首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial DNA depletion syndrome (MDS), a reduction of mitochondrial DNA copy number, often affects muscle or liver. Mutations in enzymes of deoxyribonucleotide metabolism give MDS, for example, the mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) genes. Sixteen TK2 and 22 dGK alterations are known. Their characteristics and symptoms are described. Levels of five key deoxynucleotide metabolizing enzymes in mouse tissues were measured. TK2 and dGK levels in muscles were 5- to 10-fold lower than other nonproliferating tissues and 100-fold lower compared to spleen. Each type of tissue apparently relies on de novo and salvage synthesis of DNA precursors to varying degrees.  相似文献   

2.
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non ‐replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible toTK2 deficiency. The precise patho‐physiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.  相似文献   

3.
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non-replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible to TK2 deficiency. The precise pathophysiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.  相似文献   

4.
Mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) catalyze the initial phosphorylation of pyrimidine and purine deoxyribonucleosides, and are essential for maintaining mitochondrial dNTP pools for mitochondrial DNA replication. Here the expression of mitochondrial TK2 and dGK in relation to cell growth phases in cultured cells was investigated. TK2 and dGK protein levels in isolated mitochondria and TK2 activity in total cell extracts from U2OS and TK1 deficient L929 cells were determined. We found that TK2 levels were negatively correlated with cell growth rates and there was an exponential increase in TK2 levels in cells entering stationary phase. The expression of dGK did not change and appeared to be constitutive.  相似文献   

5.
Mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) catalyze the initial rate limiting phosphorylation of deoxynucleosides and are essential enzymes for mitochondrial function. Chemotherapy using nucleoside analogs is often associated with mitochondrial toxicities. Here we showed that incubation of U2OS cells with didanosine (ddI, 2′,3′-dideoxyinosine), a purine nucleoside analog used in the highly active antiretroviral therapy (HAART), led to selective degradation of both mitochondrial TK2 and dGK while the cytosolic deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1) were not affected. Addition of guanosine to the ddI-treated cells prevented the degradation of mitochondrial TK2 and dGK. The levels of intracellular reactive oxygen species and protein oxidation in ddI-treated and control cells were also measured. The results suggest that down-regulation of mitochondrial TK2 and dGK may be a mechanism of mitochondrial toxicity caused by antiviral and anticancer nucleoside analogs.  相似文献   

6.
ABSTRACT

Carefully balanced deoxynucleoside triphosphate (dNTP) pools are essential for both nuclear and mitochondrial genome replication and repair. Two synthetic pathways operate in cells to produce dNTPs, e.g., the de novo and the salvage pathways. The key regulatory enzymes for de novo synthesis are ribonucleotide reductase (RNR) and thymidylate synthase (TS), and this process is considered to be cytosolic. The salvage pathway operates both in the cytosol (TK1 and dCK) and the mitochondria (TK2 and dGK). Mitochondrial dNTP pools are separated from the cytosolic ones owing to the double membrane structure of the mitochondria, and are formed by the salvage enzymes TK2 and dGK together with NMPKs and NDPK in postmitotic tissues, while in proliferating cells the mitochondrial dNTPs are mainly imported from the cytosol produced by the cytosolic pathways. Imbalanced mitochondrial dNTP pools lead to mtDNA depletion and/or deletions resulting in serious mitochondrial diseases. The mtDNA depletion syndrome is caused by deficiencies not only in enzymes in dNTP synthesis (TK2, dGK, p53R2, and TP) and mtDNA replication (mtDNA polymerase and twinkle helicase), but also in enzymes in other metabolic pathways such as SUCLA2 and SUCLG1, ABAT and MPV17. Basic questions are why defects in these enzymes affect dNTP synthesis and how important is mitochondrial nucleotide synthesis in the whole cell/organism perspective? This review will focus on recent studies on purine and pyrimidine metabolism, which have revealed several important links that connect mitochondrial nucleotide metabolism with amino acids, glucose, and fatty acid metabolism.  相似文献   

7.
Abstract

Deoxynucleoside kinases are key enzyme in deoxyribonucleoside salvage, phosphorylating many important anti cancer and anti viral drugs. There are four kinases in animal cells; cytosolic thymidine kinase (TK1) and deoxycytidine kinase (dCK) and the mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK). The biochemical properties of the purified enzymes and the sequences of their cDNA;s have been determined. In case of TK2 and dGK this was done very recently and they show high homology to dCK and the herpes virus kinases but not to TK1. The evolutionary and functional consequences of this fact will be discussed.  相似文献   

8.
The thymidine mimics isocarbostyril nucleosides and difluorophenyl nucleosides were tested as deoxynucleoside kinase substrates using recombinant human cytosolic thymidine kinase (TK1) and deoxycytidine kinase (dCK), and mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK). The isocarbostyril nucleoside compound 1‐(2‐deoxy‐β‐D‐ribofuranosyl)‐isocarbostyril (EN1) was a poor substrate with all the enzymes. The phosphorylation rates of EN1 with TK1 and TK2 were < 1% relative to Thd, where as the phosphorylation rates for EN1 were 1.4% and 1.1% with dCK and dGK relative to dCyd and dGuo, respectively. The analogue 1‐(2‐deoxy‐β‐D‐ribofuranosyl)‐7‐iodoisocarbostyril (EN2) showed poor relative‐phosphorylation efficiencies (k cat /K m ) with both TK1 and dGK, but not with TK2. The k cat /K m value for EN2 with TK2 was 12.6% relative to that for Thd. Of the difluorophenyl nucleosides, 5‐(1′‐(2′‐deoxy‐β‐D‐ribofuranosyl))‐2,4‐difluorotoluene (JW1) and 1‐(1′‐(2′‐deoxy‐β‐D‐ribofuranosyl))‐2,4‐difluoro‐5‐iodobenzene (JW2) were substrates for TK1 with phosphorylation efficiencies of about 5% relative to that for Thd. Both analogues were considerably more efficient substrates for TK2, with k cat /K m values of 45% relative to that for Thd. 2,5‐Difluoro‐4‐[1‐(2‐deoxy‐β‐L‐ribofuranosyl)]‐aniline (JW5), a L‐nucleoside mimic, was phosphorylated up to 15% as efficiently as deoxycytidine by dCK. These data provide a possible explanation for the previously reported lack of cytotoxicity of the isocarbostyril‐ and difluorophenyl nucleosides, but potential mitochondrial effects of EN2, JW1 and JW2 should be further investigated.  相似文献   

9.
Wang L  Eriksson S 《FEBS letters》2003,554(3):319-322
Mitochondrial deoxyguanosine kinase (dGK) catalyzes the initial phosphorylation of purine deoxynucleosides. Mutations in the dGK gene leading to deficiency in dGK activity is one of the causes of severe mitochondrial DNA depletion diseases. We used site-directed mutagenesis to introduce the clinically observed genetic alterations in the dGK gene and characterized the recombinant enzymes. The R142K enzyme had very low activity with deoxyguanosine and no activity with deoxyadenosine. The E227K mutant enzyme had unchanged K(m) values for all its substrates but very low V(max) values. C-terminal truncated dGK proteins were inactive. These results may help to define the role of dGK in mitochondrial DNA (mtDNA) precursor synthesis.  相似文献   

10.
Cytosolic thymidine kinase (TK1) and deoxycytidine kinase (dCK) and the mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK) phosphorylate deoxynucleosides and their analogs. Recombinant human TK1 only phosphorylated beta-D Thd, but recombinant TK2, dCK and dGK all phosphorylated equally well beta-D and beta-L as well as to some extent alpha-D and alpha-L deoxynucleosides.  相似文献   

11.
The thymidine mimics isocarbostyril nucleosides and difluorophenyl nucleosides were tested as deoxynucleoside kinase substrates using recombinant human cytosolic thymidine kinase (TK1) and deoxycytidine kinase (dCK), and mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK). The isocarbostyril nucleoside compound 1-(2-deoxy-beta-D-ribofuranosyl)-isocarbostyril (EN1) was a poor substrate with all the enzymes. The phosphorylation rates of EN1 with TK1 and TK2 were <1% relative to Thd, where as the phosphorylation rates for EN1 were 1.4% and 1.1% with dCK and dGK relative to dCyd and dGuo, respectively. The analogue 1-(2-deoxy-beta-D-ribofuranosyl)-7-iodoisocarbostyril (EN2) showed poor relative-phosphorylation efficiencies (kcat/Km) with both TK1 and dGK, but not with TK2. The kcat/Km value for EN2 with TK2 was 12.6% relative to that for Thd. Of the difluorophenyl nucleosides, 5-(1'-(2'-deoxy-beta-D-ribofuranosyl))-2,4-difluorotoluene (JW1) and 1-(1'-(2'-deoxy-beta-D-ribofuranosyl))-2,4-difluoro-5-iodobenzene (JW2) were substrates for TK1 with phosphorylation efficiencies of about 5% relative to that for Thd. Both analogues were considerably more efficient substrates for TK2, with kcat/Km values of 45% relative to that for Thd. 2,5-Difluoro-4-[1-(2-deoxy-beta-L-ribofuranosyl)]-aniline (JW5), a L-nucleoside mimic, was phosphorylated up to 15% as efficiently as deoxycytidine by dCK. These data provide a possible explanation for the previously reported lack of cytotoxicity of the isocarbostyril- and difluorophenyl nucleosides, but potential mitochondrial effects of EN2, JW1 and JW2 should be further investigated.  相似文献   

12.
Deficiency in thymidine kinase 2 (TK2) activity due to genetic alterations caused tissue specific mitochondrial DNA (mtDNA) depletion syndrome with symptoms resembling these of AIDS patients treated with nucleoside analogues. Mechanisms behind this mitochondrial effects is still not well understood. With rat as a model we isolated mitochondrial and cytosolic fractions from major organs and studied enzymes involved in thymidine (dT) and deoxycytidine (dC) phosphorylation by using ionic exchange column chromatography. A cytosolic form of TK2 was identified in all tested tissues in addition to mitochondrial TK2. TK1 was detected in liver and spleen cytosolic extracts while dCK was found in liver, spleen and lung cytosolic extracts. Thus, the nature of dT and dC salvage enzymes in each tissue type was determined. In most tissues TK2 is the only salvage enzyme present except liver and spleen. These results may help to explain the mechanisms of mitochondrial toxicity of antiviral nucleoside analogues and mtDNA depletion caused by TK2 deficiency.  相似文献   

13.
Abstract

Cytosolic thymidine kinase (TK1) and deoxycytidine kinase (dCK) and the mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK), phosphorylate deoxynucleosides and their analogs. Recombinant human TK1 only phosphorylated β-D Thd, but recombinant TK2, dCK and dGK all phosphorylated equally well β-D and β-L as well as to some extent α-D and α-L deoxynucleosides.  相似文献   

14.
Deoxynucleoside kinases catalyze the 5'-phosphorylation of 2'-deoxyribonucleosides with nucleoside triphosphates as phosphate donors. One of the cellular kinases, deoxycytidine kinase (dCK), has been shown to phosphorylate several L-nucleosides that are efficient antiviral agents. In this study we investigated the potentials of stereoisomers of the natural deoxyribonucleoside to serve as substrates for the recombinant cellular deoxynucleoside kinases. The cytosolic thymidine kinase exhibited a strict selectivity and phosphorylated only beta-D-Thd, while the mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK) as well as dCK all had broad substrate specificities. TK2 phosphorylated Thd and dCyd stereoisomers in the order: beta-D- > or = beta-L- > alpha-D- > or = alpha-L-isomer. dCK activated both enantiomers of beta-dCyd, beta-dGuo, and beta-dAdo with similar efficiencies, and alpha-D-dCyd also served as a substrate. dGK phosphorylated the beta-dGuo enantiomers with no preference for the ribose configuration; alpha-L-dGuo was also phosphorylated, and beta-L-dAdo and beta-L-dCyd were substrates but showed reduced efficiencies. The anomers of the 2',3'-dideoxy-D-nucleosides (ddNs) were tested, and TK2 and dCK retained their low selectivities. Unexpectedly, alpha-dideoxycytidine (ddC) was a 3-fold better substrate for dCK than beta-ddC. Similarly, alpha-dideoxythymidine (ddT) was a better substrate for TK2 than beta-ddT. dGK did not accept any D-ddNs. Thus, TK2, dCK, and dGK, similar to herpes simplex virus type 1 thymidine kinase (HSV-1 TK), showed relaxed stereoselectivities, and these results substantiate the functional similarities within this enzyme family. Docking simulations with the Thd isomers and the active site of HSV-1 TK showed that the viral enzyme may in some respects serve as a model for studying the substrate specificities of the cellular enzymes.  相似文献   

15.
Abstract A cytosol deoxyguanosine kinase (dGK) is induced in either growing or human cytomegalovirus (HCMV, AD169)-infected human fibroblasts (HEF). Data obtained from polyacrylamide gel electrophoresis, heat inactivation and phosphorylation kinetic experiments proved that these dGKs are identical, but completely differ from HCMV-induced thymidine kinase (TK) or deoxycytidine kinase (dCK). In contrast to TK or dCK, only dGK interacts with Acyclovir ( K i = 590 μ M). It is suggested that dGK is an important enzyme determining the antiviral activity of Acyclovir.  相似文献   

16.
Mitochondrial thymidine kinase (TK2) is responsible for phosphorylation of thymidine and deoxycytidine and plays a crucial role in mitochondrial DNA precursor synthesis. TK2 is expressed in all tissues at low levels complicating accurate determinations, especially in tissues with high cytosolic thymidine kinase (TK1) activity. Recently, 5-bromovinyl 2 ′-deoxyuridine (BvdU) at 0.2 μ M was used to measure TK2 activity selectively. BvdU phosphorylation by pure human TK2 and TK1 was tested here, and the ratio of BvdU phosphorylation by TK2/TK1 was 91 at 0.2 μ M but was 500 at 2.5 μ M. Therefore, for reliable measurement of TK2 activity higher BvdU concentration should be used.  相似文献   

17.
The nucleoside analogs 9-β-D-arabinofuranosylguanine (araG) and 1-β-d-arabinofuranosylthymine (araT) are substrates of mitochondrial nucleoside kinases and have previously been shown to be predominantly incorporated into mtDNA of cells, but the pharmacological importance of their accumulation in mtDNA is not known. Here, we examined the role of mtDNA in the response to araG, araT and other anti-cancer and anti-viral agents in a MOLT-4 wild-type (wt) T-lymphoblastoid cell line and its petite mutant MOLT-4 ρ0 cells (lacking mtDNA). The mRNA levels and activities of deoxyguanosine kinase (dGK), deoxycytidine kinase (dCK), thymidine kinase 1 (TK1) and thymidine kinase 2 (TK2) were determined in the two cell lines. Compared to that in the MOLT-4 wt cells the mRNA level of the constitutively expressed TK2 was higher (p < 0.01) in the ρ0 cells, whereas the TK1 mRNA level was lower (p < 0.05). The enzyme activity of the S-phase restricted TK1 was also lower (p < 0.05) in the MOLT-4 ρ0 cells, whereas the activities of dGK, dCK and TK2 were similar in MOLT-4 wt and ρ0 cell lines. The sensitivities to different cytotoxic nucleoside analogs were determined and compared between the two cell lines. Interestingly, we found that the acute cytotoxicity of araG, araT and other anti-viral and anti-cancer agents is independent of the presence of mtDNA in MOLT-4 T-lymphoblastoid cells.  相似文献   

18.
Inorganic tripolyphosphate (PPP(i)) and pyrophosphate (PP(i)) were examined as potential phosphate donors for human deoxynucleoside kinase (dCK), deoxyguanosine kinase (dGK), cytosolic thymidine kinase (TK1), mitochondrial TK2, and the deoxynucleoside kinase (dNK) from Drosophila melanogaster. PPP(i) proved to be a good phosphate donor for dGK, as well as for dCK with dCyd, but not dAdo, as acceptor substrate, illustrating also the dependence of donor properties on acceptor. Products of phosphorylation were shown to be 5(')-phosphates. In striking contrast to ATP, the phosphorylation reaction follows strict Michaelis-Menten kinetics, with K(m) values of 74 and 92 microM for dCK and dGK, respectively, and V(max) values 40-50% that for ATP. With the other three enzymes, as well as for dCK with dAdo as acceptor, no, or only low levels (相似文献   

19.
In eukaryotic cells deoxyribonucleoside kinases belonging to three phylogenetic sub-families have been found: (i) thymidine kinase 1 (TK1)-like enzymes, which are strictly pyrimidine deoxyribonucleoside-specific kinases; (ii) TK2-like enzymes, which include pyrimidine deoxyribonucleoside kinases and a single multisubstrate kinase from Drosophila melanogaster (Dm-dNK); and (iii) deoxycytidine/deoxyguanosine kinase (dCK/dGK)-like enzymes, which are deoxycytidine and/or purine deoxyribonucleoside-specific kinases. We cloned and characterized two new deoxyribonucleoside kinases belonging to the TK2-like group from the insect Bombyx mori and the amphibian Xenopus laevis. The deoxyribonucleoside kinase from B. mori (Bm-dNK) turned out to be a multisubstrate kinase like Dm-dNK. But uniquely for a deoxyribonucleoside kinase, Bm-dNK displayed positive cooperativity with all four natural deoxyribonucleoside substrates. The deoxyribonucleoside kinase from X. laevis (Xen-PyK) resembled closely the human and mouse TK2 enzymes displaying their characteristic Michaelis-Menten kinetic with deoxycytidine and negative cooperativity with its second natural substrate thymidine. Bm-dNK, Dm-dNK and Xen-PyK were shown to be homodimers. Significant differences in the feedback inhibition by deoxyribonucleoside triphosphates between these three enzymes were found. The insect multisubstrate deoxyribonucleoside kinases Bm-dNK and Dm-dNK were only inhibited by thymidine triphosphate, while Xen-PyK was inhibited by thymidine and deoxycytidine triphosphate in a complex pattern depending on the deoxyribonucleoside substrate. The broad substrate specificity and different feedback regulation of the multisubstrate insect deoxyribonucleoside kinases may indicate that these enzymes have a different functional role than the other members of the TK2-like group.  相似文献   

20.
In extension of an earlier report, six non-conventional analogues of ATP, three adenosine-2'-triphosphates (3'-deoxy, 3'-deoxy-3'-fluoro- and 3'-deoxy-3'-fluoroxylo-), and three adenosine-3'-triphosphates (2'-deoxy-, 2'-deoxy-2'-fluoro- and 2'-deoxy-2'-fluoroara-), were compared with ATP as potential phosphate donors for human deoxycytidine kinase (dCK), cytosolic thymidine kinase (TK1), mitochondrial TK2, deoxyguanosine kinase (dGK), and the deoxyribonucleoside kinase (dNK) from Drosophila melanogaster. With one group of enzymes, comprising TK1, TK2, dNK and dCK (with dAdo as acceptor), only 3'-deoxyadenosine-2'-triphosphate was an effective donor (5-60% that for ATP), and the other five analogues much less so, or inactive. With a second set, including dCK (dCyd, but not dAdo, as acceptor) and dGK (dGuo as acceptor), known to share high sequence similarity (approximately 45% sequence identity), all six analogues were good to excellent donors (13-119% that for ATP). With dCK and ATP1, products were shown to be 5'-phosphates. With dCK, donor properties of the analogues were dependent on the nature of the acceptor, as with natural 5'-triphosphate donors. With dCK (dCyd as acceptor), Km and Vmax for the two 2'(3')-deoxyadenosine-3'(2')-triphosphates are similar to those for ATP. With dGK, Km values are higher than for ATP, while Vmax values are comparable. Kinetic studies further demonstrated Michaelis-Menten (non-cooperative) or cooperative kinetics, dependent on the enzyme employed and the nature of the donor. The physiological significance, if any, of the foregoing remains to be elucidated. The overall results are, on the other hand, highly relevant to studies on the modes of interaction of nucleoside kinases with donors and acceptors; and, in particular, to interpretations of the recently reported crystal structures of dGK with bound ATP, of dNK with bound dCyd, and associated modeling studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号