首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Malignant gliomas are highly lethal neoplasms with limited treatment options. We previously found that the heparan sulfate proteoglycan glypican 1 (GPC1) is universally and highly expressed in human gliomas. In this study, we investigated the biological activity of GPC1 expression in both human glioma cells and normal astrocytes in vitro. Expression of GPC1 inactivates the G1/S checkpoint and strongly stimulates DNA replication. Constitutive expression of GPC1 causes DNA rereplication and DNA damage, suggesting a mutagenic activity for GPC1. GPC1 expression leads to a significant downregulation of the tumor suppressors pRb, Cip/Kip cyclin-dependent kinase inhibitors (CKIs), and CDH1, and upregulation of the pro-oncogenic proteins cyclin E, cyclin-dependent kinase 2 (CDK2), Skp2, and Cdt1. These GPC1-induced changes are accompanied by a significant reduction in all types of D cyclins, which is independent of serum supplementation. It is likely that GPC1 stimulates the so-called Skp2 autoinduction loop, independent of cyclin D-CDK4/6. Knockdown of Skp2, CDK2, or cyclin E, three key elements within the network modulated by GPC1, results in a reduction of the S phase and aneuploid fractions, implying a functional role for these regulators in GPC1-induced S phase entry and DNA rereplication. In addition, a significant activation of both the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways by GPC1 is seen in normal human astrocytes even in the presence of growth factor supplement. Both pathways are constitutively activated in human gliomas. The surprising magnitude and the mitogenic and mutagenic nature of the effect exerted by GPC1 on the cell cycle imply that GPC1 may play an important role in both glioma tumorigenesis and growth.  相似文献   

2.
Cell swelling is associated with the activation of an increase in the osmosensitive taurine release (OTR) rate, which serves to decrease cell volume as part of a process known as regulatory volume decrease. OTR, which is sensitive to many pharmacological agents including anion channel blockers and signalling pathway modulators, has also been suggested to play a role in cell cycle progression. At non-cytotoxic concentrations, the anion channel blocker NPPB (25 μM), the extra-cellular signal-regulated kinase inhibitor PD98059 (50 μM), and the c-Jun NH2-terminal kinase inhibitor SP 600125 (5 μM) each decreased the OTR rate by ≥50%, decreased cell proliferation, and increased G0/G1 cell cycle arrest.  相似文献   

3.
Sclerotium rolfsii lectin (SRL) isolated from the phytopathogenic fungus Sclerotium rolfsii has exquisite binding specificity towards O-linked, Thomsen-Freidenreich (Galβ1-3GalNAcα1-Ser/Thr, TF) associated glycans. This study investigated the influence of SRL on proliferation of human breast cancer cells (MCF-7 and ZR-75), non-tumorigenic breast epithelial cells (MCF-10A) and normal mammary epithelial cells (HMECs). SRL caused marked, dose-dependent, inhibition of proliferation of MCF-7 and ZR-75 cells but only weak inhibition of proliferation of non-tumorigenic MCF-10A and HMEC cells. The inhibitory effect of SRL on cancer cell proliferation was shown to be a consequence of SRL cell surface binding and subsequent induction of cellular apoptosis, an effect that was largely prevented by the presence of inhibitors against caspases -3, -8, or -9. Lectin histochemistry using biotin-labelled SRL showed little binding of SRL to normal human breast tissue but intense binding to cancerous tissues. In conclusion, SRL inhibits the growth of human breast cancer cells via induction of cell apoptosis but has substantially less effect on normal epithelial cells. As a lectin that binds specifically to a cancer-associated glycan, has potential to be developed as an anti-cancer agent.  相似文献   

4.
Forces applied to resting primary astrocytes, bovine aortic endothelial cells and C6 glioma cells with collagen-coated magnetite particles produce a fast transient change of intracellular Ca2+. It peaks in the micromolar range as measured by Fura-2. This mechanical response adapts within seconds so that repeated stimulation causes smaller responses requiring >10 min for recovery. When cytoplasmic Ca2+ is high after treating with ATP, cyclopiazonic acid and thapsigargin, stimulation causes a transient decrease in Ca2+. In these three cell types, no influx of ions is required for Ca2+ elevation showing the response is not caused by activation of plasmalemmal mechanosensitive channels. Approximately half the cells tested showed similar behavior, while the other half, such as fibroblasts, required extracellular Ca2+. The Ca2+ response is not temperature sensitive suggesting the possible involvement of intracellular mechanosensitive channels. We tested a number of second messenger reagents and were only able to block the response in BAECs, but not C6 glioma cells, with Xestospongin C, a blocker of IP3-activated channels. Despite the lack of a causal involvement of plasmalemmal mechanosensitive channels, mechanical stimulation immediately activates a persistent Mn2+ influx pathway. This Mn2+ pathway may be mechanosensitive channels, Ca2+-activated cation channels or depletion-activated Ca2+ channels. Received: 7 July 1999/Revised: 12 November 1999  相似文献   

5.
Genistein, a naturally occurring isoflavone found chiefly in soybeans, has been reported to be a potent antitumor agent. Genistein is presumed to exert multiple effects related to the inhibition of cancer growth. Metastatic melanoma is a chemotherapy‐refractory neoplasm. The present study was designed to explore the possible activity of genistein to inhibit the aberrant proliferation and to induce apoptosis of human malignant melanoma cells in cooperation with cisplatin treatment. Five human melanoma cell lines were utilized for these experiments. Genistein at physiologic concentrations (20 μM) did not induce apoptosis by itself but did enhance cisplatin‐induced apoptosis in all five human melanoma cell lines tested. The enhanced susceptibility among the cell lines was diverse. Changes in the expression of two anti‐apoptotic proteins, bcl‐2 and bcl‐xL, and one pro‐apoptotic protein, apoptotic protease activating factor‐1 (Apaf‐1), were examined. Genistein alone or cisplatin alone generally did not alter bcl‐2 expression or bcl‐xL expression, but slightly increased Apaf‐1 in some cell lines. The combined treatment with genistein and cisplatin significantly reduced bcl‐2 and bcl‐xL protein and increased Apaf‐1 protein expression. These data suggest that genistein therapy may enhance the chemosensitivity of melanoma patients.  相似文献   

6.
Abstract: It is well documented that 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors prevent cultured mammalian cells from progressing through the cell cycle, suggesting a critical role for a mevalonate-derived product. Recently, it has been shown that free geranylgeraniol (GG-OH) and farnesol (F-OH) can be utilized by C6 glioma cells for protein isoprenylation. The ability of GG-OH and F-OH to restore protein geranylgeranylation or farnesylation selectively has enabled us to examine the possibility that mevalonate is essential for cell proliferation because it is a precursor of farnesyl pyrophosphate or geranylgeranyl pyrophosphate, the isoprenyl donors involved in the post-translational modification of key regulatory proteins. In this study we report that GG-OH, as well as mevalonate, overcomes the arrest of cell proliferation of C6 glioma cells treated with lovastatin, as assessed by increased cell numbers and a stimulation in [3H]thymidine incorporation. The increase in cell number and [3H]thymidine incorporation were significantly lower when F-OH was added. Under these conditions [3H]mevalonate and [3H]GG-OH are actively incorporated into a set of isoprenylated proteins in the size range of small, GTP-binding proteins (19–27 kDa) and a polypeptide with the molecular size (46 kDa) of the smaller isoform of 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Analysis of the proteins metabolically labeled by [3H]mevalonate and [3H]GG-OH reveals the presence of labeled proteins containing geranylgeranylated cysteinyl residues. Consistent with geranylgeranylated proteins playing a critical role in the entry of C6 cells into the cell cycle, a (phosphonoacetamido)oxy derivative of GG-OH, a drug previously shown to interfere with protein geranylgeranylation, prevented the increase in cell number when mevalonate or GG-OH was added to lovastatin-treated cells. These results strongly suggest that geranylgeranylated proteins are essential for progression of C6 cells into the S phase of the cell cycle and provide the first evidence that the “salvage” pathway for the utilization of the free isoprenols is physiologically significant in the CNS.  相似文献   

7.
8.
9.

Background

Gremlin, a member of the Dan family of BMP antagonists, is a glycosylated extracellular protein. Previously Gremlin has been shown to play a role in dorsal-ventral patterning, in tissue remodeling, and recently in angiogenesis. Evidence has previously been presented showing both over- and under-expression of Gremlin in different tumor tissues. Here, we sought to quantify expression of Gremlin in cancers of the lung and performed in vitro experiments to check whether Gremlin promotes cell growth and proliferation.

Methodology/Principal Findings

Expression of Gremlin in 161 matched tumor and normal lung cancer specimens is quantified by quantitative real-time PCR and protein level is measured by immunohistochemistry. GREM1 was transfected into lung fibroblast and epithelial cell lines to assess the impact of overexpression of Gremlin in vitro.

Results

Lung adenocarcinoma but not squamous cell carcinoma shows a significant increase in Gremlin expression by mRNA and protein level. Lung fibroblast and epithelial cell lines transfected with GREM1 show significantly increased cell proliferation.

Conclusions/Significance

Our data suggest that Gremlin acts in an oncogenic manner in lung adenocarcinoma and could hold promise as a new diagnostic marker or potential therapeutic target in lung AD or general thoracic malignancies.  相似文献   

10.
Ceramide causes either apoptosis or non-apoptotic cell death depending on model system and experimental conditions. The present study was undertaken to examine the effect of ceramide on cell viability and its molecular events leading to cell death in A172 human glioma cells. Ceramide induced cell death in a dose-dependent manner and the cell death was dependent on generation of reactive oxygen species and lipid peroxidation. TUNEL assay, Hoechst 33258 staining, and flow cytometric analysis did not show typical apoptotic morphological features. Ceramide caused phosphorylation of extracellular signal-regulated kinase (ERK) and p38, but the cell death was not affected by inhibitors of MAPK subfamilies. Ceramide caused ATP depletion without loss of mitochondrial membrane potential. Ceramide did not induce caspase activation and ceramide-induced cell death was also not altered by inhibitors of caspase activation. Transfection of dominant inhibitory mutant of IκBα (S32A/36A) and pretreatment of pyrrolidinedithiocarbamate, an inhibitor of NF-κB, enhanced ceramide-induced cell death. These results indicate that ceramide causes non-apoptotic, caspase-independent cell death by inducing reactive oxygen species generation in A172 human glioma cells. NF-κB is involved in the regulation of ceramide-induced cell death in human glioma cells.  相似文献   

11.
The aggressive and rapidly lethal brain tumor glioblastoma (GBM) is associated with profound tissue stiffening and genomic lesions in key members of the epidermal growth factor receptor (EGFR) pathway. Previous studies from our laboratory have shown that increasing microenvironmental stiffness in culture can strongly enhance glioma cell behaviors relevant to tumor progression, including proliferation, yet it has remained unclear whether stiffness and EGFR regulate proliferation through common or independent signaling mechanisms. Here we test the hypothesis that microenvironmental stiffness regulates cell cycle progression and proliferation in GBM tumor cells by altering EGFR-dependent signaling. We began by performing an unbiased reverse phase protein array screen, which revealed that stiffness modulates expression and phosphorylation of a broad range of signals relevant to proliferation, including members of the EGFR pathway. We subsequently found that culturing human GBM tumor cells on progressively stiffer culture substrates both dramatically increases proliferation and facilitates passage through the G1/S checkpoint of the cell cycle, consistent with an EGFR-dependent process. Western Blots showed that increasing microenvironmental stiffness enhances the expression and phosphorylation of EGFR and its downstream effector Akt. Pharmacological loss-of-function studies revealed that the stiffness-sensitivity of proliferation is strongly blunted by inhibition of EGFR, Akt, or PI3 kinase. Finally, we observed that stiffness strongly regulates EGFR clustering, with phosphorylated EGFR condensing into vinculin-positive focal adhesions on stiff substrates and dispersing as microenvironmental stiffness falls to physiological levels. Our findings collectively support a model in which tissue stiffening promotes GBM proliferation by spatially and biochemically amplifying EGFR signaling.  相似文献   

12.
13.
There has been considerable interest in recent years in the anti-tumor activities of flavonoids. Quercetin, a ubiquitous bioactive flavonoid, can inhibit proliferation and induce apoptosis in a variety of cancer cells. However, the precise molecular mechanism by which quercetin induces apoptosis in cancer cells is poorly understood. The present study was undertaken to examine the effect of quercetin on cell viability and to determine its underlying mechanism in human glioma cells. Quercetin resulted in loss of cell viability in a dose- and time-dependent manner and the decrease in cell viability was mainly attributed to cell death. Quercetin did not increase reactive oxygen species (ROS) generation and the quercetin-induced cell death was also not affected by antioxidants, suggesting that ROS generation is not involved in loss of cell viability. Western blot analysis showed that quercetin treatment caused rapid reduction in phosphorylation of extracellular signal-regulated kinase (ERK) and Akt. Transient transfection with constitutively active forms of MEK and Akt protected against the quercetin-induced loss of cell viability. Quercetin-induced depolarization of mitochondrial membrane potential. Caspase activity was stimulated by quercetin and caspase inhibitors prevented the quercetin-induced loss of cell viability. Quercetin resulted in a decrease in expression of survivin, antiapoptotic proteins. Taken together, these findings suggest that quercetin results in human glioma cell death through caspase-dependent mechanisms involving down-regulation of ERK, Akt, and survivin.  相似文献   

14.
15.
16.
为了观察正常人骨髓成纤维样细胞系HFCL对急性单核细胞白血病U937细胞促分化作用,及其对经典诱导分化剂TPA诱导分化作用的影响,先建立U937细胞和HFCL细胞共培养体系,以细胞形态学改变、硝基四氦唑蓝(NBT)、流式细胞仪检测细胞周期和CD11b、CD13、CD14、CD33细胞表面抗原作为诱导分化指标;Western印迹检测P38蛋白的表达变化。结果发现,与HFCL细胞共培养后,U937细胞出现分化成熟的形态学改变,且与HFCL细胞直接接触组的诱导分化作用大于用transwell组。同时发现U937细胞与HFCL细胞共培养后,G1期细胞增高,S期细胞减少;CD11b、CD13、CD14和CD33表达增高;且NBT阳性细胞增高至46、3%。Western印迹检测结果显示,直接接触组总P38蛋白表达增加。而且HFCL细胞还能增强TPA对U937的诱导分化作用。  相似文献   

17.
Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells.  相似文献   

18.
干细胞移植治疗肿瘤具有重要的临床价值.应用人间充质干细胞条件培养液作用H7402肝癌细胞,拟探讨间充质干细胞对肿瘤细胞的抑制作用,为今后应用人间充质干细胞进行肿瘤细胞治疗奠定理论基础.应用胎儿真皮来源的 Z3 间充质干细胞和胎儿骨髓来源的 BMMS-03 间充质干细胞的条件培养液作用于H7402肝癌细胞,采用软琼脂克隆形成实验、流式细胞仪技术、基因芯片技术和免疫印迹技术观察 H7402 细胞的克隆形成、增殖和基因表达谱变化.结果显示,H7402 细胞在间充质干细胞条件培养液作用下,克隆形成和增殖受到了明显抑制;基因芯片检测结果显示,H7402 细胞在间充质干细胞条件培养液作用下有 23 个基因上调表达,17 个基因下调表达,这些差异表达的基因与细胞的转录调控、新陈代谢、信号转导、细胞周期、应激反应和细胞粘附等功能相关.本实验结果表明,人间充质干细胞对 H7402 肝癌细胞的克隆形成和增殖具有抑制作用,并有多种基因的表达发生改变,这些基因表达的改变可能参与了对上述肿瘤细胞的抑制.  相似文献   

19.
DIX domain containing 1 (DIXDC1), the human homolog of coiled-coil-DIX1 (Ccd1), is a positive regulator of Wnt signaling pathway. Recently, it was found to act as a candidate oncogene in colon cancer, non-small-cell lung cancer, and gastric cancer. In this study, we aimed to investigate the clinical significance of DIXDC1 expression in human glioma and its biological function in glioma cells. Western blot and immunohistochemistry analysis showed that DIXDC1 was overexpressed in glioma tissues and glioma cell lines. The expression level of DIXDC1 was evidently linked to glioma pathological grade and Ki-67 expression. Kaplan–Meier curve showed that high expression of DIXDC1 may lead to poor outcome of glioma patients. Serum starvation and refeeding assay indicated that the expression of DIXDC1 was associated with cell cycle. To determine whether DIXDC1 could regulate the proliferation and migration of glioma cells, we transfected glioma cells with interfering RNA-targeting DIXDC1; investigated cell proliferation with Cell Counting Kit (CCK)-8, flow cytometry assays, and colony formation analyses; and investigated cell migration with wound healing assays and transwell assays. According to our data, knockdown of DIXDC1 significantly inhibited proliferation and migration of glioma cells. These data implied that DIXDC1 might participate in the development of glioma, suggesting that DIXDC1 can become a potential therapeutic strategy for glioma.  相似文献   

20.
小干扰RNA抑制LRP16基因表达限制了MCF-7乳腺癌细胞增殖   总被引:12,自引:0,他引:12  
雌激素雌二醇上调人乳腺癌细胞MCF 7中LRP16基因表达 ,该基因过表达促进MCF 7细胞增殖 .为进一步探讨LRP16基因不同表达水平对MCF 7细胞增殖的影响以及对雌激素的反应性增殖能力 ,采用针对LRP16基因特异的小干扰RNA策略 ,通过逆转录病毒介导及抗性筛选构建了LRP16基因被稳定抑制的 2个MCF 7细胞系 ,针对绿色荧光蛋白的干扰序列作为阴性对照 .Northern印迹实验检测了LRP16基因在各个细胞株中mNRA的水平 ,与对照组细胞比较 ,针对LRP16基因不同位置的 2个小干扰RNA可分别将该基因抑制 90 %和 6 0 % .细胞增殖试验结果显示 ,MCF 7细胞中LRP16基因表达抑制率越高 ,细胞增殖速率减慢越显著 (P <0 0 5 ) ;软琼脂集落形成试验结果显示 ,抑制LRP16基因在MCF 7细胞中表达 ,限制了细胞锚定非依赖性生长 ;细胞周期分析结果表明 ,LRP16基因抑表达使MCF 7细胞G1 S周期转换受抑 ;Western印迹结果表明 ,LRP16基因表达抑制的细胞中细胞周期蛋白E及细胞周期蛋白D1蛋白水平显著下调 ,但未检测到P5 3及Rb蛋白表达水平的影响 .雌二醇刺激的增殖实验结果显示 ,抑制LRP16基因表达没有消除MCF 7细胞的反应性增殖特征 .上述结果表明 ,LRP16基因表达量与MCF 7细胞增殖能力密切相关 ,抑制其表达可有效限制MCF 7细胞的增殖能力 ,提  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号