they have no effect on the adenosine P site.  相似文献   

7.

Adenosine, a purine nucleoside, is present in all cells in tightly regulated concentrations. It has many different physiological effects in the whole body and in the heart. Adenosine activates four G protein-coupled receptors A1, A2a, A2b, and A3. Activation of myocardial A1 receptors has been shown to inhibit a variety of myocardial pathologies associated with ischemia and reperfusion injury, including stunning, arrhythmogenesis, coronary and ventricular dysfunction, acute myocardial infarction, apoptosis, and chronic heart failure, implying several options for new cardiovascular therapies for diseases, like angina pectoris, control of cardiac rhythm, ischemic injury during an acute coronary syndrome, or heart failure. However, the main issue of using full A1 receptor agonists in such indications is the broad physiologic spectrum of cardiac and extracardiac effects. Desired A1 receptor-mediated protective and regenerative cardiovascular effects might be counter-regulated by unintended side effects when considering full A1 receptor agonists. These effects can be overcome by partial A1 agonists. Partial A1 agonists can be used to trigger only some of the physiological responses of receptor activation depending on endogenous adenosine levels and on receptor reserve in different tissues. CV-Therapeutics reported the identification of a partial A1 receptor agonist CVT-3619, and recently, another partial A1 receptor agonist VCP28 was published. Both compounds are adenosine derivatives. Adenosine-like A1 receptor agonists often have the drawback of a short half-life and low bioavailability, making them not suitable for chronic oral therapy. We identified the first non-adenosine-like partial A1 receptor agonist(s) with pharmacokinetics optimal for oral once daily treatment and characterized the qualities of the partial character of the A1 receptor agonist(s) in preclinical and clinical studies.

  相似文献   

8.
G-protein-coupled receptors (GPCRs) are membrane proteins that have a wide variety of physiological roles. Adenosine receptors belong to the GPCR family. Adenosine receptors are implicated in many physiological disorders, such as Parkinson's disease, Huntington's disease, inflammatory and immune's disease and many others. Interestingly, crystal structures of the active and inactive conformations of the A2-subtype adenosine receptor (A2AR) have been solved. These two structures could be used to get insights about the conformational changes that occur during the process of activation/inactivation processes of this receptor. Therefore, two ligand-free simulations of the native active (PDB code: 3QAK) and inactive (PDB code: 3EML) conformations of the A2AR and two halo-simulations were carried out to observe the initial conformational changes induced by coupling adenosine to the inactive conformation and caffeine to the active conformation. Furthermore, we constructed an A2AR model that contained four thermostabilising mutations, L48A, T65A, Q89A and A54L, which had previously been determined to stabilise the bound conformation of the agonist, and we ran molecular dynamics simulations of this mutant to investigate how these point mutations might affect the inactive conformation of this receptor. This study provides insights about the initial structural and dynamic features that occur as a result of the binding of caffeine and adenosine in the active and inactive A2AR structures, respectively, as well as the introduction of some mutations on the inactive structure of the A2AR. Moreover, we provide useful and detailed information regarding structural features such as toggle switch and ionic lock during the activation/inactivation processes of this receptor.  相似文献   

9.

Rapid phosphoester hydrolysis of endogenous purine and pyrimidine nucleotides has challenged the characterization of the role of P2 receptors in physiology and pathology. Nucleotide phosphoester stabilization has been pursued on a number of medicinal chemistry fronts. We investigated the in vitro and in vivo stability and pharmacokinetics of prototypical nucleotide P2Y1 receptor (P2Y1R) agonists and antagonists. These included the riboside nucleotide agonist 2-methylthio-ADP and antagonist MRS2179, as well as agonist MRS2365 and antagonist MRS2500 containing constrained (N)-methanocarba rings, which were previously reported to form nucleotides that are more slowly hydrolyzed at the α-phosphoester compared with the ribosides. In vitro incubations in mouse and human plasma and blood demonstrated the rapid hydrolysis of these compounds to nucleoside metabolites. This metabolism was inhibited by EDTA to chelate divalent cations required by ectonucleotidases for nucleotide hydrolysis. This rapid hydrolysis was confirmed in vivo in mouse pharmacokinetic studies that demonstrate that MRS2365 is a prodrug of the nucleoside metabolite AST-004 (MRS4322). Furthermore, we demonstrate that the nucleoside metabolites of MRS2365 and 2-methylthio-ADP are adenosine receptor (AR) agonists, notably at A3 and A1ARs. In vivo efficacy of MRS2365 in murine models of traumatic brain injury and stroke can be attributed to AR activation by its nucleoside metabolite AST-004, rather than P2Y1R activation. This research suggests the importance of reevaluation of previous in vitro and in vivo research of P2YRs and P2XRs as there is a potential that the pharmacology attributed to nucleotide agonists is due to AR activation by active nucleoside metabolites.

  相似文献   

10.
Brain-derived neurotrophic factor (BDNF) signalling is critical for neuronal development and transmission. Recruitment of TrkB receptors to lipid rafts has been shown to be necessary for the activation of specific signalling pathways and modulation of neurotransmitter release by BDNF. Since TrkB receptors are known to be modulated by adenosine A2A receptor activation, we hypothesized that activation of A2A receptors could influence TrkB receptor localization among different membrane microdomains. We found that adenosine A2A receptor agonists increased the levels of TrkB receptors in the lipid raft fraction of cortical membranes and potentiated BDNF-induced augmentation of phosphorylated TrkB levels in lipid rafts. Blockade of the clathrin-mediated endocytosis with monodansyl cadaverine (100 μM) did not modify the effects of the A2A receptor agonists, but significantly impaired BDNF effects on TrkB recruitment to lipid rafts. The effect of A2A receptor activation in TrkB localization was mimicked by 5 μM forskolin, an adenylyl cyclase activator. Also, it was blocked by the PKA inhibitors Rp-cAMPs and PKI-(14-22) and by the Src-family kinase inhibitor PP2. Moreover, removal of endogenous adenosine or disruption of lipid rafts reduced BDNF stimulatory effects on glutamate release from cortical synaptosomes. Lipid raft integrity was also required for the effects of BDNF upon hippocampal long-term potentiation at CA1 synapses. Our data demonstrate, for the first time, a BDNF-independent recruitment of TrkB receptors to lipid rafts, induced by the activation of adenosine A2A receptors, with functional consequences for TrkB phosphorylation and BDNF-induced modulation of neurotransmitter release and hippocampal plasticity.  相似文献   

11.
Human erythrocytes have been regarded as perfect osmometers, which swell or shrink as dictated by their osmotic environment. In contrast, in most other cells, swelling elicits a regulatory volume decrease (RVD) modulated by the activation of purinic and pyrimidinic receptors (P receptors). For human erythrocytes this modulation has not been tested, and we thus investigated whether P receptor activation can induce RVD in these cells. Further, because ectonucleotidases may scavenge ATP or ADP or act as a source for extracellular adenosine and therefore modulate P receptor activation and RVD, we also determined their activity in intact erythrocytes. We found relatively low ectoATPase but significant ectoADPase and ectoAMPase activities. When erythrocytes were exposed to hypotonic medium alone, they swelled as expected for an osmometric response and showed no RVD. Activation of P2 receptors by exogenous ATP or ADP did not trigger RVD, whereas P1 agonists adenosine and adenosine-5′-N-ethylcarboxamide induced significant RVD. The effect of adenosine-5′-N-ethylcarboxamide was dose-dependent (maximal RVD of 27%; apparent K½ of 1.6 ± 1.7 μm). The RVD induced by adenosine was blocked 80% with the non-selective P1 antagonist 8-(p-sulfophenyl theophylline) or the P1-A2B inhibitor MRS1754, but not by inhibitors of P1 subtypes A1, A2A, and A3. In addition, forskolin (an inducer of intracellular cAMP formation) could mimic the effect of adenosine, supporting the idea of P1-A2B receptor activation. In conclusion, we report a novel P1-A2B receptor-mediated RVD activation in mature human erythrocytes and thus indicate that these long held perfect osmometers are not so perfect after all.  相似文献   

12.
The nucleotide receptors P2Y2 and P2Y4 are the most closely related G protein-coupled receptors (GPCRs) of the P2Y receptor (P2YR) family. Both subtypes couple to Gq proteins and are activated by the pyrimidine nucleotide UTP, but only P2Y2R is also activated by the purine nucleotide ATP. Agonists and antagonists of both receptor subtypes have potential as drugs e.g. for neurodegenerative and inflammatory diseases. So far, potent and selective, “drug-like” ligands for both receptors are scarce, but would be required for target validation and as lead structures for drug development. Structural information on the receptors is lacking since no X-ray structures or cryo-electron microscopy images are available. Thus, we performed receptor homology modeling and docking studies combined with mutagenesis experiments on both receptors to address the question how ligand binding selectivity for these closely related P2YR subtypes can be achieved. The orthosteric binding site of P2Y2R appeared to be more spacious than that of P2Y4R. Mutation of Y197 to alanine in P2Y4R resulted in a gain of ATP sensitivity. Anthraquinone-derived antagonists are likely to bind to the orthosteric or an allosteric site depending on their substitution pattern and the nature of the orthosteric binding site of the respective P2YR subtype. These insights into the architecture of P2Y2- and P2Y4Rs and their interactions with structurally diverse agonists and antagonist provide a solid basis for the future design of potent and selective ligands.  相似文献   

13.

Background

Glaucoma, a leading cause of blindness worldwide, is an optic neuropathy commonly associated with elevated intraocular pressure (IOP). The major goals of glaucoma treatments are to lower IOP and protect retinal ganglion cells. It has been revealed recently that adenosine and adenosine receptors (ARs) have important roles in IOP modulation and neuroprotection.

Scope of review

This article reviews recent studies on the important roles of adenosine and ARs in aqueous humor formation and outflow facility, IOP and retinal neuroprotection.

Major conclusions

Adenosine and several adenosine derivatives increase and/or decrease IOP via A2A AR. Activation of A1 AR can reduce outflow resistance and thereby lower IOP, A3 receptor antagonists prevent adenosine-induced activation of Cl channels of the ciliary non-pigmented epithelial cells and thereby lower IOP. A1 and A2A agonists can reduce vascular resistance and increase retina and optic nerve head blood flow. A1 agonist and A2A antagonist can enhance the recovery of retinal function after ischemia attack. Adenosine acting at A3 receptors can attenuate the rise in calcium and retinal ganglion cells death accompanying P2X(7) receptor activation.

General significance

Evidence suggested that the adenosine system is one of the potential target systems for therapeutic approaches in glaucoma.  相似文献   

14.
Adenosine released during cardiac ischemia exerts a potent, protective effect in the heart via activation of A(1) or A(3) receptors. However, the interaction between the two cardioprotective adenosine receptors and the question of which receptor is the more important anti-ischemic receptor remain largely unexplored. The objective of this study was to test the hypothesis that activation of both receptors exerted a cardioprotective effect that was significantly greater than activation of either receptor individually. This was accomplished by using a novel design in which new binary conjugates of adenosine A(1) and A(3) receptor agonists were synthesized and tested in a novel cardiac myocyte model of adenosine-elicited cardioprotection. Binary drugs having mixed selectivity for both A(1) and A(3) receptors were created through the covalent linking of functionalized congeners of adenosine agonists, each being selective for either the A(1) or A(3) receptor subtype. MRS 1740 and MRS 1741, thiourea-linked, regioisomers of a binary conjugate, were highly potent and selective in radioligand binding assays for A(1) and A(3) receptors (K(i) values of 0.7-3.5 nm) versus A(2A) receptors. The myocyte models utilized cultured chick embryo cells, either ventricular cells expressing native adenosine A(1) and A(3) receptors, or engineered atrial cells, in which either human A(3) receptors alone or both human A(1) and A(3) receptors were expressed. The binary agonist MRS 1741 coactivated A(1) and A(3) receptors simultaneously, with full cardioprotection (EC(50) approximately 0.1 nm) dependent on expression of both receptors. Thus, co-activation of both adenosine A(1) and A(3) receptors by the binary A(1)/A(3) agonists represents a novel general cardioprotective approach for the treatment of myocardial ischemia.  相似文献   

15.
The human P2Y1 receptor was expressed in the yeast Saccharomyces cerevisiae strain MPY578q5, which is engineered to couple to mammalian G protein-coupled receptors (GPCRs) and requires agonist-induced activation for growth. A range of known P2Y1 receptor agonists were examined with the yeast growth assay system, and the results were validated by comparing with potencies in the transfected 1321N1 astrocytoma cell line, in which calcium mobilization was measured with a FLIPR (fluorometric-imaging plate reader). The data were also compared with those from phospholipase C activation and radioligand binding with the use of a newly available radioligand [3H]MRS2279 (2-chloro-N 6-methyl-(N)-methanocarba-2’-deoxyadenosine-3’,5’bisphosphate). In the yeast growth assay, the rank order of potency of 2-MeSADP (2-methylthioadenosine 5’-diphosphate), ADP (adenosine 5’-diphosphate), and ATP (adenosine 5’-triphosphate) is the same as those in other assay systems, i.e., 2-MeSADP>ADP>ATP. The P2Y1-selective antagonist MRS2179 (N 6-methyl-2-deoxyadenosine-3’,5’-bisphosphate) was shown to act as an antagonist with similar potency in all systems. The results suggest that the yeast expression system is suitable for screening P2Y1 receptor ligands, both agonists and antagonists. The yeast system should be useful for random mutagenesis of GPCRs to identify mutants with certain properties, such as selective potency enhancement for small synthetic molecules and constitutive activity.  相似文献   

16.
Adenosine-induced cell death: evidence for receptor-mediated signalling   总被引:4,自引:0,他引:4  
Adenosine modulates the proliferation, survival and apoptosis of many different cell types, ranging from epithelial, endothelial and smooth muscle cells, to cells of the immune and neural lineages. In this review, we critically discuss the available in vitro and in vivo data which support a role for adenosine in both development-associated apoptosis, and in diseases characterized by either pathologically increased cell death (e.g., ischemia, trauma and aging-associated neurodegeneration) or abnormally reduced spontaneous apoptosis (e.g., cancer). Particular emphasis is given to the possible role of extracellular adenosine receptors, since these may represent novel and attractive molecular targets for the pharmacological modulation of apoptosis. In some instances, adenosine-induced cell death has been demonstrated to require entry of the nucleoside inside cells; however, in many other cases, activation of specific adenosine extracellular receptors has been demonstrated. Of the four G protein-coupled adenosine receptors so far identified, the A2A and the A3 receptors have been specifically implicated in modulation of cell death. For the A3 receptor, results obtained by exposing both cardiomyocytes and brain astrocytes to graded concentrations of selective agonists suggest induction of both cell protection and cell death. Such opposite effects, which likely depend on the degree of receptor activation, may have important therapeutic implications in the pharmacological modulation of cardiac and brain ischemia. For the A2A receptor, recent intriguing data suggest a specific role in immune cell death and immunosuppression, which may be relevant to both adenosine-deaminase-immunodeficiency syndrome (a pathology characterized by accumulation of adenosine to toxic levels) and in tumors where induction of apoptosis via activation of specific extracellular receptors may be desirable. Finally, preliminary data suggest that, in a similar way to the adenosine-deaminase-immunodeficiency syndrome, the abnormal accumulation of adenosine in degenerative muscular diseases may contribute to muscle cell death. Although the role of adenosine receptors in this effect still remains to be determined, these data suggest that adenosine-induced apoptosis may also represent a novel pathogenic pathway in muscular dystrophies.  相似文献   

17.

Background

Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation.

Methods

mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart.

Results

Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists.

Conclusions

This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists.  相似文献   

18.
Adenosine is a ubiquitous signaling molecule whose physiological functions are mediated by its interaction with four G-protein-coupled receptor subtypes, termed A(1), A(2A), A(2B) and A(3). As a result of increased metabolic rates, this nucleoside is released from a variety of cells throughout the body in concentrations that can have a profound impact on vasculature and immunoescape. However, as high concentrations of adenosine have been reported in cancer tissues, it also appears to be implicated in the growth of tumors. Thus, full characterisation of the role of adenosine in tumor development, by addressing the question of whether adenosine receptors are present in cancer tissues, and, if so, which receptor subtype mediates its effects in cancer growth, is a vital research goal. To this end, this review focuses on the most relevant aspects of adenosine receptor subtype activation in tumors reported so far. Although all adenosine receptors now have an increasing number of recognised biological roles in tumors, it seems that the A(2A) and A(3) subtypes are the most promising as regards drug development. In particular, activation of A(2A) receptors leads to immunosuppressive effects, which decreases anti-tumoral immunity and thereby encourages tumor growth. Due to this behavior, the addition of A(2A) antagonists to cancer immunotherapeutic protocols has been suggested as a way of enhancing tumor immunotherapy. Interestingly, the safety of such compounds has already been demonstrated in trials employing A(2A) antagonists in the treatment of Parkinson's disease. As for A(3) receptors, the effectiveness of their agonists in several animal tumor models has led to the introduction of these molecules into a programme of pre-clinical and clinical trials. Paradoxically, A(3) receptor antagonists also appear to be promising candidates in human cancer treatment of regimes. Clearly, research in this still field is still in its infancy, with several important and challenging issues remaining to be addressed, although purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.  相似文献   

19.
Abstract

Full adenosine A1 receptor agonists like CPA and other N 6-?substituted adenosine analogs have previously been shown to become partial agonists upon deletion of the 3′-hydroxyl moiety. The present study further explored the C-3′ site for modification. The modest affinity at A1 and A2a receptors found in the 3′-amido-3′-deoxyxyIofuranosyladenine series prompted us to synthesize the corresponding N 6-?cyclopentyl derivatives, which proved to exhibit potent antagonistic behaviour at the A1 receptors. This represents a new perspective in the purinergic field.  相似文献   

20.
1. The uptake of [3H] adenosine into specific populations of cells in the inner retina has been demonstrated. In mammalian retina, the exogenous adenosine that is transported into cells is phosphorylated, thereby maintaining a gradient for transport of the purine into the cell. 2. Endogenous stores of adenosine have been demonstrated by localization of cells that are labeled for adenosine-like immunoreactivity. In the rabbit retina, certain of these cells, the displaced cholinergic, GABAergic amacrine cells, are also labeled for adenosine. 3. Purines are tonically released from dark-adapted rabbit retinas and cultured embryonic chick retinal neurons. Release is significantly increased with K+ and neurotransmitters. The evoked release consists of adenosine, ATP, and purine metabolites, and while a portion of this release is Ca2+ dependent, one other component may occur via the bidirectional purine nucleoside transporter. 4. Differential distributions of certain enzymes involved in purine metabolism have also been localized to the inner retina. 5. Heterogeneous distributions of the two subtypes of adenosine receptors, A1 and A2, have been demonstrated in the mammalian retina. Coupling of receptors to adenylate cyclase has also been demonstrated. 6. Adenosine A1 receptor agonists significantly inhibit the K(+)-stimulated release of [3H]-acetylcholine from the rabbit retina, suggesting that endogenous adenosine may modulate the light-evoked or tonic release of ACh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号