首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

A series of novel acyclic nucleosides 10, 11, 21, and 22 were synthesized efficiently starting from D-lactose. The condensation of the mesylate 5 and 16 with an adenine and cytosine base under standard nucleophilic substitution conditions (K2CO3, 18-Crown-6, DMF) afforded a series of acyclic novel nucleosides. Compound 21 displayed moderate anti-HCMV activity in the AD-169 cells (EC50=18.5 µg/mL) without exhibiting any cytotoxicity up to 100 µM.  相似文献   

2.
A series of 2′ and 4′‐doubly branched carbocyclic nucleosides 15, 16, 17 and 18 were synthesized starting from simple acyclic ketone derivatives. The required 4′‐quaternary carbon was constructed using Claisen rearrangement. In addition, the installation of a methyl group in the 2′‐position was accomplished using a Grignard carbonyl addition of isopropenylmagnesium bromide. Bis‐vinyl was successfully cyclized using a Grubbs’ catalyst II. Natural bases (adenine, cytosine) were efficiently coupled by using Pd(0) catalyst.  相似文献   

3.
Abstract

A number of acyclic nucleosides have been prepared. 5-substituted-6-azauracils were persilylated with HMDS and then alkylated with aliphatic side chains e.g., (2-acetoxyethoxy)methyl bromide, 1,3-dibenzuloxy-2-chloromethoxypropane, (1-benzyloxy-3-phthalimido-2-propoxy)methyl chloride, and 1-benzyloxy-2-chloro-methoxybutane to yield protected acyclic nucleosides which were deprotected by Lewis acid or palladium to give various 6-azauracil acyclonucleosides.  相似文献   

4.
The chemical synthesis of some 4-substituted 1-[1-(2-hydroxyethoxy)methyl-1,2,3-triazol-(4 and 5)-ylmethyl]-1H-pyrazolo[3,4-d]pyrimidines 12a,b, 13a,b and 14–23 as acyclic nucleosides is described. Treatment of (2-acetoxyethoxy)methylbromide with sodium azide afforded (2-acetoxyethoxy)methylazide 9. The heterocycles 6a,b were alkylated, separately, with propargyl bromide to obtain, regioselectively, 4-(methyl and benzyl)thio-1-(prop-2-ynyl)-1H-pyrazolo[3,4-d]pyrimidines 7a,b. These N1-alkylated products were condensed with compound 9 via a 1,3-dipolar cycloaddition reaction to obtain, after separation and deprotection, 1,4 and 1,5-regioisomers 12a,b and 13a,b. The deprotected acyclic nucleosides 12a and 13a served as precursors for the preparation of 4-amino (14 and 15), 4-methylamino (16 and 17), 4-benzylamino (18 and 19), 4-methoxy (20 and 21) and 4-hydroxy (22 and 23) analogues. Compounds 7a,b and all deprotected acyclic nucleosides were evaluated for their inhibitory effects against the replication of HIV-1(IIIB) and HIV-2(ROD) in MT-4 cells and for their anti-tumor activity. No marked activity was found. However, initial evaluation of 6a,b, 7a,b, 12a,b, 13a,b and 14–23 showed that compound 7b has marked activity against M. tuberculosis.  相似文献   

5.
A simple synthetic route for novel acyclic phosphonate nucleosides is described. The characteristic cyclopropyl moiety 8 was constructed employing the Simmons-Smith reaction as key step starting from simple acyclic 2-butene-1,4-diol. The condensation of the mesylate 11 with natural nucleosidic bases (A,C,T,U) under nucleophilic substitution conditions (K2CO3, 18-Crown-6, DMF) and hydrolysis afforded the target nucleosides 16, 17, 18, and 19. In addition, the antiviral evaluations against various viruses were performed.  相似文献   

6.
Abstract

In expectation of discovering their antiviral activity, acyclic adenosine derivatives 7, 11, 12, and 16 were designed as analogs of neplanocin A (NPA) and L-eritadenine which are strong inhibitors of S-adenosyl-L-homocysteine hydrolase. The 1′,5′-seco-analog of 4′-deoxymethyl-NPA (DHCA) 7 was synthesized by dideoxygenation of 9-(2,3-O-isopropylidene-D-ribityl)adenine (2). Acyclic DHCA analogs 11 and 16 were obtained by Wittig reaction of the aldehyde 3 with Ph3P=CHCO2Et and Ph3P=CHCN, respectively. Hydrolysis of the ester 11 afforded a vinylog of L-eritadenine 12. The synthesized acyclic nucleosides 7, 10, and 11 were evaluated for antiviral activity, however, none of them showed any significant antiviral activity.  相似文献   

7.
Abstract

3-Bromo-5-(2-hydroxyethylthiomethyl)pyridine (7) was synthesized by reaction of 3-bromo-5-chloromethylpyridine hydrochloride (6) with the mono sodium salt of 2-mercaptoethanol. 3-Bromo-5-hydroxymethylpyridine (10) was, after protection as a silyl ether, converted to the 3-carboxy analogue using BuLi and CO2. After deprotection with NH4F, the alcohol function was chlorinated using SOCl2. Finally, attachment of the acyclic chain and ammonolysis gave the acyclic nicotinamide nucleosides. Treatment of the latter compounds with Lawesson's reagent gave the thioamide analogues. All compounds were identified by NMR and DCI-MS. The acyclic pyridine C-nucleosides were evaluated against a series of tumor-cell lines and a variety of viruses. No marked biological activity was found.  相似文献   

8.
A new series of acyclic C-nucleosides 1′,2′-O-isopropylidene-D-ribo-tetritol-1-yl)[1,2,4] triazolo[3,4-b][1,3,4]thiadiazoles bearing arylsulfonamide (5–8) and arylcarboxamide (9–12) residues have been synthesized under microwave irradiation. Thiadiazines 13–15 have been analogously prepared, and upon acid hydrolysis, afforded the free nucleosides 16–18. The new synthesized compounds were assayed against HIV-1 and HIV-2 in MT-4 cells. Compound 7 was also screened against a panel of tumor cell lines consisting of CD4 human T-cells.  相似文献   

9.
A simple, rapid and regioselective approach for the synthesis of C-acyclic nucleosides 3, 4, 6, and 9 of dihydropyrimidine, imidazole and indeno[1,2-b]pyridine-9-one derived from 1,2- and 1,3-diketones was performed. By using DMF or pyridine as solvent or bentonite clay as a support, in the presence of TMSTf, ZnCl2, NH4OAc, or NH4NO3, all the desired products were obtained within 5–25 minutes under microwave irradiation (MWI). Acid hydrolysis of 6 and 9 afforded the free acyclic C-nucleosides 7 and 10, respectively. Upon treatment with NaOMe under MWI, 3 and 14 rearranged to the C-nucleoside 4 and 16.  相似文献   

10.

Novel acyclic nucleoside analogues were designed and synthesized as open-chain analogues of neplanocin A. The coupling of the allylic bromide with purine bases using cesium carbonate afforded a series of novel acyclic nucleosides. The synthesized compounds Ia II were evaluated for their antiviral activity against various viruses such as HIV, HSV-1, HSV-2, and ECMV.  相似文献   

11.
Abstract

A series of acyclic nucleosides and related α-phosphonyl acyclic analogues of dNTP with an amide bond have been prepared. Their antiviral and substrate properties were investigated.  相似文献   

12.
A selective method for synthesizing (E)-fluorovinyl was developed. Novel acyclic (E)-fluorovinyl versions of neplanocin A were designed and selectively synthesized as potential antiviral agents. The condensation of the bromide 7 with the nucleosidic bases (5-FU, C, A, G) and the deprotection afforded the desired acyclic fluorovinyl nucleosides. The synthesized compounds 11, 12, 13, and 16 were evaluated for their antiviral activity. The guanine derivative 16 showed toxicity-dependent anti-HIV-1 activity in MT-4 cells.  相似文献   

13.
Abstract

The azidation of unprotected acyclic nucleosides (4) was carried out in a one-pot reaction by means of the reagent triphenylphosphine-carbon tetraiodide-sodium azide to give the corresponding mono-azido-acyclic nucleosides (6) in good yields without by-products such as the di-azido-acyclic nucleosides.  相似文献   

14.
Abstract

Two C-1′-branched acyclic thymine derivatives, 1-[2-hydroxy-1-(2-hydroxyethoxy)ethyl]thymine and 1-[3-hydroxy-1-(2-hydroxyethoxy)-propyl]thymine were synthesized by a novel iodine-activated reaction of a tolylthio derivative with ethylene glycol. This synthetic method provides a potentially versatile synthetic entry to C-1′-branched acyclic nucleosides.  相似文献   

15.
Abstract

The acyclic nucleosides 2 were treated with 2-chloro-3-methyl-1-oxa-3-aza-2-phosphacyclopentane (3) in the presence of diisopropylethylamine to give the corresponding phosphoramidite derivatives (4). The phosphoramidite intermediates (4) were oxidized with m-chloroperbenzoic acid to the phosphoramidate derivatives (5). Treatment of 5a,b with ZnBr2 in CH3NO2 gave the corresponding acyclic nucleoside cyclic phosphoramidates (6a,b). Attempts to desilylation of 5c by tetrabutylammonium fluoride (TBAF) resulted in opening of the phosphoramidate ring. The newly synthesized compounds were evaluated for antiviral and antitumor cell activity.  相似文献   

16.
Abstract

Reactjon of (2-acetoxyethoxy)methyl bromide with the silylated lumazine bases (1-6) in the presence of n-Bu4NI leads to the formation of the nucleosides 8, 10, 12, 14, 16 and 18 respectively. Deacetylation with methanolic ammonia afforded the free nucleosides 9, 11, 13, 15, 17 and 19, respectively, in good yields. Structural proofs of the newly synthesized compounds are based on elemental analyses, UV and 1H-NMR spactra. None of the acyclic nucleosides exhibited antiviral activity against HSV-1 in vitro.  相似文献   

17.
Abstract

5-Substituted 6-azauracils were alkylated with (2-acetoxyethoxy)methyl bromide to give protected acyclic nucleosides which were deprotected to afford acyclonucleosides of 5-substituted 6-azauracils. Their structures have been established by the UV and 1H-NMR spectra and by elemental analysis.  相似文献   

18.
ABSTRACT

The chemical synthesis of some acyclic α-(1H-pyrazolo[3,4-d]pyrimidin-4-yl)thioalkylamide nucleosides (10–12)a–c is described. The treatment of 1H-pyrazolo[3,4-d]pyrimidin-4-thione 1 with compounds 2a–c gave, regioselectively, ethyl α-(1H-pyrazolo[3,4-d]pyrimidin-4-yl)thioalkylates 3a-c, respectively. These heterocycles were alkylated, separately, with alkylating agents 4, 5 and 6 to give, regioselectively, the N1-acyclic nucleosides (7-9)a-c which were deprotected to afford the desired products (10-12)a-c. All synthetic compounds were characterized on the basis of their physical and spectroscopic properties. The products (10-12)a–c were evaluated for their inhibitory effects against the replication of HIV-1 (IIIB), HIV-2 (ROD), various DNA viruses, a variety of tumor-cell lines and M. tuberculosis. No marked biological activity was found.  相似文献   

19.
Abstract

A number of pyrimidine acyclic nucleosides in which the acyclic moiety is attached to the C-6 position rather than N-1 of the pyrimidine ring have been prepared. This was accomplished via treatment of lithiated 2,4-dimethoxy-5,6-dimethylpyrimidine, or, 2,4-dimethoxy-6-methylpyrirnidine with 1,3-bis-(benzyloxy)-2-propanone, benzyl chloromethyl ether or oxirane, respectively, to give the corresponding key intermediates 6-[3-benzyloxy-2-[(benzyloxy)methyl]-2-hydroxypropyl]-2,4-dimethoxy-5-methylpyrimidine (2a), 6-[3-Denzyloxy-2-[(benzyloxy)methyl]-2-hydroxypropyl]-2,4-dimethoxypyrimidine(2b), 6-(2-benzyloxyethyl)-2,4-dimethoxy-5-methylpyrimidine (3), and2,4-dunethoxy-6-(3-hydroxypropyl)-5-methylpyrimidine (4a). After acidic hydrolysis, followed by debenzylation with boron trichloride these key intermediates were converted to the target C-6 pyrimidine acyclic derivatives. Compounds 6–8b, 11–13, 15, 16, 20, 22, 26, and 29–32 were evaluated for activity against herpes viruses and human immunodeficiency virus. None of the compounds were active against the viruses nor were they cytotoxic at the highest concentration tested.  相似文献   

20.
The authors describe highly efficient synthetic routes for the preparation of novel 6′,6′-difluoro 5′-deoxycarbocyclic phosphonic acid nucleosides from 1,4-dihydroxy-2-butene. The discovery that the 6′-fluorinated carbocyclic nucleoside (2, EC50 = 0.16 μM) is a potent anti-HSV-1 agent led to the syntheses and biological evaluations of 6′-modified 5′-deoxyversions of carbocyclic phosphonate nucleosides. The synthesized nucleoside analogues 15, 18, 22, and 25 were tested for anti-HIV activity and for cytotoxicity. However, none of them showed significant anti-HIV-1 activity or cytotoxicity at concentrations up to 100 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号