首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(2R,5S)-5-Amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]- 1,2,4-triazine-3(2H)-one (8) and (2R,5R)-5-amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-1,2,4-tr iazine-3(2H)-one (9) have been synthesized via a multi-step procedure from 6-azauridine. (2R,5S)-4-Amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-1,3, 5-triazine-2(1H)-one (11) and (2R,5R)-4-amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]- 1,3,5-triazine-2(1H)-one (12), and the fluorosubstituted 3-deazanucleosides (19-24) have been synthesized by the transglycosylation of (2R,5S)-1-[2-[[(tert-butyldiphenylsilyl) oxy]methyl]-1,3-oxathiolan-5-yl] cytosine (2) with silylated 5-azacytosine and the corresponding silylated fluorosubstituted 3-deazacytosines, respectively, in the presence of trimethylsilyl trifluoromethanesulfonate as the catalyst in anhydrous dichloroethane, followed by deprotection of the blocking groups. These compounds were tested in vitro for cytotoxicity against L1210, B16F10, and CCRF-CEM tumor cell lines and for antiviral activity against HIV-1 and HBV.  相似文献   

2.
为了解柯拉斯那(Aquilaria crassna)的化学成分,从其所产沉香中分离得到10个化合物,经波谱分析分别鉴定为:6,8-羟基-2-(2-苯乙基)色酮(1),6,8-二羟基-2-[2-(4-甲氧基苯)乙基]色酮(2),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-5-(2-phenylethyl)-7H-oxireno[f][1]benzopyran-7-one(3),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-[2-(4-methoxyphenyl)-ethyl]-7H-oxireno[f][1]benzopyran-7-one(4),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-5-[2-(3-hydroxy-4-methoxyphenyl)-ethyl]-7H-oxireno[f][1]benzopyran-7-one(5),oxidoagarochromone B(6),oxidoagarochromone C(7),(5S,6R,7S,8R)-2-[2-(3′-hydroxy-4′-methoxyphenyl)ethyl]-5,6,7,8-tetrahydroxy-5,6,7,8-tetrahydrochromone(8),6,7-cis-dihydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydrochromone(9),N-trans-feruloyltyramine(10)。化合物3~5和8~10为首次从柯拉斯那沉香中分离得到。化合物1,3,6,7,9和10对乙酰胆碱酯酶具有一定的抑制活性,化合物4对人慢性髓原白血病细胞株K-562和人胃癌细胞株SGC-7901均具有较小的抑制作用,化合物1和3对人肝癌细胞株BEL-7402也有抑制活性。  相似文献   

3.
Squaric acid and its derivatives are versatile synthons and have demonstrated applications in medicinal chemistry, notably as non-classical bioisosteric replacements for functional groups such as carboxylic acids, alpha-amino acids, urea, guanidine, peptide bonds and phosphate/pyrophosphate linkages. Surprisingly, no reports have appeared concerning its possible application as a nucleobase substitute in nucleosides. A preliminary investigation of such an application is reported herein. 3-Amino-4-((1R,4S)-4-(hydroxymethyl)cyclopent-2-en-1-yl)amino-cyclobut-3-ene-1,2-dione, 3-((1R,4S)-4-(hydroxymethyl)cyclopent-2-en-1-yl)amino-4-methoxycyclobut-3-ene-1,2-dione, and 3-hydroxy-4-((1R,4S)-4-(hydroxymethyl)cyclopent-2-en-1-yl)amino-cyclobut-3-ene-1,2-dione sodium salt were synthesized. Computational analyses of their structures and preliminary antitumor and antiviral screening results are reported.  相似文献   

4.
Summary A chiral compound [4R-[4,6ß(E)]]-6-[4,4-bis(4-fluorophenyl)-3-(1-methyl-1H-tetrazol-5-yl)-1,3-butadienyl]-tetrahydro-4-hydroxy-2H-pyran-2-one (R-(+)-1) was prepared by the lipase-catalysed stereoselective acetylation of racemic 1 in an organic solvent. Chiral R-(+)-1 is a hydroxymethyl glutaryl coenzyme A (HMG CoA) reductase inhibitor and a potential anticholesterol drug candidate. Among various lipases evaluated, lipase PS-30 from Pseudomonas species efficiently catalysed acetylation of the undesired enantiomer of racemic 1 to yield the S-(–)-acetylated product 2 and unreacted desired R-(+)-1. A reaction yield of 48 mol% and an optical purity of 98% were obtained for R-(+)-1 when the reaction was conducted in toluence as solvent in the presence of isopropenyl acetate as acyl donor. Lipase PS-30 was immobilized on Accurel polypropylene (PP) and the immobilized enzyme was reused (five cycles) in the acetylation reaction without loss of enzyme activity, productivity, or optical purity of the R-(+)-1. The enzymatic acetylation process was scaled-up to 501 and a 640-l volume (preparative batches) at a substrate concentration of 4 g/l. R-(+)–1 was recovered from the preparative batches in 68–71% recovery yield with 98.5% gas chromatography homogeneity index and 98.5% optical purity. The S-(–) acetate 2 produced by the acetylation reaction was enzymatically hydrolysed by lipase PS-30 in a biphasic system to prepare the corresponding S-(–)-1.Correspondence to: R. N. Patel  相似文献   

5.
Molecular combinations of two antioxidants (i.e., ascorbic acid and the pharmacophore of α-tocopherol), namely the 2,3-dihydroxy-2,3-enono-1,4-lactone and the chromane residues, have been designed and tested for their radical scavenging activities. When evaluated for their capability to inhibit malondialdehyde (MDA) production in rat liver microsomal membranes, the 3,4-dihydroxy-5R-2(R,S)-(6-hydroxy-2,5,7,8-tetramethylchroman-2(R,S)yl-methyl)-1,3]dioxolan-4S-yl]-5H-furan-2-one (11ad), exhibited an interesting activity. In particular the 5R,2R,2R,4S and 5R,2R,2S,4S isomers (11c,d) displayed a potent antioxidant effect compared to the respective synthetic α-tocopherol analogue (5) and natural α-tocopherol or ascorbic acid, used alone or in combination. Moreover, the mixture of stereoisomers 11ad also proved to be effective in preventing damage induced by reperfusion on isolated rabbit heart, in particular at the higher concentration of 300 μM. In view of these results our study represents a new approach to potential therapeutic agents for applications in pathological events in which a free radical damage is involved. Design, synthesis and preliminary biological activity are discussed.  相似文献   

6.
With pig liver esterase, 1,3-dibenzyl-4,5-cis-bis(alkyloxycarbonyl)-2-oxoimidazolidine (1) was asymmetrically hydrolyzed to (4S,5R)-1,3-dibenzyl-5-alkyloxycarbonyl-2-oxoimidazolidine-4-carboxylic acid (2). This acid 2 was reduced with lithium borohydride to (4S,5R)-1,3-dibenzyl-5-hydroxymethyl-2-oxoimidazolidine-4-carboxylic acid lactone (3), which is known to be converted to (+)-biotin (4). With the same esterase, diethyl 3,4-dimethoxyphenylmethyl-(methyl)malonate (5) was asymmetrically hydrolyzed to (R)-ethyl hydrogen 3,4-dimethoxy-phenylmethyl(methyl)malonate (6), which can be converted to (S)-α-methyl-3,4-dihydroxyphenyl-alanine(l-α-methyldopa) (9).  相似文献   

7.
Suspension cultured cells of Caragana chamlagu (Leguminosae) converted zerumbone (1) into zerumbone epoxide (2) as the intermediate, (2R,3R,7R)-2,3-epoxy-9-humulen-8-one (3) and (2R,3S,7R)-2,3-epoxy-9-humulen-8-one (4) as new sesquiterpenes in 11%, 36% and 21% yields, respectively.  相似文献   

8.
(22R,23R,24S)-22,23-Isopropylidenedioxy-5α-ergost-2-en-6-one 2b is an important intermediate of brassinolide. We found that the enone 2b can be prepared by transformation of (22R,23R,24S)-3α,5-cyclo-22,23-isopropylidenedioxy-5α-ergostan-6-one 5b with catalytic amount of both p-TsOH and NaBr in DMF under reflux. 5b was prepared from (22R,23R,24S)-3α,5-cyclo-22,23-dihydroxy-6β-methoxy-5α-ergostane 9b or a 6β-benzyloxy compound 9c, which was obtained in a manner similar to Mori’s brassinolide synthesis. The enone 2b was eventually prepared via a benzyl ether 9c from stigmasterol 3a in a 15.5% yield in 11 steps.  相似文献   

9.
( – )-Invictolide [(3R,5R,6S,1′R)-3,5-dimethyl-6-(1′-methylbutyl)-tetrahydro-2H-pyran-2-one] was synthesized in 16 steps from 2-methylpentanal.  相似文献   

10.
Candida antarctica (CAL-B) lipase-catalyzed resolution of 1,3-dialkyl-3-hydroxymethyl oxindoles has been performed to obtain (R)-1,3-dialkyl-3-acetoxymethyl oxindoles with up to 99% ee and (S)-1,3-dialkyl-3-hydroxymethyl oxindoles with up to 78% ee using vinyl acetate as acylating agent and acetonitrile as solvent transforming (S)-3-allyl-3-hydroxymethyl oxindole to (3S)-1′-benzyl-5-(iodomethyl)-4,5-dihydro-2H-spiro[furan-3,3′-indolin]-2′-one. The optically active 3-substituted-3-hydroxymethyl oxindoles and spiro-oxindoles are among the key synthons in the synthesis of potentially biologically active molecules.  相似文献   

11.
The branches of the shrub Aniba lancifolia Kubitzki et Rodrigues (Lauraceae) contain besides 2-hydroxy-4,5- dimethoxyallylbenzene and its dimer cyclohexan-2-allyl- 5-en-4,5-dimethoxy-4-O-(2′-allyl-4′,5′-dimethoxyphenyl)-1-one (lancilin, 2) 6 further novel neolignans: (4S,2′R)- and (4R,2′E)-cyclohexan-2-allyl-2,5-dien-4,5-dimethoxy-4-[2′-(1′-guaiacyl)-propyl]-1-one (lancifolins A and B, 3a and 3b), (4S,2′R)- and (4R,2′R)-cyclohexan- 2-allyl-2,5-dien-4,5-dimethoxy-4-[2′-(1′-veratryl)-propyl]-1-one (lancifolins C and D, 3c and 3d), (4S,2′R)-and (4R,2′R)-cyclohexan-2-allyl-2,5-dien-4,5-dimethoxy-4-[2′-(1′-piperonyl)-propyl]-1-one (lancifolins E and F, 3e and 3f).  相似文献   

12.
From the rhizomes of Smilax corbularia Kunth. (Smilacaceae), 11 compounds, (2R,3R)-2″-acetyl astilbin, (2R,3R)-3″-acetyl astilbin, (2R,3R)-4″-acetyl astilbin, (2R,3R)-3″-acetyl engeletin, (2R,3S)-4″-acetyl isoastilbin, 2-(4-hydroxyphenyl)-3,4,9,10-tetrahydro-3,5-dihydroxy-10-(3,4-dihydroxyphenyl)-(2R,3R,10R)-2H,8H-benzo [1,2-b:3,4-b′] dipyran-8-one, 2-(4-hydroxyphenyl)-3,4,9,10-tetrahydro-3,5-dihydroxy-10-(3,4-dihydroxyphenyl)-(2R,3R,10S)-2H, 8H-benzo [1,2-b:3,4-b′] dipyran-8-one, 3,4-dihydro-7-hydroxy-4-(3,4-dihydroxyphenyl)-5-[(1E)-2-(4-hydroxyphenyl) ethenyl]-2H-1-benzopyran-2-one, 3,4-dihydro-7-hydroxy-4-(3,4-dihydroxy-phenyl)-5-[(1E)-2-(3,4-dihydroxyphenyl) ethenyl]-2H-1-benzopyran-2-one, 3,4-dihydro-7-hydroxy-4-(4-hydroxy-3-methoxyphenyl)-5-[(1E)-2-(4-hydroxyphenyl) ethenyl]-2H-1-benzopyran-2-one, and 5,7,3′,4′-tetrahydroxy-3-phenylcoumarin along with 34 known compounds were isolated and characterized as 19 flavonoids, 14 catechin derivatives, 6 stilbene derivatives, and 6 miscellaneous substances. All isolates had their estrogenic and anti-estrogenic activities determined using the estrogen-responsive human breast cancer cell lines MCF-7 and T47D. The major constituents were recognized as flavanonol rhamnosides by the suppressive effect on estradiol induced cell proliferation at a concentration of 1 μM. Meanwhile, flavanonol rhamnoside acetates demonstrated estrogenic activity in both MCF-7 and T47D cells at a concentration of 100 μM, and they enhanced the effects of co-treated E2 on T47D cell proliferation at concentrations of more than 0.1 μM.  相似文献   

13.
Abstract

The synthesis of (-)-3-[(1S,2S,3R,4R)-2,3-dihydroxy-4-(hydroxmethyl) cyclopentan-1-yl]-1H-pyrazolo[4,3-c]pyridme-4,6(5H,7H)-dione 3 was accomplished via enantiomerically pure carbocyclic 5-(β-D-ribofuranosyl)tetrazole 4.  相似文献   

14.
A series of fused cyclopropyl-4,5-dihydropyridazin-3-one (3,4-diaza-bicyclo[4.1.0]hept-4-en-2-one) phenoxypiperidine analogs was designed and synthesized, leading to the identification of (1R,6S)-5-[4-(1-cyclobutyl-piperidin-4-yloxy)-phenyl]-3,4-diaza-bicyclo[4.1.0]hept-4-en-2-one (R,S-4a) as a second-generation pyridazin-3-one H3R antagonist. Compound R,S-4a was a potent H3R functional antagonist in vivo in the rat dipsogenia model, demonstrated potent wake activity in the rat EEG/EMG model, and enhanced short-term memory in the rat social recognition memory model at doses as low as 0.03–0.3 mg/kg po.  相似文献   

15.
Optically active tiraras-cycloheximide isomers such as cycloheximide [(2S,4S,6RR)-form (1)], naramycin B[(25,4S,6RαR)-form(4)], and new stereoisomers (2S,4S,6SS)-form (8) and (2S,4S,6RS)-from (9) were synthesized by an aldol condensation of trans-2,4-dimethyl-l-cyclohexanone (5b), with 4-(2-oxoethyl)-2,6-piperidinedione(6). The antimicrobial activity of trans- cycloheximide isomers (1, 4, 8, and 9) was examined against S. cerevisiae and P. oryzae. The stereoisomers 1 and 4 exhibited marked antimicrobial activity against both microorganisms as compared with their C- α-epimers 8 and 9.  相似文献   

16.
《Phytochemistry》1987,26(2):503-506
Two brassinosteroids, (24S)-24-ethylbrassinone [(22R,23R,24S)-2α,3α,22,23-tetrahydroxy-24-ethyl-5α-cholestan-6-one] and 24-epicastasterone [(22R,23R,24R)-2α,3α,22,23-tetrahydroxy-24-methyl-5α-cholestan-6-one] have been identified from Hydrodictyon reticulatum. Examination of the sterols of this alga has established that 24-ethylcholesterol is predominantly the 24α-epimer, but 24-methylcholesterol is a mixture of the 24α- and 24β-epimers. Thus, similarity with respect to the C-24 configuration was observed between the brassinosteroids and 4-demethylsterols.  相似文献   

17.
Asymmetric hydrolysis of acetate (10) of (±)-t-2,t-4-dimethyl-r-l-cyclohexanol with Bacillus subtilis var. niger gave (?)-(lS,2S,4S)-2,4-dimethyl-l-cyclohexanol (6a) and (+)-(1R,2R,4R)-acetate (10b) with high optical purities. Optically pure (?) and (+)-alcohols (6a and 6b) were prepared via corresponding 3,5-dinitrobenzoates. Oxidation of alcohols (6a and 6b) with chromic acid gave optically pure (?)-(2S,4S) and (+)-(2R,4R)-2,4-dimethyl-l-cyclohexanones (2a and 2b), respectively.  相似文献   

18.
Enzymes and microorganisms were screened for the asymmetric hydrolysis of (R, S)-5-acetoxymethyl-3-tert-butyl-oxazolidin-2-one 1. Lipases from Pseudomonas aeruginosa and Alcaligenes species, and microorganisms which belong to Enterobacter species or Klebsiella species were found to hydrolyze 1 enantioselectively to give (R)-5-hydroxymethyl-3-tert-butyl-oxazolidin-2-one (R)-2 and (S)-l. (S)-2, one of the typical intermediates for preparing optically active β-blocking agents (β-blockers), was obtained with high enantiomeric excess (91~98% e.e.) from (S)-1.  相似文献   

19.
Such (+)- and (?)-cis-cycloheximide isomers as isocyclohcximide (1a, 1b), α-epiisocycloheximide (2a, 2b) and neocycloheximide (3a, 3b) were synthesized by aldol condensation of (?)-(2R, 4R)- and (+)-(2S, 4S)-cis-2,4-dimethyl-1-cyclohexanone (5a, 5b). obtained by microbial resolution, with 4-(2-oxoethyl)-2,6-piperidinedione (7). The absolute configuration of the (?)-cis-ketone 5a was confirmed by chemical correlation with natural (2S, 4S, 6S, αR)-cycloheximide (4). The newly synthesized isomer, (?)-α-epiisocycloheximide (2b), showed strong antimicrobial activity against S. cerevisiae andP. oryzae close to that of natural cycloheximide (4).  相似文献   

20.
The optically active samin type of lignan, (1R,2S,5R, 6S)-6-(2-methoxy-4,5-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octan-2-ol, was stereoselectively synthesized from L-glutamic acid via (2R,3R)-2-[(1S and R)- 1-[(tert-butyldimethylsilyl)oxy]-1-(2-methoxy-4,5-methylenedioxyphenyl)methyl]-3-[(tert-butyldiphenylsilyl)oxy]methyl-1,4-butanediol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号