首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleoside triphosphates having a 3'-ONH? blocking group have been prepared with and without fluorescent tags on their nucleobases. DNA polymerases were identified that accepted these, adding a single nucleotide to the 3'-end of a primer in a template-directed extension reaction that then stops. Nitrite chemistry was developed to cleave the 3'-ONH? group under mild conditions to allow continued primer extension. Extension-cleavage-extension cycles in solution were demonstrated with untagged nucleotides and mixtures of tagged and untagged nucleotides. Multiple extension-cleavage-extension cycles were demonstrated on an Intelligent Bio-Systems Sequencer, showing the potential of the 3'-ONH? blocking group in "next generation sequencing."  相似文献   

2.
3.
The T1 oligonucleotide in the genome Rous sarcoma virus (RSV) that corresponds to the initiation site of DNA synthesis in vitro was identified by hybridization of genome RNA with RSV strong stop DNA (the initial 101-nucleotide long fragment synthesized in endogenous reactions) and partially sequenced. The sequence of (C2, U2) A-U-U-U-G found corresponds to the d(A-A-T-G-A-A-G) sequence at the 5′ end of the DNA product plus the CA-OH sequence at the 3′ end of the tRNATrp primer. Therefore the nucleotide opposite the terminal A of the primer is the complementary U. Furthermore, no internal repetition of more than 30 nucleotides of the 5′ sequence could be detected.  相似文献   

4.
Thymidine analogues 5-trifluoromethyl-, 5-pentafluoroethyl- and 5-(heptafluoro-n-propyl)-2′-deoxyuridines were synthesised and converted into the corresponding 5′-triphosphates 1ac. Performing DNA polymerase-catalyzed primer extension reactions these modified nucleotides were incorporated into DNA to create perfluoroalkylated nucleic acids. Although single modified nucleotides were enzymatically incorporated and further elongated quite similar to the natural TTP, the enzymatic synthesis of multi-modified nucleic acids was initial only feasible with modifications at every fourth base. Nevertheless, as the effects of the modified dUTPs on DNA polymerases varied significantly with the used enzyme, Therminator DNA polymerase was proficient in incorporating 11 adjacent 5-trifluoromethyl-2′-deoxyuridine moieties.  相似文献   

5.
6.
7.
5′-Phosphoribosyl 5-amino-4-imidazole carboxamide was prepared by incubating 5-amino-4-imidazole carboxamide riboside and a phosphate compound with the bacteria characterized to phosphorylate at C5′ via the phosphoryl transfer reaction. Aromatic phosphate compounds and 5′-nucleotides were able to act as the phosphate donor. This material was isolated chromatographically and its properties were studied. The other bacteria characterized to phosphorylate at C3′ (or 2′) also phosphorylated a little probably at C3′ (or 2′) of 5-amino-4-imidazole carboxamide riboside.

The phosphoryl interconversion between nucleotides and nucleosides was studied to be carried out via the phosphoryl transfer reaction observed in bacteria. The phosphotransferase activity of Ps. trifolii mediated reversibly the phosphoryl transfer between 5′-nucleotides and nucleosides, and its optimal pH was at around 8.5, whereas that of Prot. mirabilis did transfer the phosphoryl radical from 2′- and 3′-nucleotide to nucleoside at its optimal pH, around 5.0.

These donor- and product-isomer specificities of both bacteria were evident to be invariable, regardless of reaction pH and cultural conditions. These reactions, especially using the bacteria characterized to phosphorylate at C5′ of nucleoside, were demonstrated to catalyze the phosphoryl interconversion between 5′-purine nucleotides and pyrimidine nucleosides or vice versa.  相似文献   

8.
9.

The ability of eight commercially available thermophilic DNA polymerases to sequentially incorporate fluorescently labeled nucleotides sequentially was analyzed by a gel based primer extension assay. Cy5-dUTP or a variant nucleotide in which the linker had been lengthened by 14 atoms between the dye and the nucleobase were compared. We found that the Cy5-dUTP with a longer linker resulted in longer primer extension lengths. Furthermore, some of the assayed polymerases are capable of extending the primer to the full or near full length of 30 nucleotides using dye-labeled nucleotides exclusively.  相似文献   

10.
The transmission of genetic information relies on Watson–Crick base pairing between nucleoside phosphates and template bases in template–primer complexes. Enzyme-free primer extension is the purest form of the transmission process, without any chaperon-like effect of polymerases. This simple form of copying of sequences is intimately linked to the origin of life and provides new opportunities for reading genetic information. Here, we report the dissociation constants for complexes between (deoxy)nucleotides and template–primer complexes, as determined by nuclear magnetic resonance and the inhibitory effect of unactivated nucleotides on enzyme-free primer extension. Depending on the sequence context, Kd′s range from 280 mM for thymidine monophosphate binding to a terminal adenine of a hairpin to 2 mM for a deoxyguanosine monophosphate binding in the interior of a sequence with a neighboring strand. Combined with rate constants for the chemical step of extension and hydrolytic inactivation, our quantitative theory explains why some enzyme-free copying reactions are incomplete while others are not. For example, for GMP binding to ribonucleic acid, inhibition is a significant factor in low-yielding reactions, whereas for amino-terminal DNA hydrolysis of monomers is critical. Our results thus provide a quantitative basis for enzyme-free copying.  相似文献   

11.
After cells were labeled by brief exposure to 3H-methyl-L-methionine, the majority of labeled 5′ terminal cap I (m7GpppN1mpN2p) oligonucleotide structures were in nuclear RNA (hnRNA) molecules ~750 nucleotides or less in length. After longer label times, the proportion of cap I structures in nuclear molecules longer than mRNA rose to approximately 60% of the total, but approximately 40% of the cap I structures were still in molecules shorter than ~750 nucleotides. The cap I structures in both long and short hnRNA chains contained all four 2′ methylated nucleotides in the N1 position in about the same proportion as in mRNA. None of the large hnRNA molecules could be demonstrated to contain 5′ pppXp termini; the only such terminus in high molecular weight RNA was pppAp which was decreased markedly by low doses of actinomycin and is presumably the terminus of pre-rRNA. These results raise the possibilities that hnRNA chains can initiate with any of the four nucleotides, that capping occurs very close to or at the start of hnRNA chain synthesis and that approximately 40% of the hnRNA chains may be prematurely terminated.  相似文献   

12.
13.
The complete nucleotide sequence of the FBJ-MuSV proviral DNA and the cellular homolog (c-fos) of its oncogene (v-fos) have been determined. The 4026 nucleotide long FBJ-MuSV proviral DNA contains two long terminal repeats, a substitution of 1639 nucleotides of mouse cellular DNA (v-fos) and the 3′ end of the env gene derived from FBJ-MuLV. The sequences of the parental FBJ-MuLV and the cellular c-fos (mouse) gene share five of five nucleotides at the 5′ end and ten of 11 nucleotides at the 3′ end of the v-fos substitution. When compared with the v-fos sequences, the c-fos gene contains four discontinuous regions, three of which are flanked by sequences characteristic of introns. Direct sequence analysis of c-fos (mouse) RNA by primer extension demonstrates that the fourth discontinuity is due to a 104 bp deletion in the v-fos gene. As a consequence of the deletion, the predicted v-fos and c-fos gene products differ at their C termini.  相似文献   

14.
C8-Arylamine-dG adducts were converted into their corresponding 5′-O-DMTr-3′-O-phosphoramidite-C8-arylamine-dG derivatives. These compounds were used for the automated synthesis of site-specifically modified oligonucleotides. The oligonucleotides were studied for their CD properties, Tm values, and their effects on primer extension assays using human DNA-polymerase β.  相似文献   

15.
Abstract

The crystal and molecular structure of sodium deoxyinosine monophosphate (5′-dIMP) has been determined by x-ray crystallographic methods. The crystals belong to orthorhombic space group P212121, with a = 21.079(5) Å, b = 9.206(3) Å and c = 12.770(6) Å. This deoxynucleotide shows common nucleotide features namely anti conformation about the glycosyl bond, C2′ endo pucker for the deoxyribose sugar and gauche-gauche orientation for the phosphate group. The sodium ion is directly coordinated to the O3′ atom, a feature observed in many crystal structures of sodium salts of nucleotides.  相似文献   

16.
SHAPE chemistry (selective 2′-hydroxyl acylation analyzed by primer extension) has been developed to specifically target flexible nucleotides (often unpaired nucleotides) independently to their purine or pyrimidine nature for RNA secondary structure determination. However, to the best of our knowledge, the structure of 2′-O-acylation products has never been confirmed by NMR or X-ray data. We have realized the acylation reactions between cNMP and NMIA under SHAPE chemistry conditions and identified the acylation products using standard NMR spectroscopy and LC–MS/MS experiments. For cAMP and cGMP, the major acylation product is the 2′-O-acylated compound (>99%). A trace amount of N-acylated cAMP has also been identified by LC–UV–MS2. While for cCMP, the isolated acylation products are composed of 96% of 2′-O-acylated, 4% of N,O-diacylated, and trace amount of N-acylated compounds. In addition, the characterization of the major 2′-O-acylated compound by NMR showed slight differences in the conformation of the acylated sugar between the three cyclic nucleotides. This interesting result should be useful to explain some unexpected reactivity of the SHAPE chemistry.  相似文献   

17.
Nuclease P1 was found to attack RNA and heat-denatured DNA in endo- and exonucleolytic manners. The evidence was as follows: (1) In the early stage of digestion both mononucleotides and oligonucleotides with various sizes were formed simultaneously with rapid fragmentation of polynucleotides. (2) The relative amount of the monomer was larger than that of any class of oligomers throughout the process of digestion. Nuclease P1 showed a preference for the linkages between 3′-hydroxyl group of adenosine or deoxyadenosine and the 5′-phosphoryl group of the adjacent nucleotides. p-Nitrophenyl ester of 3′-dTMP was hydrolyzed to thymidine and p-nitrophenyl phosphate, while p-nitrophenyl ester of 5′-dTMP was not attacked. It is concluded from these findings that the basic structure required for the substrate of nuclease P1 is a nucleoside 3′-phosphate-containing structure and the enzyme cleaves the diester bond between the phosphate and the 3′-hydroxyl group of the sugar.  相似文献   

18.
Cyclic nucleotide phosphodiesterase was extracted from intact chloroplasts and partially purified. Peak 1c activity from Sephadex G-200 was resolved by electrophoresis into two major bands (MWs 1.87 × 105 and 3.7 × 105). Both also possessed acid phosphatase, ribonuclease, nucleotidase and ATPase. The chloroplast peak 1c cyclic nueleotide phosphodiesterase was located in the envelope. Peak 1m cyclic nucleotide phosphodiesterase obtained from the microsomal fraction had a MW of 2.63 × 105. Electrophoresis separated 1m into two bands of cyclic nucleotide phosphodiesterase activity (MWs 2.63 × 105 and 1.28 × 105). Both contain ATPase, ribonuclease, nucleotidase, but not acid phosphatase. Peak 1c has high activity towards 3′:5′-cyclic AMP and 3′:5′-cyclic GMP but little towards 2′:3′-cyclic nucleotides. Peak 1m showed most activity towards 2′:3′-cyclic AMP, 2′:3′-cyclic GMP and 2′:3′-cyclic CMP with little activity towards 3′:5′-cyclic nucleotides. With 1c, 3′:5′-cyclic AMP and 3′:5′-cyclic GMP exhibit mixed-type inhibition towards one another. The 2′:3′-cyclic AMP phosphodiesterase 1m was competitively inhibited by 2′:3′-cyclic GMP. p-Chloromercuribenzoate inhibits 1c but not 1m. Electrophoresis after dissociation indicates that 1c and 1m are both enzyme complexes. After dissociation, the 1c complex but not that of 1m could be reassociated. The ribonuclease of the 1m complex hydrolyses RNA to yield 2′:3′-cyclic nucleotides as the main products. These results are compatible with the 1c cyclic nucleotide phosphodiesterase complex being involved in the metabolism of 3′:5′-cyclic AMP, and the 1m complex being concerned with RNA catabolism.  相似文献   

19.
Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) has gained popularity as a facile method of examining RNA structure both in vitro and in vivo, exploiting accessibility of the ribose 2′-OH to acylation by N-methylisatoic anhydride (NMIA) in unpaired or flexible configurations. Subsequent primer extension terminates at the site of chemical modification, and these products are fractionated by high-resolution gel electrophoresis. When applying SHAPE to investigate structural features associated with the wild-type and analog-substituted polypurine tract (PPT)–containing RNA/DNA hybrids, their size (20–25 base pairs) rendered primer extension impractical. As an alternative method of detection, we reasoned that chemical modification could be combined with tandem mass spectrometry, relying on the mass increment of RNA fragments containing the NMIA adduct (Mr = 133 Da). Using this approach, we demonstrate both specific modification of the HIV-1 PPT RNA primer and variations in its acylation pattern induced by replacing template nucleotides with a non-hydrogen-bonding thymine isostere. Our selective 2′-hydroxyl acylation analyzed by mass spectrometry strategy (SHAMS) should find utility when examining the structure of small RNA fragments or RNA/DNA hybrids where primer extension cannot be performed.  相似文献   

20.
S1 nuclease (EC 3.1.30.1) of Aspergillus oryzae was found to catalyze the hydrolysis of 2′- or 3′-phosphomonoester groups from several mono- and oligonucleotides. The specificity of the enzyme for mononucleotide substrates was determined by steady-state kinetic measurements at pH 4.5. The values of V were similar for all ribonucleoside 3′-phosphates tested, and they were 50–400 times greater than those for the corresponding deoxyribonucleotides or ribonucleoside 2′-phosphates. Purine nucleotides had lower apparent Km values than pyrimidine nucleotides. Apparent Km values of mononucleotides were also strongly dependent on the type of sugar and the positions of phosphoryl groups. Substrate specificity, as expressed by VKm, occurred in the following order: ribonucleoside 3′,5′-bisphosphate > ribonucleoside 3′-phosphate > deoxyribonucleoside 3′,5'-bisphosphate > deoxyribonucleoside 3′-phosphate ≈ ribonucleoside 2′-phosphate. S1 nuclease also catalyzed the dephosphorylation of the dinucleotide ApAp at a high rate and the release of PPi from adenosine 3′-diphosphate 5′-phosphate at a low rate. The phosphomonoesterase activity of the enzyme was competitively inhibited by single-stranded DNA and 5′-nucleotides. Apparent Ki values for adenosine compounds occurred in the order ATP < ADP < AMP ? adenosine. Tests of S1 nuclease for phosphotransferase activity at pH 4.5 and 7.0 were negative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号