首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The beta-cyanoethyl phosphosphoramidite derivatives of 6-methyl- and 6-methoxymethyl-3-(2-deoxy-beta-D-ribofuranosyl)-3H-pyrrolo[2,3-d]pyrimidin-2-one have been synthesized. These monomers have been employed for oligodeoxynucleotide synthesis to evaluate their effect on duplex stability and ability to fluorometrically report on hybridization. The structurally conservative 6-methoxymethyl-substitution results in a pyrrolocytidine that is stabilizing toward hybrid formation (Delta Tm = +1.3 degrees C) whereas the known 6-methylpyrrolocytidine is destabilizing (Delta Tm = -4.7 degrees C), in the sequence examined. The 6-methoxymethylpyrrolocytidine retains excellent mismatch discrimination and its fluorescence is selectively quenched when hybridized to a match oligodeoxynucleotide sequence. The quenching of fluorescence for an internal position is approximately three-fold, whereas a terminal position (5'-end or 3'-end) experienced approximately two-fold decrease in the fluorescence intensity.  相似文献   

2.
Two highly fluorescent compounds, viz. 6-(6-isobutyrylamino-1,3-dioxo-1 H,3H-benzo[de]isoquinolin-2-yl)-hexanoic acid and 6-(6-dimethylamino-1,3-dioxo-1 H,3H-benzo[de]isoqu-inolin-2-yl)-hexanoic acid have been synthesized, characterized, and attached to 12-mer oligodeoxyribonucleotides at their 5′-end using suitable linker molecule. These labeled oligodeoxyribonucleotides have shown appreciable fluorescence even at 0.0019 μM concentrations. Thermal denaturation studies have shown comparatively higher Tm values when oligodeoxyribonucleotides are labeled. These labeled oligodeoxyribonucleotides have been purified on RP-HPLC utilizing their hydrophobicity and on polyacrylamide gel because of their easy detection due to fluorescence.  相似文献   

3.
Abstract

2′-Deoxy-2′-fluorouridine has been chemically incorporated into an oligodeoxynucleotide of the structure 5′ACGGAX 3′ (X=U(2′-F)) using the phosphoramidite method and the behaviour of the product has been studied. 5′-O-Monomethoxytrityl-2′-deoxy-2′-fluorouridine was fixed on silica gel at the 3′-end and the chain elongated on a DNA-synthesizer using nucleoside methoxyphosphoramidites. After alkaline work-up two products were observed. One was found to be the desired fluoro containing hexamer, whereas the other corresponds to an araU-hexamer (X=arabino-furanosyluridine). The latter compound is supposed to be a product of alkaline hydrolysis of the C-2′-F-bond. The oligomers containing 2′-fluoro- and ara-U at their 3′-end were chemically sequenced by a solid phase method on CCS-paper which confirmed the right primary structure.  相似文献   

4.
Abstract

We have synthesized two RNA fragments: a 42-mer corresponding to the full loop I sequence of the loop I region of ColE1 antisense RNA (RNA I), plus three additional Gs at the 5′-end, and a 31-mer which has 11 5′-end nucleotides (G(-2)-U9) deleted. The secondary structure of the 42-mer, deduced from one- and two-dimensional NMR spectra, consists of a stem of 11 base-pairs which contains a U-U base-pair and a bulged C base, a 7 nucleotide loop, and a single-stranded 5′ end of 12 nucleotides. The UV-melting study of the 42-mer further revealed a multi-step melting behavior with transition temperatures 32°C and 71°C clearly discernible. In conjunction with NMR melting study the major transition at 71°C is assigned to the overall melting of the stem region and the 32°C transition is assigned to the opening of the loop region. The deduced secondary structure agrees with that proposed for the intact RNA I and provides structural bases for understanding the specificity of RNase E.  相似文献   

5.
Abstract

We synthesized and analyzed DNA hairpin molecules with methylphosphonate linkages of defined stereochemistry in the loop region. Dinucleotide building blocks ApA and TpT (p indicating methylphosphonate linkage with either Rp or Sp configuration) were synthesized, separated into the diastereomers, and incorporated at three positions of the tetraloops 5′-CGCAAAAGCG-3′ and 5′-CGCTTTTGCG-3′. The oligonucleotides were analyzed for their melting behavior. With a Tm of 67.5°C the molecule 5′-CGCAAApAGCG-3′ with a Sp configurated methylphosphonate is distinctly more stable than the Rp configurated one (Tm = 60.5 °C) and the unmodified oligonucleotide (Tm = 64.5 °C). In contrast to double helical DNA where the substitution of a phosphorodiester by a Sp configurated methylphosphonate results in a lower Tm, in DNA hairpin the introduction of Sp and Rp methylphosphonates at specific positions can lead to a stabilization of the structure.  相似文献   

6.
Abstract

The preponderance of 3′-5′ phosphodiester links in nucleic acids is well known. Albeit less prevalent, the 2′-5′ links are specifically utilised in the formation of ‘lariat’ in group II introns and in the msDNA-RNA junction in myxobacterium. As a sequel to our earlier study on cytidylyl-2′,5′-adenosine we have now obtained the crystal structure of adenylyl-2′,5′-adenosine (A2′p5′A) at atomic resolution. This dinucleoside monophosphate crystallises in the orthorhombic space group P212121 with a= 7.956(3)Å, b = 12.212(3)Å and c = 36.654 (3) Å. CuKα intensity data were collected on a diffractometer. The structure was sloved by direct methods and refined by full matrix least squares methods to R = 10.8 %. The 2′ terminal adenine is in the commonly observed anti (χ2 =?161°) conformation and the 5′ terminal base has a syn (χ1 = 55°) conformation more often seen in purine nucleotides. A noteworthy feature of A2′p5′ A is the intranucleotide hydrogen bond between N3 and 05′ atoms of the 5′ adenine base. The two furanose rings in A2′ p5′ A show different conformations-C2′ endo, C3′ endo puckering for the 5′ and 2′ ends respectively. In this structure too there is a stacking of the purine base on the ribose 04′ just as in other 2′-5′ dinucleoside structures, a feature characteristically seen in the left handed ZDNA. In having syn, anti conformation about the glycosyl bonds, C2′ endo, C3′ endo mixed sugar puckering and N3–05′ intramolecular hydrogen bond A2′p5′ A resembles its 3′-5′ analogue and several other 2′-5′ dinucleoside monophosphate structures solved so far. Striking similarities between the 2′-5′ dinucleoside monophosphate structures suggest that the conformation of the 5′-end nucleoside dictates the conformation of the 2′ end nucleoside. Also, the 2′-5′ dimers do not favour formation of miniature classical double helical structures like the 3′-5′ dimers. It is conceivable, 2–5(A) could be using the stereochemical features of A2′p5′ A which accounts for its higher activity.  相似文献   

7.
Abstract

5′-Dimethoxytrityl-5-(3-methoxypropynyl)-2′-deoxyuridine phosphoroamidite was synthesized with the use of commercial 3- methoxypropyne. Oligonucleotides (ODNs) containing 5-(3- ethoxypropynyl)- 2′-deoxyuridine in different positions were prepared. The stabilities of the duplexes formed by these ODNs with the complementary templates are increased in comparison with the unmodified counterparts. On average modified residue incorporated, the Tm is raised by 1°C.  相似文献   

8.
The 8-oxoG-clamp, a specific fluorescent probe for 8-oxo-deoxyguanosine (8-oxo-dG), was incorporated into the oligodeoxynucleotide (ODN) within or at the 3′-end of the purine and the pyrimidine sequences. Based on the UV-melting temperature, the 8-oxoG-clamp showed slightly lower stabilizing effects on the duplexes containing 8-oxo-dG at the complementary site than that with dG. On the other hand, 8-oxo-dG in DNA was selectively detected by fluorescence quenching of the 8-oxoG-clamp.  相似文献   

9.
10.
The distance between the poly(A) and poly(C) tracts in the molecules of encephalomyocarditis virus RNA has been estimated by two methods. The results indicate that these tracts are situated on the opposite ends of the viral RNA molecule. Evidence is presented that the poly(A) sequence in this molecule is located at the 3′-end. It is concluded that the poly(C) tract is situated at, or near, the 5′-end of the molecule.  相似文献   

11.
Plant cold shock domain proteins (CSDP) participate in maintenance of plant stress tolerance and in regulating their development. In the present paper we show that two out of three extremophyte plant Eutrema salsugineum proteins EsCSDP1-3, namely EsCSDP1 and EsCSDP3, possess high DNA-melting activity. DNA-melting activity of proteins was evaluated using molecular beacon assay in two ways: by measuring Tm parameter (the temperature at which half of the DNA beacon molecules is fully melted) and the beacon fluorescence at 4 °C. As the ratio protein/beacon was increased, a decrease in Tm was observed. Besides DNA-melting activity of full proteins, activity was measured for three isolated cold shock domains EsCSD1-3, C-terminal domain of EsCSDP1 (EsZnF1), as well as a mixture of EsCSD1 and EsZnF1. The Tm reduction efficiency of proteins formed the following sequence: EsCSDP3≈EsCSDP1>(EsCSD1+EsZnF1)>EsZnF1>EsCSDP2. Only full proteins EsCSDP3 and EsCSDP1 demonstrated DNA-melting activity at 4 °C. The presented experimental data indicate that i: interaction of EsCSDP1-3 with beacon single-stranded region is obligatory for efficient melting; ii: cold shock domain and C-terminal domain with zinc finger motifs should be present in one protein molecule to have high melting activity.  相似文献   

12.
The synthesis of poly(1-methyl-6-thioinosinic acid) and a comparison of its properties with those of poly(6-thioinosinic acid) and poly(6-methylthiopurinylic acid) are reported. In contrast to 6-thioinosine 5′-diphosphate, 1-methyl-6-thioinosine 5′-diphosphate was found to be a substrate for polynucleotide phosphorylase-catalyzed homopolyribonucleotide synthesis. Poly(1-methyl-6-thioinosinic acid) appears to form a single stranded helical array with a highly cooperative melting transition (Tm = 12°C) and a very large bathochromic shift (12 nm) in the absorption maximum upon melting.  相似文献   

13.
Thermal stability of myosin rod from various species   总被引:1,自引:0,他引:1  
The radius of gyration and fraction helix as a function of temperature have been determined for myosin rod from four different species: rabbit, frog, scallop, and antarctic fish. Measurements from sodium dodecyl sulfate gel electrophoresis indicate that all particles have the same molecular weight (approximately 130K). All fragments are nearly 100% alpha-helical at low temperatures (0-5 degrees C). The melting profiles for each are qualitatively similar in shape, but their midpoints are shifted along the temperature axis in the following order: antarctic fish (Tm = 33 degrees C), scallop (Tm = 39 degrees C), frog (Tm = 45 degrees C), and rabbit (Tm = 49 degrees C). Corresponding radius of gyration vs temperature profiles for each species are shifted to lower temperatures (approximately 5-8 degrees C) with respect to the optical rotation melting curves. From plots of radius of gyration vs fraction helix, we find a marked drop in the radius of gyration (from 43 to approximately 34 nm) with less than a 5% decrease in fraction helix for rabbit, frog, and antarctic fish rods, whereas the radius of gyration of scallop rod never exceeds 34 nm. Results indicate hinging of the myosin rod of each species. The thermal stabilities of the myosin rods shift in parallel with the working temperature of their respective muscles.  相似文献   

14.
The synthesis and stability of low molecular weight RNAs following heat shock in Drosophila melanogaster cell cultures have been examined. When cultures are raised from 25°C to 37°C, the synthesis of tRNA and at least two other low molecular weight RNAs continues at the 25°C rate. 5.8S ribosomal RNA and most of the low molecular weight nuclear RNAs are not synthesized. The synthesis of 5S ribosomal RNA is greatly reduced. A large amount of an RNA of about 135 nucleotides in length accumulates at 37°C. Nucleotide sequence analysis reveals that this RNA is a novel form of 5S RNA with approximately 15 additional nucleotides at its 3′ end.  相似文献   

15.
Thioredoxin interacting protein (TXNIP), which plays a regulatory role in lipid metabolism and immune regulation, is down-regulated expressed in F1 hybrids Landrace?×?Yorkshire skeletal muscle. Here we described the molecular characterization of porcine TXNIP gene. The full-length cDNA contains a coding sequence of 1,176?bp nucleotides with untranslated regions of 263?bp at 5′-end and 441?bp at 3′-end, respectively. The predicted molecular mass and isoelectric point of porcine TXNIP is 43.81?kDa and 7.385, respectively. The deduced 391 amino acids exhibit high identity with other mammalian TXNIP. The TXNIP gene contains eight coding exons and seven non coding introns, spans approximately 3,348?bp. The expression of porcine TXNIP mRNA is almost absent in Landrace?×?Yorkshire and lower level in 6-month-old pigs during skeletal muscle development. Other stages and breeds were high level expressed. Statistical analysis showed the TXNIP gene polymorphism (c.575-4T>C) was different between F1 hybrids and their parents, was highly associated with dressing percentage (DP) and thorax–waist fat thickness (TFT) in the Yorkshire?×?Meishan F2 population. The possible role of TXNIP was discussed.  相似文献   

16.
We have tested the possible genesis of kinetin from a 2′-deoxyadenylate unit of DNA by a chemical route involving a head-to-tail transfer of deoxyribose from the 9 to the 3 position of the adenine nucleus via a cyclonucleoside, with subsequent elimination of 1′- and 3′-polar groups and 3 → N6 intramolecular rearrangement leading to kinetin. We have also determined quantitatively the per cent conversions to 3-furfuryladenine and/or kinetin of the following under autoclaving conditions at 120°, pH 4, 2 atm, and 4 hr: (1) adenine/furfury alcohol; (2) adenine/2-deoxy-d-ribose; (3) 2′-deoxyadenosine; (4) 3-furfuryladenine; (5) 3,5′-(3′-O-diethylphosphoryl-2′-deoxya-denosine)-cyclonucleoside p-toluenesulfonate. The sequence of reactions involving cyclonucleoside formation and rearrangement has been shown to be a chemically feasible route by which kinetin can be formed, although it is not the only way this cytokinin can be generated.  相似文献   

17.
DNA methylation is an important cellular mechanism for controlling gene expression. Whereas the mutagenic properties of many DNA adducts, e.g., those arising from polycyclic aromatic hydrocarbons, have been widely studied, little is known about their influence on DNA methylation. We have constructed site-specifically modified 18-mer oligodeoxynucleotide duplexes containing a pair of stereoisomeric adducts derived from a benzo[a]pyrene-derived diol epoxide [(+)- and (-)-r7,t8-dihydroxy-t9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, or B[a]PDE] bound to the exocyclic amino group of guanine. The adducts, either (+)- or (-)-trans-anti-B[a]P-N(2)-dG (G*), positioned either at the 5'-side or the 3'-side deoxyguanosine residue in the recognition sequence of EcoRII restriction-modification enzymes (5'-...CCA/TGG...) were incorporated into 18-mer oligodeoxynucleotide duplexes. The effects of these lesions on complex formation and the catalytic activity of the EcoRII DNA methyltransferase (M.EcoRII) and EcoRII restriction endonuclease (R.EcoRII) were investigated. The M.EcoRII catalyzes the transfer of a methyl group to the C5 position of the 3'-side cytosine of each strand of the recognition sequence, whereas R.EcoRII catalyzes cleavage of both strands. The binding of R.EcoRII to the oligodeoxynucleotide duplexes and the catalytic cleavage were completely abolished when G was positioned at the 3'-side dG position (5'-...CCTGG*...). When G* was at the 5'-side dG position, binding was moderately diminished, but cleavage was completely blocked. In the case of M.EcoRII, binding is diminished by factors of 5-30 but the catalytic activity was either abolished or reduced 4-80-fold when the adducts were located at either position. Somewhat smaller effects were observed with hemimethylated oligodeoxynucleotide duplexes. These findings suggest that epigenetic effects, in addition to genotoxic effects, need to be considered in chemical carcinogenesis initiated by B[a]PDE, since the inhibition of methylation may allow the expression of genes that promote tumor development.  相似文献   

18.
Expression of modified xynA gene fragments in Escherichia coli BL21 was studied, using the complete xynA gene from Bacillus subtilis BE-91 as the positive control. The technical workflow consisted of the following steps: (1) predicting protein structures relative to the xynA gene; (2) designing primers for modifiers; (3) amplifying the modifiers; (4) integrating the modifiers with the pET-28a(+) vector; (5) transferring the recombinant plasmids into E. coli BL21; (6) evaluating and analyzing the expression of modified cells. The results were: (1) the xynA gene from BE-91 with the untranslated region deleted on both ends was able to promote XynA activity by 28.9 %; (2) deletion of the 1- to 16-amino acid (AA) coding sequence in the open reading frame on the 5′-end, deletion of the 209- to 213-AA fragment on the 3′-end and deletion of the 20 AA on both ends could promote XynA activity by 27.2, 27.7 and 24.0 %,respectively; (3) deletion of the 1- to 29-AA fragment on the 5′-end and deletion of the 197- to 213-AA fragment on the 3′-end could reduce XynA activity dramatically by 95.6 and 74.8 %, respectively; (4) inactivation factors of XynA would be either the first β-fold and the hydrophilic structure domain or the last two α-screws and the seventeenth turn region. The results mean that any deletion in the catalytic domain would lead to a decline or inactivation in XynA activity while the deletion of any sequence outside the catalytic domain could effectively promote XynA activity, as such sequences are unnecessary for XynA function.  相似文献   

19.
Abstract

13C-31P coupling constants of 10 oligoribonucleoside phosphates, measured at a number of temperatures, are presented. The combination of these data with 1H-31 couplings of the same compounds leads to the derivation of two new and mutually consistent sets of Karplus parameters:

J(CCOP) = 6.9cos2φ - 3.4cosφ + 0.7

J(HCOP) = 15.3cos2φ - 6. 1cosφ + 1.6

At the same time new values for the base sequence dependent magnitude of the trans conformer of the backbone angle E ∈(C4′-C3′-03′-P) are calculated. The present results show that the magnitude of ∈(t) in right-handed ribo helices is confined to the range 214°-226° (average 219°), which is in much better agreement with single crystal X-ray studies (average 218°) than were previous deductions from NMR spectroscopic results (average 208°).  相似文献   

20.
M E Holtzer  A Holtzer 《Biopolymers》1990,30(9-10):985-993
Circular dichroism (CD) experiments in the backbone (200-240 nm) region are reported for four isolated, excised two-chain, coiled-coil segments whose chains comprise, respectively, residues 11-127, 142-281, 1-189, and 190-284 of the rabbit alpha alpha-tropomyosin (Tm) sequence. The uv and CD spectra for the noncross-linked segments are very similar to those for parent Tm. At 3 degrees C, all have a helix content of 90% or more; moreover, all thermal denaturation curves depend on concentration, as required by mass action, and are completely reversible. At comparable concentrations, solutions show values of T1/2 (the temperature at which the helix content is 50%) following the order of 11Tm127 approximately 1Tm189 greater than 142Tm281 greater than 190Tm284. The thermal unfolding data for 11Tm127, 190Tm284, and 142Tm281 fall on apparently monophasic curves (single inflection point). However, curves for 1Tm189 show a heretofore unknown low temperature transition in which the helix content drops from approximately 90% at 2 degrees C to approximately 73% at 20 degrees C, indicating that this segment has one or more weak sections totaling approximately 50 residues per chain. Since thermal denaturation curves for noncross-linked 11Tm127, 142Tm281, and Tm have no such low temperature transition, i.e., the helix content is not additive, the weak region probably comprises the bulk of the residues between 127 and 189 in 1Tm189, but is somehow stabilized in 142Tm281 and in parent Tm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号