首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of cyclic ADP-carbocyclic-ribose (2), as a stable mimic for cyclic ADP-ribose, was investigated. Construction of the 18-membered backbone structure was successfully achieved by condensation of the two phosphate groups of 19, possibly due to restriction of the conformation of the substrate in a syn-form using an 8-chloro substituent at the adenine moiety. SN2 reactions between an optically active carbocyclic unit 8, which was constructed by a previously developed method, and 8-bromo-N6-trichloroacetyl-2',3'-O-isopropylideneadenosine 9c gave N-1-carbocyclic derivative, which was deprotected to give 5'-5"-diol derivatives 18. When 18 was treated with POCl3 in PO(OEt)3, the bromo group at the 8-position was replaced to give N-1-carbocyclic-8-chloroadenosine 5',5"-diphosphate derivative 19 in 43% yield. Treatment of 19 with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride gave the desired intramolecular condensation product 20 in 10% yield. This is the first chemical construction of the 18-membered backbone structure containing an intramolecular pyrophosphate linkage of a cADPR-related compound with an adenine base.  相似文献   

2.
Abstract

Reaction of 2′-deoxy-2′-methylidene-5′-O-trityluridine (1) with diethylamino-sulfur trifluoride (DAST) in CH2Cl2 resulted in the formation of a mixture of (3′R)-2′,3′-dideoxy-3′-fluoro-2′-methylidene derivative 3 and 2′,3′-didehydro-2′,3′-dideoxy-2′-fluoromethyl derivative 4 (3:4 = 1:1.5) in 65% yield. A similar treatment of 1-(2-deoxy-2-methylidene-5-O-trityl-β-D-threo-pentofuranosyl)uracil (19) with DAST in CH2Cl2 afforded (3′S)-2′,3′-dideoxy-3′-fluoro-2′-methylidene derivatives 20 and 4 in 38% and 17% yields respectively. Transformation of the uracil nucleosides 4, 12, and 20 into cytosines followed by deprotection furnished the corresponding cytidine derivatives 29, 18, and 25, respectively. The corresponding thymidine congener 27 was also synthesized in a similar manner. All of the newly synthesized nucleosides were evaluated for their inhibitory activities against HIV and for their antiproliferative activities against L1210 and KB cells.  相似文献   

3.
Abstract

A very efficient synthetic route for preparing a novel 4′-C-aryl branched-1′,2′-seco-2′,3′-dideoxy-2′,3′-didehydro-nucleoside is described. Mesylate 7 was successfully synthesized via a Horner-Wadsworth-Emmons reaction and a [3,3]-sigmatropic rearrangement, with which an adenine base was coupled by nucleophilic substitution conditions (K2CO3, 18-Crown-6, DMF) to give the target nucleoside 9.  相似文献   

4.
Abstract

Treatment of O2, 3′-anhydro-5′-O-trityl derivatives of thymidine (1) and 2′-deoxyuridine (2) with lithium azide in dimethylformamide at 150 °C resulted in the formation of the corresponding isomeric 3′-azido-2′, 3′-dideoxy-5′-O-trityl-β-D-ribofuranosyl N1- (the major products) and N3-nucleosides (3/4 and 5/6). 3′-Amino-2′, 3′-dideoxy-β-D-ribofuranosides of thymidine [Thd(3′NH2)], uridine [dUrd(3′NH2)], and cytidine [dCyd(3′NH2)] were synthesized from the corresponding 3′-azido derivatives. The Thd(3′NH2) and dUrd(3′NH2) were used as donors of carbohydrate moiety in the reaction of enzymatic transglycosylation of adenine and guanine to afford dAdo(3′NH2) and dGuo(3′NH2). The substrate activity of dN(3′NH2) vs. nucleoside phosphotransferase of the whole cells of Erwinia herbicola was studied.  相似文献   

5.
Abstract

Reaction of 2′,3′,5′-O-silylated inosine derivative 1 with 2, 3-O-isopropylidene-5-O-tritylribosyl chloride (3) in a two-phase (CH2Cl2-aq. NaOH) system in the presence of Bu4NBr gave three products, i. e., 6-O-α-, 6-O-β-, and N 1-β-isomers of glycosides 4, 5a, and 5b. A similar PTC reaction of 1 with 2, 3, 5-tri-O-benzylribosyl bromide (9) gave four regio- and stereo-isomers involving the N1-β-glycoside 10. Reaction of 1 with 2, 3, 5-tri-O-benzoylribosyl bromide (11) afforded three products involving the desired N1-β-glycoside 12b, which could be deprotected to give N 1-ribosylinosine (15b) as a useful intermediate for the synthesis of cIDPR.

  相似文献   

6.
Abstract

New methods for the synthesis of 2′,3′-didehydro-2′,3′-dideoxy-2′ (and 3′)-methyl-5-methyluridines and 2′,3′-dideoxy-2′ (and 3′)-methylidene pyrimidine nucleosides have been developed from the corresponding 2′ (and 3′)-deoxy-2′ (and 3′)-methylidene pyrimidine nucleosides. Treatment of a 3′-deoxy-3′-methylidene-5-methyluridine derivative 8 with 1,1′-thiocarbonyldiimidazole gave the allylic rearranged 2′,3′-didehydro-2′,3′-dideoxy-3′-[(imidazol-1-yl)carbonylthiomethyl] derivative 24. On the other hand, reaction of 8 with methyloxalyl chloride afforded 2′-O-methyloxalyl ester 25. Radical deoxygenation of both 24 and 25 gave 26 exclusively. Palladium-catalyzed reduction of 2′,5′-di-O-acetyl-3′-deoxy-3′-methylidene-5-methyluridine (32) with triethylammonium formate as a hydride donor regioselectively afforded the 2′,3′-dideoxy-3′-methylidene derivative 35 and 2′,3′-didehydro-2′,3′-dideoxy-3′-methyl derivative 34 in a ratio of 95:5 in 78% yield. These reactions were used on the corresponding 2′-deoxy-2′-methylidene derivatives. An alternative synthesis of 2′,3′-dideoxy-2′-methylidene pyrimidine nucleosides (43, 52, and 54) was achieved from the corresponding 1-(3-deoxy-β-D-thero-pentofuranosyl)pyrimidines (44 and 45). The cytotoxicity against L1210 and KB cells and inhibitory activity of the pathogenicity of HIV-1 are also described  相似文献   

7.
The nucleophilic addition–elimination reaction of 2′,3′,5′-tri-O-acetyl-2-fluoro-O 6-[2-(4-nitrophenyl)ethyl]inosine (8) with [15N]benzylamine in the presence of triethylamine afforded the N 2-benzyl[2-15N]guanosine derivative (13) in a high yield, which was further converted into the N 2-benzoyl[2-15N] guanosine derivative by treatment with ruthenium trichloride and tetrabutyl-ammonium periodate. A similar sequence of reactions of 2′,3′,5′-tri-O-acetyl-2-fluoro-O 6-[2-(methylthio)ethyl]inosine (9) and the 6-chloro-2-fluoro-9-(β-D-ribofuranosyl)-9H-purine derivative (11), which were respectively prepared from guanosine, with potassium [15N]phthalimide afforded the N 2-phthaloyl [2-15N]guanosine derivative (15; 62%) and 9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-6-chloro-2-[15N]phthalimido-9H-purine (17; 64%), respectively. Compounds 15 and 17 were then efficiently converted into 2′,3′,5′-tri-O-acetyl[2-15N]guanosine. The corresponding 2′-deoxy derivatives (16 and 18) were also synthesized through similar procedures.  相似文献   

8.
Abstract

5-O-tert-Butyldimethylsilyl-1,2-O-isopropylidene-3(R)-(nicotinamid-2-ylmethyl)-α-D-ribofuranose (11a) and ?3(R)-(nicotinamid-6-ylmethyl)-α-D-ribofuranose (11b) were prepared by condensation of 5-O-tert-butyldimethylsilyl-1,2-O-isopropylidene-α-D-erythro-3-pentulofuranose (10) with lithiated (LDA) 2-methylnicotinamide and 6-methylnicotinamide, respectively, and then deprotected to give 1,2-O-isopropylidene-3-(R)-(nicotinamid-2-ylmethyl)-α-D-ribofuranose(12a) and 1,2-O-isopropylidene-3(R)-(nicotinamid-6-ylmethyl)-α-D-ribofuranose (12b). Benzoylation as well as phosphorylation of compounds 12 afforded the corresponding 5-O-benzoate (13b) and 5-O-monophosphates (14a and 14b). Treatment of 13b with CF3COOH/H2O caused 1,2-de-O-isopropylidenation with simultaneous cyclization to the corresponding methylene-bridged cyclic nucleoside - 3′,6-methylene-1-(5-O-benzoyl-β-D-ribofuranose)-3-carboxamidopyridinium trifluoro-acetate (8b) - restricted to the “anti” conformation. In a similar manner compounds 14a and 14b were converted into conformationally restricted 2,3′-methylene-1-(β-D-ribofuranose)-3-carboxamidopyridinium-5′-monophosphate (9a - “syn”) and 3′,6-methylene-1-(β-D-ribofuranose)-3-carboxamido -pyridinium-5′monophosphate (9b - “anti”) respectively. Coupling of derivatives 12a and 12b with the adenosine 5′-methylenediphosphonate (16) afforded the corresponding dinucleotides 17. Upon acidic 1,2-de-O-isopropylidenation of 17b, the conformationally restricted P1-[6,3′-methylene-1-(β-D-ribofuranos-5-yl)-3-carboxamidopyridinium]-P2-(adenosin-5′-yl)methylenediphosphonate 18b -“anti” was formed. Compound 18b was found to be unstable. Upon addition of water 18b was converted into the anomeric mixture of acyclic dinucleotides, i. e. P1-[3(R)-nicotinamid-6-ylmethyl-D-ribofuranos-5-yl]-P2-(adenosin-5′-yl)-methylenediphosphonate (19b). In a similar manner, treatment of 17a with CF3COOH/H2O and HPLC purification afforded the corresponding dinucleotide 19a.

  相似文献   

9.
The cytokinin activities of adenosine 3′,5′-monophosphate, N6,O2″-dibutyryladenosine 3′,5−'monophosphate, 8-bromoadenosine 3′,5′-monophosphate, N6-(Δ2-isopentenyl)adenosine 3′,5′-monophosphate, and N6-benzyladenosine 3′,5′-monophosphate were determined in the tobacco bioassay and compared with the activities of the corresponding non-cyclic nucleotides, nucleosides and bases of the N6-isopentenyl-substituted, N6-benzyl-substituted, 8-bromo-substituted, and unsubstituted adenine series. In each of these series the cytokinin activities in decreasing order were: bases ⪢ nucleosides ⪖ nucleotides > cyclic nucleotides. All members of the N6-isopentenyl- substituted and N6-benzyl-substituted series were highly active cytokinins, reaching maximum activity at concentrations of 1 μM or less, whereas, as expected, all members of the unmodified adenine series were inactive in the tested concentration ranges of up to 180 and 200 μM for adenosine and adenine, and 40 μM for the adenine nucleotides. Members of the 8-bromo-substituted adenine series were much weaker cytokinins than the N6-substituted adenine derivatives but showed activity in the same sequence starting at a concentration of about 5 μM. Thus, in the cases of 8-bromoadenosine 3′,5′-monophosphate and N6,O2′-dibutyryl-adenosine 3′,5′-monophosphate, both of which have been reported to promote cell division and growth of plant tissues, the cytokinin activity is related to the 8-bromo substituent and to the N6-butyryl substituent, respectively, rather than to the 3′,5′-cyclic monophosphate moiety.  相似文献   

10.
Abstract

The 3′, 5′-di-O-acetyl-, 3′-, 5′-di-O-balzyl-, 3′-O-acety -5-O-trityl- and 3′-, 5′ -di-O-trityl-2′-O-triflyl-1-benzylhnosine (8c, 15, 20C, and 27, respectively) were prepared and subjected to nucleophilic reaction with TASF. Thus, 3′, 5′-O-(1, 1, 3, 3-tetraisopropyldisiloxanyl)-1-benzylinosine (5c) was triflylated, desilylated, and then acetylated to give 8c. Also, 5c was converted into the 2′-O-tetrahydropyrnyl (W) derivative 11 which was desilylated and then benzylated to give 2′-O-tetrahydropyranyl-O3′, O5′, N1-tribenzylinosine (13). Removal of the THP group from 13 followed by triflylation afforded 2′-O-triflyld-O3′,O5′ N1-tribenzylinosine (15). 3′-O-Acetyl-2′ -O-triflyl-,O5′,N1-inosine (20) was prepared frmn 5′ -O-trityl-1-benzylhh (18c) by conversion into the 2′-, 3′-O-(di-n-butylstannylene) derivative which was treated with triflyl chloride and then acetylated. Treatment of 1-benzyl-inosine (4c) with trityl chloride in pyridine containing p-dimethylamino-pyridine afforded a mixture of 2′-, 5′- and 3′-, 5′-di-O-trityl-l-benzylinosine (25 and 26, respectively). These regioiscums were chrcanato-graphically separated. Triflylation of 26 gave 2′-o-triflyl-3′-, 5′-di-O-trityl-1-benzylhoshe (27).

The triflates 8c and 15 only afforded elhination products upon treatment with TASF. However, the trif late group in 20c and 27 was displaced by fluoride with fornation of the 2′-fluoro-arabino nucleosides, 21c and 28, in 10 and 30% yield, respectively. After deprotection of 28, 9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)hypowntkine (1, F-ara-H) was obtained in good yield. The conformational influence of the sugar protecting groups on the rate of nucleophilic substitution against elimination is discussed.  相似文献   

11.
Abstract

A group of 5′-O-myristoyl analogue derivatives of FLT (2) were evaluated as potential anti-HIV agents that were designed to serve as prodrugs to FLT. 3′-Fluoro-2′,3′-dideoxy-5′-O-(12-methoxydodecanoyl)thymidine (4) (EC50 = 3.8 nM) and 3′-fluoro-2′,3′-dideoxy-5′-O-(12-azidododecanoyl)thymidine (8) (EC50 = 2.8 nM) were the most effective anti-HIV-1 agents. There was a linear correlation between Log P and HPLC Log retention time for the 5 ′-O-FLT esters. The in vitro enzymatic hydrolysis half-life (t½), among the group of esters (3–8) in porcine liver esterase, rat plasma and rat brain homogenate was longer for 3′-fluoro-2′,3′-dideoxy-5 ′-O-(myristoyl)thymidine (7), with t½ values of 20.3, 4.6 and 17.5 min, respectively.  相似文献   

12.
Inhibition of microtubule function using tubulin targeting agents has received growing attention in the last several decades. The indole scaffold has been recognized as an important scaffold in the design of novel compounds acting as antimitotic agents. Indole-based chalcones, in which one of the aryl rings was replaced by an indole, have been explored in the last few years for their anticancer potential in different cancer cell lines. Eighteen novel (3′,4′,5′-trimethoxyphenyl)-indolyl-propenone derivatives with general structure 9 were synthesized and evaluated for their antiproliferative activity against a panel of four different human cancer cell lines. The highest IC50 values were obtained against the human promyelocytic leukemia HL-60 cell line. This series of chalcone derivatives was characterized by the presence of a 2-alkoxycarbonyl indole ring as the second aryl system attached at the carbonyl of the 3-position of the 1-(3′,4′,5′-trimethoxyphenyl)-2-propen-1-one framework. The structure–activity relationship (SAR) of the indole-based chalcone derivatives was investigated by varying the position of the methoxy group, by the introduction of different substituents (hydrogen, methyl, ethyl or benzyl) at the N-1 position and by the activity differences between methoxycarbonyl and ethoxycarbonyl moieties at the 2-position of the indole nucleus. The antiproliferative activity data of the novel synthesized compounds revealed that generally N-substituted indole analogues exhibited considerably reduced potency as compared with their parent N-unsubstituted counterparts, demonstrating that the presence of a hydrogen on the indole nitrogen plays a decisive role in increasing antiproliferative activity. The results also revealed that the position of the methoxy group on the indole ring is a critical determinant of biological activity. Among the synthesized derivatives, compound 9e, containing the 2-methoxycarbonyl-6-methoxy-N-1H-indole moiety exhibited the highest antiproliferative activity, with IC50 values of 0.37, 0.16 and 0.17?μM against HeLa, HT29 and MCF-7 cancer cell lines, respectively, and with considerably lower activity against HL-60 cells (IC50: 18?μM). This derivative also displayed cytotoxic properties (IC50 values ~1?μM) in the human myeloid leukemia U-937 cell line overexpressing human Bcl-2 (U-937/Bcl-2) via cell cycle progression arrest at the G2-M phase and induction of apoptosis. The results obtained also demonstrated that the antiproliferative activity of this molecule is related to inhibition of tubulin polymerisation. The presence of a methoxy group at the C5- or C6-position of the indole nucleus, as well as the absence of substituents at the N-1-indole position, contributed to the optimal activity of the indole-propenone-3′,4′,5′-trimethoxyphenyl scaffold.  相似文献   

13.
Abstract

Regioselective 2′-O-deacetylation of 9-(2,5-di-O-acetyl-3-bromo-3-deoxy-β-D-xylofuranosyl)adenine (1) is achieved by treatment of 1 with β-cyclodextrin (β-CyD) / aq. NaHCO3 or N2H4·H2O / EtOH. The 9-(5-O-Acetyl-3-bromo-3-deoxy-β-D-xylo-furanosyl)adenine (2) obtained is a common intermediate for the synthesis of 2′,3′-dideoxy-adenosine (ddA) (7) and 9-(2-fluoro-2,3-dideoxy-β-D-threo-pentofuranosyl)-adenine (F-ddA) (9).  相似文献   

14.
Abstract

Starting from 2′,3′,5′-tri-O-acetyl-2-iodoadenosine, 9-(β-D-arabinofuranosyl)-2-(p-n-butylanilino)adenine and its 2′(S)-azido counterparts were synthesized in seven steps. These exhibited only moderate growth-inhibitory effects against mouse leukemic P388 cells (IC50 = 13–24 μM), although 5′-triphosphate derivatives showed strong and selective inhibitory action on calf thymus DNA polymerase α, but not on β- and ?-polymerases from eukaryotes.

  相似文献   

15.
Treatment of N6,N6,5′-O-tribenzoyl-2′,3′-O-isopropylidenetubercidin (VI) with aqueous acetic acid afforded N6,5′-O-dibenzoyltubercidin (V), which was mesylated to yield the dimesylate X. On treatment of X with sodium iodide and zinc dust, the 2′,3′-unsaturated derivatives of tubercidin XI and XIII were obtained.

N6,5′-O-Dibenzoyltubercidin 2′,3′-thionocarbonate (XIV), prepared from V by treatment with Corey-Winter reagent, was converted to the 1-methyl-2′,3′-unsaturated derivative XV in refluxing trimethyl phosphite.  相似文献   

16.
The reactions of chloroacetaldehyde with adenosine 3′,5′-cyclic phosphate, and with several analogs modified at C8 of the purine ring or C5, of the sugar, lead to the corresponding 1,N6-etheno derivativesd. Similar reactions using other 2-bromoaldehydes or phenacyl bromide give 1,N6-ethenonucleotides substituted at the α- or β-positions of the etheno bridge respectively. The ability of these compounds to activate the protein kinases from rabbit muscle and calf brain has been evaluated over a wide range of concentrations. While no derivative proved to be more active than adenosine 3′,5′-cyclic phosphate itself using the enzyme from rabbit muscle, a wide spectrum of activities was found using that from calf brain.  相似文献   

17.
Abstract

Two representative S-cyclonucleosides, 8,5′-anhydro-2′, 3′-O-isopropylidene-8-mercaptoadenosine (3) and 8,2′-anhydro-3′,5′-O-(tetraisopropyldisiloxane-1,3-diyl)-8-mercaptoguanosine (8), were prepared in good yields by dropwise addition of one equivalent each of triphenylphosphine and DEAD in DMF into a mixture of 2′,3′-O-isopropylidene-8-mercaptoadenosine (2) or 3′,5′-O-(tetra-iso-propyldisiloxane-1,3-diyl)-8-mercaptoguanosine (7), respectively, in DMF. Treatment of compound 2 with two equivalents each of triphenylphosphine and DEAD in DMF afforded N-[8,5′-anhydro-2′,3′-O-isopropylidene-8-mercaptopurin-6-yl]triphenylphospha-λ5-azene (4) in 87% yield.  相似文献   

18.
Abstract

2′-5′ and 3′-5′ linked 2-aminoadenylyl-2-aminoadenosines [(2′-5′)n2Apn2A (1) and (3′-5′)n2Apn2A (2)] were synthesized by condensation of 5′-O-monomethoxytrityl-N 2 N 6-dibenzoyl-2-aminoadenosine and N 2,N 6,2′,3′-O-tetrabenzoyl-2-aminoadenosine 5′-phosphate using dicyclohexylcarbodiimide (DCC). The conformational properties of these dimers 1 and 2 were examined by UV, NMR and CD spectroscopy. The results reveal that the 2′-5′-isomer 1 takes a stacked conformation, which contains a larger base-base overlap and is more stable against thermal perturbation with respect to the 3′-5′-isomer 2. Interactions of 1 and 2 with polyuridylic acid (Poly (U)) were also examined by Tm, mixing curves, UV and CD spectra. Both the dinucleoside isomers 1 and 2 formed a complex of 1 : 2 stoichiometry with poly(U), which was much more stable than that of the corresponding ApA isomer  相似文献   

19.
Abstract

2,2′ -Anhydro-1- (3′ -deoxy-3′ -iodo-5′ -O-trityl-B-D-arabinofuranosyl)-thymine (2) was synthesized from 2′,3′ -didehydro-3′-deoxythymidine (DHT) (1). Compound 2 was readily converted into 2′,3′-anhydro-lyxofuranosyl derivatives 4-6. Reaction of 4a with some nucleophiles (N3 -, OMe-, Cl-) gave the corresponding 3′-substituted arabinonucleosides (7b,d,f) together with the minor xylosyl isomers (8a,c). Compounds 7b,d,f and 8a were deprotected to 7c,e,g and 8b, respectively.  相似文献   

20.
Abstract

5′-Chloro-5′-deoxy-N,3′-O-dibenzoylthymidine (3a), 5′-chloro-5′-deoxy-N4, 3′-O-dibenzoyldeoxycytidine(3b), 5′-chloro-5′-deoxy-N6,3′-O-dibenzoyldeoxyadenosine(3c), N-benzoyl-1-(3-chloro-2,3-dideoxy-5-O-trityl-ß-D-xylofuranosyl)thymine (5a) and N6-benzoyl-9-(3-chloro-2,3-dideoxy-5-O-trityl-ß-D-xylofuranosyl)adenine (5b) have been synthesized in very high yields using a new efficient reagent, tris(2,4,6-tribrom-ophenoxy)dichlorophosphorane (BDCP). The reaction time was greatly reduced to 5–8 min. NOE data suggested an inversion of configuration at C3-position and thus an SN2 mechanism has been proposed for the chlorination reaction.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号